File size: 105,447 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
"""
Ridge regression
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


import numbers
import warnings
from abc import ABCMeta, abstractmethod
from functools import partial
from numbers import Integral, Real

import numpy as np
from scipy import linalg, optimize, sparse
from scipy.sparse import linalg as sp_linalg

from sklearn.base import BaseEstimator

from ..base import MultiOutputMixin, RegressorMixin, _fit_context, is_classifier
from ..exceptions import ConvergenceWarning
from ..metrics import check_scoring, get_scorer_names
from ..model_selection import GridSearchCV
from ..preprocessing import LabelBinarizer
from ..utils import (
    Bunch,
    check_array,
    check_consistent_length,
    check_scalar,
    column_or_1d,
    compute_sample_weight,
    deprecated,
)
from ..utils._array_api import (
    _is_numpy_namespace,
    _ravel,
    device,
    get_namespace,
    get_namespace_and_device,
)
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
from ..utils.extmath import row_norms, safe_sparse_dot
from ..utils.fixes import _sparse_linalg_cg
from ..utils.metadata_routing import (
    MetadataRouter,
    MethodMapping,
    _raise_for_params,
    _routing_enabled,
    process_routing,
)
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _check_sample_weight, check_is_fitted, validate_data
from ._base import LinearClassifierMixin, LinearModel, _preprocess_data, _rescale_data
from ._sag import sag_solver


def _get_rescaled_operator(X, X_offset, sample_weight_sqrt):
    """Create LinearOperator for matrix products with implicit centering.

    Matrix product `LinearOperator @ coef` returns `(X - X_offset) @ coef`.
    """

    def matvec(b):
        return X.dot(b) - sample_weight_sqrt * b.dot(X_offset)

    def rmatvec(b):
        return X.T.dot(b) - X_offset * b.dot(sample_weight_sqrt)

    X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec)
    return X1


def _solve_sparse_cg(
    X,
    y,
    alpha,
    max_iter=None,
    tol=1e-4,
    verbose=0,
    X_offset=None,
    X_scale=None,
    sample_weight_sqrt=None,
):
    if sample_weight_sqrt is None:
        sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)

    n_samples, n_features = X.shape

    if X_offset is None or X_scale is None:
        X1 = sp_linalg.aslinearoperator(X)
    else:
        X_offset_scale = X_offset / X_scale
        X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)

    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)

    if n_features > n_samples:

        def create_mv(curr_alpha):
            def _mv(x):
                return X1.matvec(X1.rmatvec(x)) + curr_alpha * x

            return _mv

    else:

        def create_mv(curr_alpha):
            def _mv(x):
                return X1.rmatvec(X1.matvec(x)) + curr_alpha * x

            return _mv

    for i in range(y.shape[1]):
        y_column = y[:, i]

        mv = create_mv(alpha[i])
        if n_features > n_samples:
            # kernel ridge
            # w = X.T * inv(X X^t + alpha*Id) y
            C = sp_linalg.LinearOperator(
                (n_samples, n_samples), matvec=mv, dtype=X.dtype
            )
            coef, info = _sparse_linalg_cg(C, y_column, rtol=tol)
            coefs[i] = X1.rmatvec(coef)
        else:
            # linear ridge
            # w = inv(X^t X + alpha*Id) * X.T y
            y_column = X1.rmatvec(y_column)
            C = sp_linalg.LinearOperator(
                (n_features, n_features), matvec=mv, dtype=X.dtype
            )
            coefs[i], info = _sparse_linalg_cg(C, y_column, maxiter=max_iter, rtol=tol)

        if info < 0:
            raise ValueError("Failed with error code %d" % info)

        if max_iter is None and info > 0 and verbose:
            warnings.warn(
                "sparse_cg did not converge after %d iterations." % info,
                ConvergenceWarning,
            )

    return coefs


def _solve_lsqr(
    X,
    y,
    *,
    alpha,
    fit_intercept=True,
    max_iter=None,
    tol=1e-4,
    X_offset=None,
    X_scale=None,
    sample_weight_sqrt=None,
):
    """Solve Ridge regression via LSQR.

    We expect that y is always mean centered.
    If X is dense, we expect it to be mean centered such that we can solve
        ||y - Xw||_2^2 + alpha * ||w||_2^2

    If X is sparse, we expect X_offset to be given such that we can solve
        ||y - (X - X_offset)w||_2^2 + alpha * ||w||_2^2

    With sample weights S=diag(sample_weight), this becomes
        ||sqrt(S) (y - (X - X_offset) w)||_2^2 + alpha * ||w||_2^2
    and we expect y and X to already be rescaled, i.e. sqrt(S) @ y, sqrt(S) @ X. In
    this case, X_offset is the sample_weight weighted mean of X before scaling by
    sqrt(S). The objective then reads
       ||y - (X - sqrt(S) X_offset) w)||_2^2 + alpha * ||w||_2^2
    """
    if sample_weight_sqrt is None:
        sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)

    if sparse.issparse(X) and fit_intercept:
        X_offset_scale = X_offset / X_scale
        X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
    else:
        # No need to touch anything
        X1 = X

    n_samples, n_features = X.shape
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
    n_iter = np.empty(y.shape[1], dtype=np.int32)

    # According to the lsqr documentation, alpha = damp^2.
    sqrt_alpha = np.sqrt(alpha)

    for i in range(y.shape[1]):
        y_column = y[:, i]
        info = sp_linalg.lsqr(
            X1, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter
        )
        coefs[i] = info[0]
        n_iter[i] = info[2]

    return coefs, n_iter


def _solve_cholesky(X, y, alpha):
    # w = inv(X^t X + alpha*Id) * X.T y
    n_features = X.shape[1]
    n_targets = y.shape[1]

    A = safe_sparse_dot(X.T, X, dense_output=True)
    Xy = safe_sparse_dot(X.T, y, dense_output=True)

    one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])

    if one_alpha:
        A.flat[:: n_features + 1] += alpha[0]
        return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T
    else:
        coefs = np.empty([n_targets, n_features], dtype=X.dtype)
        for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
            A.flat[:: n_features + 1] += current_alpha
            coef[:] = linalg.solve(A, target, assume_a="pos", overwrite_a=False).ravel()
            A.flat[:: n_features + 1] -= current_alpha
        return coefs


def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
    # dual_coef = inv(X X^t + alpha*Id) y
    n_samples = K.shape[0]
    n_targets = y.shape[1]

    if copy:
        K = K.copy()

    alpha = np.atleast_1d(alpha)
    one_alpha = (alpha == alpha[0]).all()
    has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None]

    if has_sw:
        # Unlike other solvers, we need to support sample_weight directly
        # because K might be a pre-computed kernel.
        sw = np.sqrt(np.atleast_1d(sample_weight))
        y = y * sw[:, np.newaxis]
        K *= np.outer(sw, sw)

    if one_alpha:
        # Only one penalty, we can solve multi-target problems in one time.
        K.flat[:: n_samples + 1] += alpha[0]

        try:
            # Note: we must use overwrite_a=False in order to be able to
            #       use the fall-back solution below in case a LinAlgError
            #       is raised
            dual_coef = linalg.solve(K, y, assume_a="pos", overwrite_a=False)
        except np.linalg.LinAlgError:
            warnings.warn(
                "Singular matrix in solving dual problem. Using "
                "least-squares solution instead."
            )
            dual_coef = linalg.lstsq(K, y)[0]

        # K is expensive to compute and store in memory so change it back in
        # case it was user-given.
        K.flat[:: n_samples + 1] -= alpha[0]

        if has_sw:
            dual_coef *= sw[:, np.newaxis]

        return dual_coef
    else:
        # One penalty per target. We need to solve each target separately.
        dual_coefs = np.empty([n_targets, n_samples], K.dtype)

        for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
            K.flat[:: n_samples + 1] += current_alpha

            dual_coef[:] = linalg.solve(
                K, target, assume_a="pos", overwrite_a=False
            ).ravel()

            K.flat[:: n_samples + 1] -= current_alpha

        if has_sw:
            dual_coefs *= sw[np.newaxis, :]

        return dual_coefs.T


def _solve_svd(X, y, alpha, xp=None):
    xp, _ = get_namespace(X, xp=xp)
    U, s, Vt = xp.linalg.svd(X, full_matrices=False)
    idx = s > 1e-15  # same default value as scipy.linalg.pinv
    s_nnz = s[idx][:, None]
    UTy = U.T @ y
    d = xp.zeros((s.shape[0], alpha.shape[0]), dtype=X.dtype, device=device(X))
    d[idx] = s_nnz / (s_nnz**2 + alpha)
    d_UT_y = d * UTy
    return (Vt.T @ d_UT_y).T


def _solve_lbfgs(
    X,
    y,
    alpha,
    positive=True,
    max_iter=None,
    tol=1e-4,
    X_offset=None,
    X_scale=None,
    sample_weight_sqrt=None,
):
    """Solve ridge regression with LBFGS.

