File size: 77,377 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
"""Utilities to build feature vectors from text documents."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import array
import re
import unicodedata
import warnings
from collections import defaultdict
from collections.abc import Mapping
from functools import partial
from numbers import Integral
from operator import itemgetter

import numpy as np
import scipy.sparse as sp

from sklearn.utils import metadata_routing

from ..base import BaseEstimator, OneToOneFeatureMixin, TransformerMixin, _fit_context
from ..exceptions import NotFittedError
from ..preprocessing import normalize
from ..utils._param_validation import HasMethods, Interval, RealNotInt, StrOptions
from ..utils.fixes import _IS_32BIT
from ..utils.validation