    The main purpose is fitting with forcing coefficients to be positive.
    For unconstrained ridge regression, there are faster dedicated solver methods.
    Note that with positive bounds on the coefficients, LBFGS seems faster
    than scipy.optimize.lsq_linear.
    """
    n_samples, n_features = X.shape

    options = {}
    if max_iter is not None:
        options["maxiter"] = max_iter
    config = {
        "method": "L-BFGS-B",
        "tol": tol,
        "jac": True,
        "options": options,
    }
    if positive:
        config["bounds"] = [(0, np.inf)] * n_features

    if X_offset is not None and X_scale is not None:
        X_offset_scale = X_offset / X_scale
    else:
        X_offset_scale = None

    if sample_weight_sqrt is None:
        sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)

    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)

    for i in range(y.shape[1]):
        x0 = np.zeros((n_features,))
        y_column = y[:, i]

        def func(w):
            residual = X.dot(w) - y_column
            if X_offset_scale is not None:
                residual -= sample_weight_sqrt * w.dot(X_offset_scale)
            f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w)
            grad = X.T @ residual + alpha[i] * w
            if X_offset_scale is not None:
                grad -= X_offset_scale * residual.dot(sample_weight_sqrt)

            return f, grad

        result = optimize.minimize(func, x0, **config)
        if not result["success"]:
            warnings.warn(
                (
                    "The lbfgs solver did not converge. Try increasing max_iter "
                    f"or tol. Currently: max_iter={max_iter} and tol={tol}"
                ),
                ConvergenceWarning,
            )
        coefs[i] = result["x"]

    return coefs


def _get_valid_accept_sparse(is_X_sparse, solver):
    if is_X_sparse and solver in ["auto", "sag", "saga"]:
        return "csr"
    else:
        return ["csr", "csc", "coo"]


@validate_params(
    {
        "X": ["array-like", "sparse matrix", sp_linalg.LinearOperator],
        "y": ["array-like"],
        "alpha": [Interval(Real, 0, None, closed="left"), "array-like"],
        "sample_weight": [
            Interval(Real, None, None, closed="neither"),
            "array-like",
            None,
        ],
        "solver": [
            StrOptions(
                {"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
            )
        ],
        "max_iter": [Interval(Integral, 0, None, closed="left"), None],
        "tol": [Interval(Real, 0, None, closed="left")],
        "verbose": ["verbose"],
        "positive": ["boolean"],
        "random_state": ["random_state"],
        "return_n_iter": ["boolean"],
        "return_intercept": ["boolean"],
        "check_input": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def ridge_regression(
    X,
    y,
    alpha,
    *,
    sample_weight=None,
    solver="auto",
    max_iter=None,
    tol=1e-4,
    verbose=0,
    positive=False,
    random_state=None,
    return_n_iter=False,
    return_intercept=False,
    check_input=True,
):
    """Solve the ridge equation by the method of normal equations.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    X : {array-like, sparse matrix, LinearOperator} of shape \
        (n_samples, n_features)
        Training data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values.

    alpha : float or array-like of shape (n_targets,)
        Constant that multiplies the L2 term, controlling regularization
        strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.

        When `alpha = 0`, the objective is equivalent to ordinary least
        squares, solved by the :class:`LinearRegression` object. For numerical
        reasons, using `alpha = 0` with the `Ridge` object is not advised.
        Instead, you should use the :class:`LinearRegression` object.

        If an array is passed, penalties are assumed to be specific to the
        targets. Hence they must correspond in number.

    sample_weight : float or array-like of shape (n_samples,), default=None
        Individual weights for each sample. If given a float, every sample
        will have the same weight. If sample_weight is not None and
        solver='auto', the solver will be set to 'cholesky'.

        .. versionadded:: 0.17

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
            'sag', 'saga', 'lbfgs'}, default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. It is the most stable solver, in particular more stable
          for singular matrices than 'cholesky' at the cost of being slower.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution via a Cholesky decomposition of
          dot(X.T, X)

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

        - 'lbfgs' uses L-BFGS-B algorithm implemented in
          `scipy.optimize.minimize`. It can be used only when `positive`
          is True.

        All solvers except 'svd' support both dense and sparse data. However, only
        'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
        `fit_intercept` is True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
        1000. For 'lbfgs' solver, the default value is 15000.

    tol : float, default=1e-4
        Precision of the solution. Note that `tol` has no effect for solvers 'svd' and
        'cholesky'.

        .. versionchanged:: 1.2
           Default value changed from 1e-3 to 1e-4 for consistency with other linear
           models.

    verbose : int, default=0
        Verbosity level. Setting verbose > 0 will display additional
        information depending on the solver used.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.
        Only 'lbfgs' solver is supported in this case.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

    return_n_iter : bool, default=False
        If True, the method also returns `n_iter`, the actual number of
        iteration performed by the solver.

        .. versionadded:: 0.17

    return_intercept : bool, default=False
        If True and if X is sparse, the method also returns the intercept,
        and the solver is automatically changed to 'sag'. This is only a
        temporary fix for fitting the intercept with sparse data. For dense
        data, use sklearn.linear_model._preprocess_data before your regression.

        .. versionadded:: 0.17

    check_input : bool, default=True
        If False, the input arrays X and y will not be checked.

        .. versionadded:: 0.21

    Returns
    -------
    coef : ndarray of shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    n_iter : int, optional
        The actual number of iteration performed by the solver.
        Only returned if `return_n_iter` is True.

    intercept : float or ndarray of shape (n_targets,)
        The intercept of the model. Only returned if `return_intercept`
        is True and if X is a scipy sparse array.

    Notes
    -----
    This function won't compute the intercept.

    Regularization improves the conditioning of the problem and
    reduces the variance of the estimates. Larger values specify stronger
    regularization. Alpha corresponds to ``1 / (2C)`` in other linear
    models such as :class:`~sklearn.linear_model.LogisticRegression` or
    :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
    assumed to be specific to the targets. Hence they must correspond in
    number.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.linear_model import ridge_regression
    >>> rng = np.random.RandomState(0)
    >>> X = rng.randn(100, 4)
    >>> y = 2.0 * X[:, 0] - 1.0 * X[:, 1] + 0.1 * rng.standard_normal(100)
    >>> coef, intercept = ridge_regression(X, y, alpha=1.0, return_intercept=True)
    >>> list(coef)
    [np.float64(1.9...), np.float64(-1.0...), np.float64(-0.0...), np.float64(-0.0...)]
    >>> intercept
    np.float64(-0.0...)
    """
    return _ridge_regression(
        X,
        y,
        alpha,
        sample_weight=sample_weight,
        solver=solver,
        max_iter=max_iter,
        tol=tol,
        verbose=verbose,
        positive=positive,
        random_state=random_state,
        return_n_iter=return_n_iter,
        return_intercept=return_intercept,
        X_scale=None,
        X_offset=None,
        check_input=check_input,
    )


def _ridge_regression(
    X,
    y,
    alpha,
    sample_weight=None,
    solver="auto",
    max_iter=None,
    tol=1e-4,
    verbose=0,
    positive=False,
    random_state=None,
    return_n_iter=False,
    return_intercept=False,
    return_solver=False,
    X_scale=None,
    X_offset=None,
    check_input=True,
    fit_intercept=False,
):
    xp, is_array_api_compliant, device_ = get_namespace_and_device(
        X, y, sample_weight, X_scale, X_offset
    )
    is_numpy_namespace = _is_numpy_namespace(xp)
    X_is_sparse = sparse.issparse(X)

    has_sw = sample_weight is not None

    solver = resolve_solver(solver, positive, return_intercept, X_is_sparse, xp)

    if is_numpy_namespace and not X_is_sparse:
        X = np.asarray(X)

    if not is_numpy_namespace and solver != "svd":
        raise ValueError(
            f"Array API dispatch to namespace {xp.__name__} only supports "
            f"solver 'svd'. Got '{solver}'."
        )

    if positive and solver != "lbfgs":
        raise ValueError(
            "When positive=True, only 'lbfgs' solver can be used. "
            f"Please change solver {solver} to 'lbfgs' "
            "or set positive=False."
        )

    if solver == "lbfgs" and not positive:
        raise ValueError(
            "'lbfgs' solver can be used only when positive=True. "
            "Please use another solver."
        )

    if return_intercept and solver != "sag":
        raise ValueError(
            "In Ridge, only 'sag' solver can directly fit the "
            "intercept. Please change solver to 'sag' or set "
            "return_intercept=False."
        )

    if check_input:
        _dtype = [xp.float64, xp.float32]
        _accept_sparse = _get_valid_accept_sparse(X_is_sparse, solver)
        X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype, order="C")
        y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
    check_consistent_length(X, y)

    n_samples, n_features = X.shape

    if y.ndim > 2:
        raise ValueError("Target y has the wrong shape %s" % str(y.shape))

    if y.ndim == 1:
        y = xp.reshape(y, (-1, 1))

    n_samples_, n_targets = y.shape

    if n_samples != n_samples_:
        raise ValueError(
            "Number of samples in X and y does not correspond: %d != %d"
            % (n_samples, n_samples_)
        )

    if has_sw:
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        if solver not in ["sag", "saga"]:
            # SAG supports sample_weight directly. For other solvers,
            # we implement sample_weight via a simple rescaling.
            X, y, sample_weight_sqrt = _rescale_data(X, y, sample_weight)

    # Some callers of this method might pass alpha as single
    # element array which already has been validated.
    if alpha is not None and not isinstance(alpha, type(xp.asarray([0.0]))):
        alpha = check_scalar(
            alpha,
            "alpha",
            target_type=numbers.Real,
            min_val=0.0,
            include_boundaries="left",
        )

    # There should be either 1 or n_targets penalties
    alpha = _ravel(xp.asarray(alpha, device=device_, dtype=X.dtype), xp=xp)
    if alpha.shape[0] not in [1, n_targets]:
        raise ValueError(
            "Number of targets and number of penalties do not correspond: %d != %d"
            % (alpha.shape[0], n_targets)
        )

    if alpha.shape[0] == 1 and n_targets > 1:
        alpha = xp.full(
            shape=(n_targets,), fill_value=alpha[0], dtype=alpha.dtype, device=device_
        )

    n_iter = None
    if solver == "sparse_cg":
        coef = _solve_sparse_cg(
            X,
            y,
            alpha,
            max_iter=max_iter,
            tol=tol,
            verbose=verbose,
            X_offset=X_offset,
            X_scale=X_scale,
            sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
        )

    elif solver == "lsqr":
        coef, n_iter = _solve_lsqr(
            X,
            y,
            alpha=alpha,
            fit_intercept=fit_intercept,
            max_iter=max_iter,
            tol=tol,
            X_offset=X_offset,
            X_scale=X_scale,
            sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
        )

    elif solver == "cholesky":
        if n_features > n_samples:
            K = safe_sparse_dot(X, X.T, dense_output=True)
            try:
                dual_coef = _solve_cholesky_kernel(K, y, alpha)

                coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = "svd"
        else:
            try:
                coef = _solve_cholesky(X, y, alpha)
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = "svd"

    elif solver in ["sag", "saga"]:
        # precompute max_squared_sum for all targets
        max_squared_sum = row_norms(X, squared=True).max()

        coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
        n_iter = np.empty(y.shape[1], dtype=np.int32)
        intercept = np.zeros((y.shape[1],), dtype=X.dtype)
        for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
            init = {
                "coef": np.zeros((n_features + int(return_intercept), 1), dtype=X.dtype)
            }
            coef_, n_iter_, _ = sag_solver(
                X,
                target.ravel(),
                sample_weight,
                "squared",
                alpha_i,
                0,
                max_iter,
                tol,
                verbose,
                random_state,
                False,
                max_squared_sum,
                init,
                is_saga=solver == "saga",
            )
            if return_intercept:
                coef[i] = coef_[:-1]
                intercept[i] = coef_[-1]
            else:
                coef[i] = coef_
            n_iter[i] = n_iter_

        if intercept.shape[0] == 1:
            intercept = intercept[0]

    elif solver == "lbfgs":
        coef = _solve_lbfgs(
            X,
            y,
            alpha,
            positive=positive,
            tol=tol,
            max_iter=max_iter,
            X_offset=X_offset,
            X_scale=X_scale,
            sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
        )

    if solver == "svd":
        if X_is_sparse:
            raise TypeError("SVD solver does not support sparse inputs currently")
        coef = _solve_svd(X, y, alpha, xp)

    if n_targets == 1:
        coef = _ravel(coef)

    coef = xp.asarray(coef)

    if return_n_iter and return_intercept:
        res = coef, n_iter, intercept
    elif return_intercept:
        res = coef, intercept
    elif return_n_iter:
        res = coef, n_iter
    else:
        res = coef

    return (*res, solver) if return_solver else res


def resolve_solver(solver, positive, return_intercept, is_sparse, xp):
    if solver != "auto":
        return solver

    is_numpy_namespace = _is_numpy_namespace(xp)

    auto_solver_np = resolve_solver_for_numpy(positive, return_intercept, is_sparse)
    if is_numpy_namespace:
        return auto_solver_np

    if positive:
        raise ValueError(
            "The solvers that support positive fitting do not support "
            f"Array API dispatch to namespace {xp.__name__}. Please "
            "either disable Array API dispatch, or use a numpy-like "
            "namespace, or set `positive=False`."
        )

    # At the moment, Array API dispatch only supports the "svd" solver.
    solver = "svd"
    if solver != auto_solver_np:
        warnings.warn(
            f"Using Array API dispatch to namespace {xp.__name__} with "
            f"`solver='auto'` will result in using the solver '{solver}'. "
            "The results may differ from those when using a Numpy array, "
            f"because in that case the preferred solver would be {auto_solver_np}. "
            f"Set `solver='{solver}'` to suppress this warning."
        )

    return solver


def resolve_solver_for_numpy(positive, return_intercept, is_sparse):
    if positive:
        return "lbfgs"

    if return_intercept:
        # sag supports fitting intercept directly
        return "sag"

    if not is_sparse:
        return "cholesky"

    return "sparse_cg"


class _BaseRidge(LinearModel, metaclass=ABCMeta):
    _parameter_constraints: dict = {
        "alpha": [Interval(Real, 0, None, closed="left"), np.ndarray],
        "fit_intercept": ["boolean"],
        "copy_X": ["boolean"],
        "max_iter": [Interval(Integral, 1, None, closed="left"), None],
        "tol": [Interval(Real, 0, None, closed="left")],
        "solver": [
            StrOptions(
                {"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
            )
        ],
        "positive": ["boolean"],
        "random_state": ["random_state"],
    }

    @abstractmethod
    def __init__(
        self,
        alpha=1.0,
        *,
        fit_intercept=True,
        copy_X=True,
        max_iter=None,
        tol=1e-4,
        solver="auto",
        positive=False,
        random_state=None,
    ):
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.copy_X = copy_X
        self.max_iter = max_iter
        self.tol = tol
        self.solver = solver
        self.positive = positive
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        xp, is_array_api_compliant = get_namespace(X, y, sample_weight)

        if self.solver == "lbfgs" and not self.positive:
            raise ValueError(
                "'lbfgs' solver can be used only when positive=True. "
                "Please use another solver."
            )

        if self.positive:
            if self.solver not in ["auto", "lbfgs"]:
                raise ValueError(
                    f"solver='{self.solver}' does not support positive fitting. Please"
                    " set the solver to 'auto' or 'lbfgs', or set `positive=False`"
                )
            else:
                solver = self.solver
        elif sparse.issparse(X) and self.fit_intercept:
            if self.solver not in ["auto", "lbfgs", "lsqr", "sag", "sparse_cg"]:
                raise ValueError(
                    "solver='{}' does not support fitting the intercept "
                    "on sparse data. Please set the solver to 'auto' or "
                    "'lsqr', 'sparse_cg', 'sag', 'lbfgs' "
                    "or set `fit_intercept=False`".format(self.solver)
                )
            if self.solver in ["lsqr", "lbfgs"]:
                solver = self.solver
            elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
                warnings.warn(
                    '"sag" solver requires many iterations to fit '
                    "an intercept with sparse inputs. Either set the "
                    'solver to "auto" or "sparse_cg", or set a low '
                    '"tol" and a high "max_iter" (especially if inputs are '
                    "not standardized)."
                )
                solver = "sag"
            else:
                solver = "sparse_cg"
        else:
            solver = self.solver

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        # when X is sparse we only remove offset from y
        X, y, X_offset, y_offset, X_scale = _preprocess_data(
            X,
            y,
            fit_intercept=self.fit_intercept,
            copy=self.copy_X,
            sample_weight=sample_weight,
        )

        if solver == "sag" and sparse.issparse(X) and self.fit_intercept:
            self.coef_, self.n_iter_, self.intercept_, self.solver_ = _ridge_regression(
                X,
                y,
                alpha=self.alpha,
                sample_weight=sample_weight,
                max_iter=self.max_iter,
                tol=self.tol,
                solver="sag",
                positive=self.positive,
                random_state=self.random_state,
                return_n_iter=True,
                return_intercept=True,
                return_solver=True,
                check_input=False,
            )
            # add the offset which was subtracted by _preprocess_data
            self.intercept_ += y_offset

        else:
            if sparse.issparse(X) and self.fit_intercept:
                # required to fit intercept with sparse_cg and lbfgs solver
                params = {"X_offset": X_offset, "X_scale": X_scale}
            else:
                # for dense matrices or when intercept is set to 0
                params = {}

            self.coef_, self.n_iter_, self.solver_ = _ridge_regression(
                X,
                y,
                alpha=self.alpha,
                sample_weight=sample_weight,
                max_iter=self.max_iter,
                tol=self.tol,
                solver=solver,
                positive=self.positive,
                random_state=self.random_state,
                return_n_iter=True,
                return_intercept=False,
                return_solver=True,
                check_input=False,
                fit_intercept=self.fit_intercept,
                **params,
            )
            self._set_intercept(X_offset, y_offset, X_scale)

        return self


class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
    """Linear least squares with l2 regularization.

    Minimizes the objective function::

    ||y - Xw||^2_2 + alpha * ||w||^2_2

    This model solves a regression model where the loss function is
    the linear least squares function and regularization is given by
    the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : {float, ndarray of shape (n_targets,)}, default=1.0
        Constant that multiplies the L2 term, controlling regularization
        strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.

        When `alpha = 0`, the objective is equivalent to ordinary least
        squares, solved by the :class:`LinearRegression` object. For numerical
        reasons, using `alpha = 0` with the `Ridge` object is not advised.
        Instead, you should use the :class:`LinearRegression` object.

        If an array is passed, penalties are assumed to be specific to the
        targets. Hence they must correspond in number.

    fit_intercept : bool, default=True
        Whether to fit the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. ``X`` and ``y`` are expected to be centered).

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        For 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
        For 'lbfgs' solver, the default value is 15000.

    tol : float, default=1e-4
        The precision of the solution (`coef_`) is determined by `tol` which
        specifies a different convergence criterion for each solver:

        - 'svd': `tol` has no impact.

        - 'cholesky': `tol` has no impact.

        - 'sparse_cg': norm of residuals smaller than `tol`.

        - 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
          which control the norm of the residual vector in terms of the norms of
          matrix and coefficients.

        - 'sag' and 'saga': relative change of coef smaller than `tol`.

        - 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
          smaller than `tol`.

        .. versionchanged:: 1.2
           Default value changed from 1e-3 to 1e-4 for consistency with other linear
           models.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
            'sag', 'saga', 'lbfgs'}, default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. It is the most stable solver, in particular more stable
          for singular matrices than 'cholesky' at the cost of being slower.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

        - 'lbfgs' uses L-BFGS-B algorithm implemented in
          `scipy.optimize.minimize`. It can be used only when `positive`
          is True.

        All solvers except 'svd' support both dense and sparse data. However, only
        'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
        `fit_intercept` is True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.
        Only 'lbfgs' solver is supported in this case.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

        .. versionadded:: 0.17
           `random_state` to support Stochastic Average Gradient.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : None or ndarray of shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

        .. versionadded:: 0.17

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    solver_ : str
        The solver that was used at fit time by the computational
        routines.

        .. versionadded:: 1.5

    See Also
    --------
    RidgeClassifier : Ridge classifier.
    RidgeCV : Ridge regression with built-in cross validation.
    :class:`~sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
        combines ridge regression with the kernel trick.

    Notes
    -----
    Regularization improves the conditioning of the problem and
    reduces the variance of the estimates. Larger values specify stronger
    regularization. Alpha corresponds to ``1 / (2C)`` in other linear
    models such as :class:`~sklearn.linear_model.LogisticRegression` or
    :class:`~sklearn.svm.LinearSVC`.

    Examples
    --------
    >>> from sklearn.linear_model import Ridge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> rng = np.random.RandomState(0)
    >>> y = rng.randn(n_samples)
    >>> X = rng.randn(n_samples, n_features)
    >>> clf = Ridge(alpha=1.0)
    >>> clf.fit(X, y)
    Ridge()
    """

    def __init__(
        self,
        alpha=1.0,
        *,
        fit_intercept=True,
        copy_X=True,
        max_iter=None,
        tol=1e-4,
        solver="auto",
        positive=False,
        random_state=None,
    ):
        super().__init__(
            alpha=alpha,
            fit_intercept=fit_intercept,
            copy_X=copy_X,
            max_iter=max_iter,
            tol=tol,
            solver=solver,
            positive=positive,
            random_state=random_state,
        )

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver)
        xp, _ = get_namespace(X, y, sample_weight)
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=_accept_sparse,
            dtype=[xp.float64, xp.float32],
            force_writeable=True,
            multi_output=True,
            y_numeric=True,
        )
        return super().fit(X, y, sample_weight=sample_weight)

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.array_api_support = True
        tags.input_tags.sparse = (self.solver != "svd") and (
            self.solver != "cholesky" or not self.fit_intercept
        )
        return tags


class _RidgeClassifierMixin(LinearClassifierMixin):
    def _prepare_data(self, X, y, sample_weight, solver):
        """Validate `X` and `y` and binarize `y`.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : ndarray of shape (n_samples,)
            Target values.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        solver : str
            The solver used in `Ridge` to know which sparse format to support.

        Returns
        -------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Validated training data.

        y : ndarray of shape (n_samples,)
            Validated target values.

        sample_weight : ndarray of shape (n_samples,)
            Validated sample weights.

        Y : ndarray of shape (n_samples, n_classes)
            The binarized version of `y`.
        """
        accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=accept_sparse,
            multi_output=True,
            y_numeric=False,
            force_writeable=True,
        )

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith("multilabel"):
            y = column_or_1d(y, warn=True)

        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
        if self.class_weight:
            sample_weight = sample_weight * compute_sample_weight(self.class_weight, y)
        return X, y, sample_weight, Y

    def predict(self, X):
        """Predict class labels for samples in `X`.

        Parameters
        ----------
        X : {array-like, spare matrix} of shape (n_samples, n_features)
            The data matrix for which we want to predict the targets.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            Vector or matrix containing the predictions. In binary and
            multiclass problems, this is a vector containing `n_samples`. In
            a multilabel problem, it returns a matrix of shape
            `(n_samples, n_outputs)`.
        """
        check_is_fitted(self, attributes=["_label_binarizer"])
        if self._label_binarizer.y_type_.startswith("multilabel"):
            # Threshold such that the negative label is -1 and positive label
            # is 1 to use the inverse transform of the label binarizer fitted
            # during fit.
            scores = 2 * (self.decision_function(X) > 0) - 1
            return self._label_binarizer.inverse_transform(scores)
        return super().predict(X)

    @property
    def classes_(self):
        """Classes labels."""
        return self._label_binarizer.classes_

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.classifier_tags.multi_label = True
        return tags


class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge):
    """Classifier using Ridge regression.

    This classifier first converts the target values into ``{-1, 1}`` and
    then treats the problem as a regression task (multi-output regression in
    the multiclass case).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`~sklearn.svm.LinearSVC`.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set to false, no
        intercept will be used in calculations (e.g. data is expected to be
        already centered).

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        The default value is determined by scipy.sparse.linalg.

    tol : float, default=1e-4
        The precision of the solution (`coef_`) is determined by `tol` which
        specifies a different convergence criterion for each solver:

        - 'svd': `tol` has no impact.

        - 'cholesky': `tol` has no impact.

        - 'sparse_cg': norm of residuals smaller than `tol`.

        - 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
          which control the norm of the residual vector in terms of the norms of
          matrix and coefficients.

        - 'sag' and 'saga': relative change of coef smaller than `tol`.

        - 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
          smaller than `tol`.

        .. versionchanged:: 1.2
           Default value changed from 1e-3 to 1e-4 for consistency with other linear
           models.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
            'sag', 'saga', 'lbfgs'}, default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. It is the most stable solver, in particular more stable
          for singular matrices than 'cholesky' at the cost of being slower.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its unbiased and more flexible version named SAGA. Both methods
          use an iterative procedure, and are often faster than other solvers
          when both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

          .. versionadded:: 0.17
             Stochastic Average Gradient descent solver.
          .. versionadded:: 0.19
             SAGA solver.

        - 'lbfgs' uses L-BFGS-B algorithm implemented in
          `scipy.optimize.minimize`. It can be used only when `positive`
          is True.

    positive : bool, default=False
        When set to ``True``, forces the coefficients to be positive.
        Only 'lbfgs' solver is supported in this case.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        ``coef_`` is of shape (1, n_features) when the given problem is binary.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : None or ndarray of shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    solver_ : str
        The solver that was used at fit time by the computational
        routines.

        .. versionadded:: 1.5

    See Also
    --------
    Ridge : Ridge regression.
    RidgeClassifierCV :  Ridge classifier with built-in cross validation.

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifier
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifier().fit(X, y)
    >>> clf.score(X, y)
    0.9595...
    """

    _parameter_constraints: dict = {
        **_BaseRidge._parameter_constraints,
        "class_weight": [dict, StrOptions({"balanced"}), None],
    }

    def __init__(
        self,
        alpha=1.0,
        *,
        fit_intercept=True,
        copy_X=True,
        max_iter=None,
        tol=1e-4,
        class_weight=None,
        solver="auto",
        positive=False,
        random_state=None,
    ):
        super().__init__(
            alpha=alpha,
            fit_intercept=fit_intercept,
            copy_X=copy_X,
            max_iter=max_iter,
            tol=tol,
            solver=solver,
            positive=positive,
            random_state=random_state,
        )
        self.class_weight = class_weight

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit Ridge classifier model.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : ndarray of shape (n_samples,)
            Target values.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

            .. versionadded:: 0.17
               *sample_weight* support to RidgeClassifier.

        Returns
        -------
        self : object
            Instance of the estimator.
        """
        X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, self.solver)

        super().fit(X, Y, sample_weight=sample_weight)
        return self

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = (self.solver != "svd") and (
            self.solver != "cholesky" or not self.fit_intercept
        )
        return tags


def _check_gcv_mode(X, gcv_mode):
    if gcv_mode in ["eigen", "svd"]:
        return gcv_mode
    # if X has more rows than columns, use decomposition of X^T.X,
    # otherwise X.X^T
    if X.shape[0] > X.shape[1]:
        return "svd"
    return "eigen"


def _find_smallest_angle(query, vectors):
    """Find the column of vectors that is most aligned with the query.

    Both query and the columns of vectors must have their l2 norm equal to 1.

    Parameters
    ----------
    query : ndarray of shape (n_samples,)
        Normalized query vector.

    vectors : ndarray of shape (n_samples, n_features)
        Vectors to which we compare query, as columns. Must be normalized.
    """
    abs_cosine = np.abs(query.dot(vectors))
    index = np.argmax(abs_cosine)
    return index


class _X_CenterStackOp(sparse.linalg.LinearOperator):
    """Behaves as centered and scaled X with an added intercept column.

    This operator behaves as
    np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
    """

    def __init__(self, X, X_mean, sqrt_sw):
        n_samples, n_features = X.shape
        super().__init__(X.dtype, (n_samples, n_features + 1))
        self.X = X
        self.X_mean = X_mean
        self.sqrt_sw = sqrt_sw

    def _matvec(self, v):
        v = v.ravel()
        return (
            safe_sparse_dot(self.X, v[:-1], dense_output=True)
            - self.sqrt_sw * self.X_mean.dot(v[:-1])
            + v[-1] * self.sqrt_sw
        )

    def _matmat(self, v):
        return (
            safe_sparse_dot(self.X, v[:-1], dense_output=True)
            - self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1])
            + v[-1] * self.sqrt_sw[:, None]
        )

    def _transpose(self):
        return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)


class _XT_CenterStackOp(sparse.linalg.LinearOperator):
    """Behaves as transposed centered and scaled X with an intercept column.

    This operator behaves as
    np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
    """

    def __init__(self, X, X_mean, sqrt_sw):
        n_samples, n_features = X.shape
        super().__init__(X.dtype, (n_features + 1, n_samples))
        self.X = X
        self.X_mean = X_mean
        self.sqrt_sw = sqrt_sw

    def _matvec(self, v):
        v = v.ravel()
        n_features = self.shape[0]
        res = np.empty(n_features, dtype=self.X.dtype)
        res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - (
            self.X_mean * self.sqrt_sw.dot(v)
        )
        res[-1] = np.dot(v, self.sqrt_sw)
        return res

    def _matmat(self, v):
        n_features = self.shape[0]
        res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
        res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - self.X_mean[
            :, None
        ] * self.sqrt_sw.dot(v)
        res[-1] = np.dot(self.sqrt_sw, v)
        return res


class _IdentityRegressor(RegressorMixin, BaseEstimator):
    """Fake regressor which will directly output the prediction."""

    def decision_function(self, y_predict):
        return y_predict

    def predict(self, y_predict):
        return y_predict


class _IdentityClassifier(LinearClassifierMixin, BaseEstimator):
    """Fake classifier which will directly output the prediction.

    We inherit from LinearClassifierMixin to get the proper shape for the
    output `y`.
    """

    def __init__(self, classes):
        self.classes_ = classes

    def decision_function(self, y_predict):
        return y_predict


class _RidgeGCV(LinearModel):
    """Ridge regression with built-in Leave-one-out Cross-Validation.

    This class is not intended to be used directly. Use RidgeCV instead.

    `_RidgeGCV` uses a Generalized Cross-Validation for model selection. It's an
    efficient approximation of leave-one-out cross-validation (LOO-CV), where instead of
    computing multiple models by excluding one data point at a time, it uses an
    algebraic shortcut to approximate the LOO-CV error, making it faster and
    computationally more efficient.

    Using a naive grid-search approach with a leave-one-out cross-validation in contrast
    requires to fit `n_samples` models to compute the prediction error for each sample
    and then to repeat this process for each alpha in the grid.

    Here, the prediction error for each sample is computed by solving a **single**
    linear system (in other words a single model) via a matrix factorization (i.e.
    eigendecomposition or SVD) solving the problem stated in the Notes section. Finally,
    we need to repeat this process for each alpha in the grid. The detailed complexity
    is further discussed in Sect. 4 in [1].

    This algebraic approach is only applicable for regularized least squares
    problems. It could potentially be extended to kernel ridge regression.

    See the Notes section and references for more details regarding the formulation
    and the linear system that is solved.

    Notes
    -----

    We want to solve (K + alpha*Id)c = y,
    where K = X X^T is the kernel matrix.

    Let G = (K + alpha*Id).

    Dual solution: c = G^-1y
    Primal solution: w = X^T c

    Compute eigendecomposition K = Q V Q^T.
    Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
    where (V + alpha*Id) is diagonal.
    It is thus inexpensive to inverse for many alphas.

    Let loov be the vector of prediction values for each example
    when the model was fitted with all examples but this example.

    loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)

    Let looe be the vector of prediction errors for each example
    when the model was fitted with all examples but this example.

    looe = y - loov = c / diag(G^-1)

    The best score (negative mean squared error or user-provided scoring) is
    stored in the `best_score_` attribute, and the selected hyperparameter in
    `alpha_`.

    References
    ----------
    [1] http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
    [2] https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
    """

    def __init__(
        self,
        alphas=(0.1, 1.0, 10.0),
        *,
        fit_intercept=True,
        scoring=None,
        copy_X=True,
        gcv_mode=None,
        store_cv_results=False,
        is_clf=False,
        alpha_per_target=False,
    ):
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.scoring = scoring
        self.copy_X = copy_X
        self.gcv_mode = gcv_mode
        self.store_cv_results = store_cv_results
        self.is_clf = is_clf
        self.alpha_per_target = alpha_per_target

    @staticmethod
    def _decomp_diag(v_prime, Q):
        # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
        return (v_prime * Q**2).sum(axis=-1)

    @staticmethod
    def _diag_dot(D, B):
        # compute dot(diag(D), B)
        if len(B.shape) > 1:
            # handle case where B is > 1-d
            D = D[(slice(None),) + (np.newaxis,) * (len(B.shape) - 1)]
        return D * B

    def _compute_gram(self, X, sqrt_sw):
        """Computes the Gram matrix XX^T with possible centering.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            The preprocessed design matrix.

        sqrt_sw : ndarray of shape (n_samples,)
            square roots of sample weights

        Returns
        -------
        gram : ndarray of shape (n_samples, n_samples)
            The Gram matrix.
        X_mean : ndarray of shape (n_feature,)
            The weighted mean of ``X`` for each feature.

        Notes
        -----
        When X is dense the centering has been done in preprocessing
        so the mean is 0 and we just compute XX^T.

        When X is sparse it has not been centered in preprocessing, but it has
        been scaled by sqrt(sample weights).

        When self.fit_intercept is False no centering is done.

        The centered X is never actually computed because centering would break
        the sparsity of X.
        """
        center = self.fit_intercept and sparse.issparse(X)
        if not center:
            # in this case centering has been done in preprocessing
            # or we are not fitting an intercept.
            X_mean = np.zeros(X.shape[1], dtype=X.dtype)
            return safe_sparse_dot(X, X.T, dense_output=True), X_mean
        # X is sparse
        n_samples = X.shape[0]
        sample_weight_matrix = sparse.dia_matrix(
            (sqrt_sw, 0), shape=(n_samples, n_samples)
        )
        X_weighted = sample_weight_matrix.dot(X)
        X_mean, _ = mean_variance_axis(X_weighted, axis=0)
        X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
        X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True)
        X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
        return (
            safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T,
            X_mean,
        )

    def _compute_covariance(self, X, sqrt_sw):
        """Computes covariance matrix X^TX with possible centering.

        Parameters
        ----------
        X : sparse matrix of shape (n_samples, n_features)
            The preprocessed design matrix.

        sqrt_sw : ndarray of shape (n_samples,)
            square roots of sample weights

        Returns
        -------
        covariance : ndarray of shape (n_features, n_features)
            The covariance matrix.
        X_mean : ndarray of shape (n_feature,)
            The weighted mean of ``X`` for each feature.

        Notes
        -----
        Since X is sparse it has not been centered in preprocessing, but it has
        been scaled by sqrt(sample weights).

        When self.fit_intercept is False no centering is done.

        The centered X is never actually computed because centering would break
        the sparsity of X.
        """
        if not self.fit_intercept:
            # in this case centering has been done in preprocessing
            # or we are not fitting an intercept.
            X_mean = np.zeros(X.shape[1], dtype=X.dtype)
            return safe_sparse_dot(X.T, X, dense_output=True), X_mean
        # this function only gets called for sparse X
        n_samples = X.shape[0]
        sample_weight_matrix = sparse.dia_matrix(
            (sqrt_sw, 0), shape=(n_samples, n_samples)
        )
        X_weighted = sample_weight_matrix.dot(X)
        X_mean, _ = mean_variance_axis(X_weighted, axis=0)
        X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
        weight_sum = sqrt_sw.dot(sqrt_sw)
        return (
            safe_sparse_dot(X.T, X, dense_output=True)
            - weight_sum * np.outer(X_mean, X_mean),
            X_mean,
        )

    def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
        """Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
        without explicitly centering X nor computing X.dot(A)
        when X is sparse.

        Parameters
        ----------
        X : sparse matrix of shape (n_samples, n_features)

        A : ndarray of shape (n_features, n_features)

        X_mean : ndarray of shape (n_features,)

        sqrt_sw : ndarray of shape (n_features,)
            square roots of sample weights

        Returns
        -------
        diag : np.ndarray, shape (n_samples,)
            The computed diagonal.
        """
        intercept_col = scale = sqrt_sw
        batch_size = X.shape[1]
        diag = np.empty(X.shape[0], dtype=X.dtype)
        for start in range(0, X.shape[0], batch_size):
            batch = slice(start, min(X.shape[0], start + batch_size), 1)
            X_batch = np.empty(
                (X[batch].shape[0], X.shape[1] + self.fit_intercept), dtype=X.dtype
            )
            if self.fit_intercept:
                X_batch[:, :-1] = X[batch].toarray() - X_mean * scale[batch][:, None]
                X_batch[:, -1] = intercept_col[batch]
            else:
                X_batch = X[batch].toarray()
            diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
        return diag

    def _eigen_decompose_gram(self, X, y, sqrt_sw):
        """Eigendecomposition of X.X^T, used when n_samples <= n_features."""
        # if X is dense it has already been centered in preprocessing
        K, X_mean = self._compute_gram(X, sqrt_sw)
        if self.fit_intercept:
            # to emulate centering X with sample weights,
            # ie removing the weighted average, we add a column
            # containing the square roots of the sample weights.
            # by centering, it is orthogonal to the other columns
            K += np.outer(sqrt_sw, sqrt_sw)
        eigvals, Q = linalg.eigh(K)
        QT_y = np.dot(Q.T, y)
        return X_mean, eigvals, Q, QT_y

    def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X.X^T (n_samples <= n_features).
        """
        w = 1.0 / (eigvals + alpha)
        if self.fit_intercept:
            # the vector containing the square roots of the sample weights (1
            # when no sample weights) is the eigenvector of XX^T which
            # corresponds to the intercept; we cancel the regularization on
            # this dimension. the corresponding eigenvalue is
            # sum(sample_weight).
            normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
            intercept_dim = _find_smallest_angle(normalized_sw, Q)
            w[intercept_dim] = 0  # cancel regularization for the intercept

        c = np.dot(Q, self._diag_dot(w, QT_y))
        G_inverse_diag = self._decomp_diag(w, Q)
        # handle case where y is 2-d
        if len(y.shape) != 1:
            G_inverse_diag = G_inverse_diag[:, np.newaxis]
        return G_inverse_diag, c

    def _eigen_decompose_covariance(self, X, y, sqrt_sw):
        """Eigendecomposition of X^T.X, used when n_samples > n_features
        and X is sparse.
        """
        n_samples, n_features = X.shape
        cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
        cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
        if not self.fit_intercept:
            cov = cov[:-1, :-1]
        # to emulate centering X with sample weights,
        # ie removing the weighted average, we add a column
        # containing the square roots of the sample weights.
        # by centering, it is orthogonal to the other columns
        # when all samples have the same weight we add a column of 1
        else:
            cov[-1] = 0
            cov[:, -1] = 0
            cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
        nullspace_dim = max(0, n_features - n_samples)
        eigvals, V = linalg.eigh(cov)
        # remove eigenvalues and vectors in the null space of X^T.X
        eigvals = eigvals[nullspace_dim:]
        V = V[:, nullspace_dim:]
        return X_mean, eigvals, V, X

    def _solve_eigen_covariance_no_intercept(
        self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
    ):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse), and not fitting an intercept.
        """
        w = 1 / (eigvals + alpha)
        A = (V * w).dot(V.T)
        AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
        y_hat = safe_sparse_dot(X, AXy, dense_output=True)
        hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            hat_diag = hat_diag[:, np.newaxis]
        return (1 - hat_diag) / alpha, (y - y_hat) / alpha

    def _solve_eigen_covariance_intercept(
        self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
    ):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse),
        and we are fitting an intercept.
        """
        # the vector [0, 0, ..., 0, 1]
        # is the eigenvector of X^TX which
        # corresponds to the intercept; we cancel the regularization on
        # this dimension. the corresponding eigenvalue is
        # sum(sample_weight), e.g. n when uniform sample weights.
        intercept_sv = np.zeros(V.shape[0])
        intercept_sv[-1] = 1
        intercept_dim = _find_smallest_angle(intercept_sv, V)
        w = 1 / (eigvals + alpha)
        w[intercept_dim] = 1 / eigvals[intercept_dim]
        A = (V * w).dot(V.T)
        # add a column to X containing the square roots of sample weights
        X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
        AXy = A.dot(X_op.T.dot(y))
        y_hat = X_op.dot(AXy)
        hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
        # return (1 - hat_diag), (y - y_hat)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            hat_diag = hat_diag[:, np.newaxis]
        return (1 - hat_diag) / alpha, (y - y_hat) / alpha

    def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse).
        """
        if self.fit_intercept:
            return self._solve_eigen_covariance_intercept(
                alpha, y, sqrt_sw, X_mean, eigvals, V, X
            )
        return self._solve_eigen_covariance_no_intercept(
            alpha, y, sqrt_sw, X_mean, eigvals, V, X
        )

    def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
        # X already centered
        X_mean = np.zeros(X.shape[1], dtype=X.dtype)
        if self.fit_intercept:
            # to emulate fit_intercept=True situation, add a column
            # containing the square roots of the sample weights
            # by centering, the other columns are orthogonal to that one
            intercept_column = sqrt_sw[:, None]
            X = np.hstack((X, intercept_column))
        U, singvals, _ = linalg.svd(X, full_matrices=0)
        singvals_sq = singvals**2
        UT_y = np.dot(U.T, y)
        return X_mean, singvals_sq, U, UT_y

    def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have an SVD decomposition of X
        (n_samples > n_features and X is dense).
        """
        w = ((singvals_sq + alpha) ** -1) - (alpha**-1)
        if self.fit_intercept:
            # detect intercept column
            normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
            intercept_dim = _find_smallest_angle(normalized_sw, U)
            # cancel the regularization for the intercept
            w[intercept_dim] = -(alpha**-1)
        c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha**-1) * y
        G_inverse_diag = self._decomp_diag(w, U) + (alpha**-1)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            G_inverse_diag = G_inverse_diag[:, np.newaxis]
        return G_inverse_diag, c

    def fit(self, X, y, sample_weight=None, score_params=None):
        """Fit Ridge regression model with gcv.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data. Will be cast to float64 if necessary.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to float64 if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight. Note that the scale of `sample_weight`
            has an impact on the loss; i.e. multiplying all weights by `k`
            is equivalent to setting `alpha / k`.

        score_params : dict, default=None
            Parameters to be passed to the underlying scorer.

            .. versionadded:: 1.5
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
        """
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse=["csr", "csc", "coo"],
            dtype=[np.float64],
            multi_output=True,
            y_numeric=True,
        )

        # alpha_per_target cannot be used in classifier mode. All subclasses
        # of _RidgeGCV that are classifiers keep alpha_per_target at its
        # default value: False, so the condition below should never happen.
        assert not (self.is_clf and self.alpha_per_target)

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        self.alphas = np.asarray(self.alphas)

        unscaled_y = y
        X, y, X_offset, y_offset, X_scale = _preprocess_data(
            X,
            y,
            fit_intercept=self.fit_intercept,
            copy=self.copy_X,
            sample_weight=sample_weight,
        )

        gcv_mode = _check_gcv_mode(X, self.gcv_mode)

        if gcv_mode == "eigen":
            decompose = self._eigen_decompose_gram
            solve = self._solve_eigen_gram
        elif gcv_mode == "svd":
            if sparse.issparse(X):
                decompose = self._eigen_decompose_covariance
                solve = self._solve_eigen_covariance
            else:
                decompose = self._svd_decompose_design_matrix
                solve = self._solve_svd_design_matrix

        n_samples = X.shape[0]

        if sample_weight is not None:
            X, y, sqrt_sw = _rescale_data(X, y, sample_weight)
        else:
            sqrt_sw = np.ones(n_samples, dtype=X.dtype)

        X_mean, *decomposition = decompose(X, y, sqrt_sw)

        n_y = 1 if len(y.shape) == 1 else y.shape[1]
        n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)

        if self.store_cv_results:
            self.cv_results_ = np.empty((n_samples * n_y, n_alphas), dtype=X.dtype)

        best_coef, best_score, best_alpha = None, None, None

        for i, alpha in enumerate(np.atleast_1d(self.alphas)):
            G_inverse_diag, c = solve(float(alpha), y, sqrt_sw, X_mean, *decomposition)
            if self.scoring is None:
                squared_errors = (c / G_inverse_diag) ** 2
                alpha_score = self._score_without_scorer(squared_errors=squared_errors)
                if self.store_cv_results:
                    self.cv_results_[:, i] = squared_errors.ravel()
            else:
                predictions = y - (c / G_inverse_diag)
                # Rescale predictions back to original scale
                if sample_weight is not None:  # avoid the unecessary division by ones
                    if predictions.ndim > 1:
                        predictions /= sqrt_sw[:, None]
                    else:
                        predictions /= sqrt_sw
                predictions += y_offset

                if self.store_cv_results:
                    self.cv_results_[:, i] = predictions.ravel()

                score_params = score_params or {}
                alpha_score = self._score(
                    predictions=predictions,
                    y=unscaled_y,
                    n_y=n_y,
                    scorer=self.scoring,
                    score_params=score_params,
                )

            # Keep track of the best model
            if best_score is None:
                # initialize
                if self.alpha_per_target and n_y > 1:
                    best_coef = c
                    best_score = np.atleast_1d(alpha_score)
                    best_alpha = np.full(n_y, alpha)
                else:
                    best_coef = c
                    best_score = alpha_score
                    best_alpha = alpha
            else:
                # update
                if self.alpha_per_target and n_y > 1:
                    to_update = alpha_score > best_score
                    best_coef[:, to_update] = c[:, to_update]
                    best_score[to_update] = alpha_score[to_update]
                    best_alpha[to_update] = alpha
                elif alpha_score > best_score:
                    best_coef, best_score, best_alpha = c, alpha_score, alpha

        self.alpha_ = best_alpha
        self.best_score_ = best_score
        self.dual_coef_ = best_coef
        self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
        if y.ndim == 1 or y.shape[1] == 1:
            self.coef_ = self.coef_.ravel()

        if sparse.issparse(X):
            X_offset = X_mean * X_scale
        else:
            X_offset += X_mean * X_scale
        self._set_intercept(X_offset, y_offset, X_scale)

        if self.store_cv_results:
            if len(y.shape) == 1:
                cv_results_shape = n_samples, n_alphas
            else:
                cv_results_shape = n_samples, n_y, n_alphas
            self.cv_results_ = self.cv_results_.reshape(cv_results_shape)

        return self

    def _score_without_scorer(self, squared_errors):
        """Performs scoring using squared errors when the scorer is None."""
        if self.alpha_per_target:
            _score = -squared_errors.mean(axis=0)
        else:
            _score = -squared_errors.mean()

        return _score

    def _score(self, *, predictions, y, n_y, scorer, score_params):
        """Performs scoring with the specified scorer using the
        predictions and the true y values.
        """
        if self.is_clf:
            identity_estimator = _IdentityClassifier(classes=np.arange(n_y))
            _score = scorer(
                identity_estimator,
                predictions,
                y.argmax(axis=1),
                **score_params,
            )
        else:
            identity_estimator = _IdentityRegressor()
            if self.alpha_per_target:
                _score = np.array(
                    [
                        scorer(
                            identity_estimator,
                            predictions[:, j],
                            y[:, j],
                            **score_params,
                        )
                        for j in range(n_y)
                    ]
                )
            else:
                _score = scorer(identity_estimator, predictions, y, **score_params)

        return _score

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        # Required since this is neither a RegressorMixin nor a ClassifierMixin
        tags.target_tags.required = True
        return tags


class _BaseRidgeCV(LinearModel):
    _parameter_constraints: dict = {
        "alphas": ["array-like", Interval(Real, 0, None, closed="neither")],
        "fit_intercept": ["boolean"],
        "scoring": [StrOptions(set(get_scorer_names())), callable, None],
        "cv": ["cv_object"],
        "gcv_mode": [StrOptions({"auto", "svd", "eigen"}), None],
        "store_cv_results": ["boolean", Hidden(None)],
        "alpha_per_target": ["boolean"],
        "store_cv_values": ["boolean", Hidden(StrOptions({"deprecated"}))],
    }

    def __init__(
        self,
        alphas=(0.1, 1.0, 10.0),
        *,
        fit_intercept=True,
        scoring=None,
        cv=None,
        gcv_mode=None,
        store_cv_results=None,
        alpha_per_target=False,
        store_cv_values="deprecated",
    ):
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.scoring = scoring
        self.cv = cv
        self.gcv_mode = gcv_mode
        self.store_cv_results = store_cv_results
        self.alpha_per_target = alpha_per_target
        self.store_cv_values = store_cv_values

    def fit(self, X, y, sample_weight=None, **params):
        """Fit Ridge regression model with cv.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training data. If using GCV, will be cast to float64
            if necessary.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        **params : dict, default=None
            Extra parameters for the underlying scorer.

            .. versionadded:: 1.5
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        When sample_weight is provided, the selected hyperparameter may depend
        on whether we use leave-one-out cross-validation (cv=None or cv='auto')
        or another form of cross-validation, because only leave-one-out
        cross-validation takes the sample weights into account when computing
        the validation score.
        """
        _raise_for_params(params, self, "fit")
        cv = self.cv
        scorer = self._get_scorer()

        # TODO(1.7): Remove in 1.7
        # Also change `store_cv_results` default back to False
        if self.store_cv_values != "deprecated":
            if self.store_cv_results is not None:
                raise ValueError(
                    "Both 'store_cv_values' and 'store_cv_results' were set. "
                    "'store_cv_values' is deprecated in version 1.5 and will be "
                    "removed in 1.7. To avoid this error, only set 'store_cv_results'."
                )
            warnings.warn(
                (
                    "'store_cv_values' is deprecated in version 1.5 and will be "
                    "removed in 1.7. Use 'store_cv_results' instead."
                ),
                FutureWarning,
            )
            self._store_cv_results = self.store_cv_values
        elif self.store_cv_results is None:
            self._store_cv_results = False
        else:
            self._store_cv_results = self.store_cv_results

        # `_RidgeGCV` does not work for alpha = 0
        if cv is None:
            check_scalar_alpha = partial(
                check_scalar,
                target_type=numbers.Real,
                min_val=0.0,
                include_boundaries="neither",
            )
        else:
            check_scalar_alpha = partial(
                check_scalar,
                target_type=numbers.Real,
                min_val=0.0,
                include_boundaries="left",
            )

        if isinstance(self.alphas, (np.ndarray, list, tuple)):
            n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
            if n_alphas != 1:
                for index, alpha in enumerate(self.alphas):
                    alpha = check_scalar_alpha(alpha, f"alphas[{index}]")
            else:
                self.alphas[0] = check_scalar_alpha(self.alphas[0], "alphas")
        alphas = np.asarray(self.alphas)

        if sample_weight is not None:
            params["sample_weight"] = sample_weight

        if cv is None:
            if _routing_enabled():
                routed_params = process_routing(
                    self,
                    "fit",
                    **params,
                )
            else:
                routed_params = Bunch(scorer=Bunch(score={}))
                if sample_weight is not None:
                    routed_params.scorer.score["sample_weight"] = sample_weight

            # reset `scorer` variable to original user-intend if no scoring is passed
            if self.scoring is None:
                scorer = None

            estimator = _RidgeGCV(
                alphas,
                fit_intercept=self.fit_intercept,
                scoring=scorer,
                gcv_mode=self.gcv_mode,
                store_cv_results=self._store_cv_results,
                is_clf=is_classifier(self),
                alpha_per_target=self.alpha_per_target,
            )
            estimator.fit(
                X,
                y,
                sample_weight=sample_weight,
                score_params=routed_params.scorer.score,
            )
            self.alpha_ = estimator.alpha_
            self.best_score_ = estimator.best_score_
            if self._store_cv_results:
                self.cv_results_ = estimator.cv_results_
        else:
            if self._store_cv_results:
                raise ValueError("cv!=None and store_cv_results=True are incompatible")
            if self.alpha_per_target:
                raise ValueError("cv!=None and alpha_per_target=True are incompatible")

            parameters = {"alpha": alphas}
            solver = "sparse_cg" if sparse.issparse(X) else "auto"
            model = RidgeClassifier if is_classifier(self) else Ridge
            estimator = model(
                fit_intercept=self.fit_intercept,
                solver=solver,
            )
            if _routing_enabled():
                estimator.set_fit_request(sample_weight=True)

            grid_search = GridSearchCV(
                estimator,
                parameters,
                cv=cv,
                scoring=scorer,
            )

            grid_search.fit(X, y, **params)
            estimator = grid_search.best_estimator_
            self.alpha_ = grid_search.best_estimator_.alpha
            self.best_score_ = grid_search.best_score_

        self.coef_ = estimator.coef_
        self.intercept_ = estimator.intercept_
        self.n_features_in_ = estimator.n_features_in_
        if hasattr(estimator, "feature_names_in_"):
            self.feature_names_in_ = estimator.feature_names_in_

        return self

    def get_metadata_routing(self):
        """Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.5

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        """
        router = (
            MetadataRouter(owner=self.__class__.__name__)
            .add_self_request(self)
            .add(
                scorer=self.scoring,
                method_mapping=MethodMapping().add(caller="fit", callee="score"),
            )
            .add(
                splitter=self.cv,
                method_mapping=MethodMapping().add(caller="fit", callee="split"),
            )
        )
        return router

    def _get_scorer(self):
        scorer = check_scoring(estimator=self, scoring=self.scoring, allow_none=True)
        if _routing_enabled() and self.scoring is None:
            # This estimator passes an array of 1s as sample_weight even if
            # sample_weight is not provided by the user. Therefore we need to
            # always request it. But we don't set it if it's passed explicitly
            # by the user.
            scorer.set_score_request(sample_weight=True)
        return scorer

    # TODO(1.7): Remove
    # mypy error: Decorated property not supported
    @deprecated(  # type: ignore
        "Attribute `cv_values_` is deprecated in version 1.5 and will be removed "
        "in 1.7. Use `cv_results_` instead."
    )
    @property
    def cv_values_(self):
        return self.cv_results_

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags


class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
    """Ridge regression with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs efficient Leave-One-Out Cross-Validation.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`~sklearn.svm.LinearSVC`.
        If using Leave-One-Out cross-validation, alphas must be strictly positive.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    scoring : str, callable, default=None
        A string (see :ref:`scoring_parameter`) or a scorer callable object /
        function with signature ``scorer(estimator, X, y)``. If None, the
        negative mean squared error if cv is 'auto' or None (i.e. when using
        leave-one-out cross-validation), and r2 score otherwise.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if ``y`` is binary or multiclass,
        :class:`~sklearn.model_selection.StratifiedKFold` is used, else,
        :class:`~sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    gcv_mode : {'auto', 'svd', 'eigen'}, default='auto'
        Flag indicating which strategy to use when performing
        Leave-One-Out Cross-Validation. Options are::

            'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
            'svd' : force use of singular value decomposition of X when X is
                dense, eigenvalue decomposition of X^T.X when X is sparse.
            'eigen' : force computation via eigendecomposition of X.X^T

        The 'auto' mode is the default and is intended to pick the cheaper
        option of the two depending on the shape of the training data.

    store_cv_results : bool, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_results_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Leave-One-Out Cross-Validation).

        .. versionchanged:: 1.5
            Parameter name changed from `store_cv_values` to `store_cv_results`.

    alpha_per_target : bool, default=False
        Flag indicating whether to optimize the alpha value (picked from the
        `alphas` parameter list) for each target separately (for multi-output
        settings: multiple prediction targets). When set to `True`, after
        fitting, the `alpha_` attribute will contain a value for each target.
        When set to `False`, a single alpha is used for all targets.

        .. versionadded:: 0.24

    store_cv_values : bool
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Leave-One-Out Cross-Validation).

        .. deprecated:: 1.5
            `store_cv_values` is deprecated in version 1.5 in favor of
            `store_cv_results` and will be removed in version 1.7.

    Attributes
    ----------
    cv_results_ : ndarray of shape (n_samples, n_alphas) or \
            shape (n_samples, n_targets, n_alphas), optional
        Cross-validation values for each alpha (only available if
        ``store_cv_results=True`` and ``cv=None``). After ``fit()`` has been
        called, this attribute will contain the mean squared errors if
        `scoring is None` otherwise it will contain standardized per point
        prediction values.

        .. versionchanged:: 1.5
            `cv_values_` changed to `cv_results_`.

    coef_ : ndarray of shape (n_features) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float or ndarray of shape (n_targets,)
        Estimated regularization parameter, or, if ``alpha_per_target=True``,
        the estimated regularization parameter for each target.

    best_score_ : float or ndarray of shape (n_targets,)
        Score of base estimator with best alpha, or, if
        ``alpha_per_target=True``, a score for each target.

        .. versionadded:: 0.23

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Ridge : Ridge regression.
    RidgeClassifier : Classifier based on ridge regression on {-1, 1} labels.
    RidgeClassifierCV : Ridge classifier with built-in cross validation.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import RidgeCV
    >>> X, y = load_diabetes(return_X_y=True)
    >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y)
    0.5166...
    """

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, **params):
        """Fit Ridge regression model with cv.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training data. If using GCV, will be cast to float64
            if necessary.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        **params : dict, default=None
            Parameters to be passed to the underlying scorer.

            .. versionadded:: 1.5
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        When sample_weight is provided, the selected hyperparameter may depend
        on whether we use leave-one-out cross-validation (cv=None or cv='auto')
        or another form of cross-validation, because only leave-one-out
        cross-validation takes the sample weights into account when computing
        the validation score.
        """
        super().fit(X, y, sample_weight=sample_weight, **params)
        return self


class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV):
    """Ridge classifier with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Leave-One-Out Cross-Validation. Currently,
    only the n_features > n_samples case is handled efficiently.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`~sklearn.svm.LinearSVC`.
        If using Leave-One-Out cross-validation, alphas must be strictly positive.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    scoring : str, callable, default=None
        A string (see :ref:`scoring_parameter`) or a scorer callable object /
        function with signature ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

    store_cv_results : bool, default=False
        Flag indicating if the cross-validation results corresponding to
        each alpha should be stored in the ``cv_results_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Leave-One-Out Cross-Validation).

        .. versionchanged:: 1.5
            Parameter name changed from `store_cv_values` to `store_cv_results`.

    store_cv_values : bool
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Leave-One-Out Cross-Validation).

        .. deprecated:: 1.5
            `store_cv_values` is deprecated in version 1.5 in favor of
            `store_cv_results` and will be removed in version 1.7.

    Attributes
    ----------
    cv_results_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
        Cross-validation results for each alpha (only if ``store_cv_results=True`` and
        ``cv=None``). After ``fit()`` has been called, this attribute will
        contain the mean squared errors if `scoring is None` otherwise it
        will contain standardized per point prediction values.

        .. versionchanged:: 1.5
            `cv_values_` changed to `cv_results_`.

    coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
        Coefficient of the features in the decision function.

        ``coef_`` is of shape (1, n_features) when the given problem is binary.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter.

    best_score_ : float
        Score of base estimator with best alpha.

        .. versionadded:: 0.23

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Ridge : Ridge regression.
    RidgeClassifier : Ridge classifier.
    RidgeCV : Ridge regression with built-in cross validation.

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifierCV
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y)
    0.9630...
    """

    _parameter_constraints: dict = {
        **_BaseRidgeCV._parameter_constraints,
        "class_weight": [dict, StrOptions({"balanced"}), None],
    }
    for param in ("gcv_mode", "alpha_per_target"):
        _parameter_constraints.pop(param)

    def __init__(
        self,
        alphas=(0.1, 1.0, 10.0),
        *,
        fit_intercept=True,
        scoring=None,
        cv=None,
        class_weight=None,
        store_cv_results=None,
        store_cv_values="deprecated",
    ):
        super().__init__(
            alphas=alphas,
            fit_intercept=fit_intercept,
            scoring=scoring,
            cv=cv,
            store_cv_results=store_cv_results,
            store_cv_values=store_cv_values,
        )
        self.class_weight = class_weight

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None, **params):
        """Fit Ridge classifier with cv.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples
            and `n_features` is the number of features. When using GCV,
            will be cast to float64 if necessary.

        y : ndarray of shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        **params : dict, default=None
            Parameters to be passed to the underlying scorer.

            .. versionadded:: 1.5
                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        # `RidgeClassifier` does not accept "sag" or "saga" solver and thus support
        # csr, csc, and coo sparse matrices. By using solver="eigen" we force to accept
        # all sparse format.
        X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, solver="eigen")

        # If cv is None, gcv mode will be used and we used the binarized Y
        # since y will not be binarized in _RidgeGCV estimator.
        # If cv is not None, a GridSearchCV with some RidgeClassifier
        # estimators are used where y will be binarized. Thus, we pass y
        # instead of the binarized Y.
        target = Y if self.cv is None else y
        super().fit(X, target, sample_weight=sample_weight, **params)
        return self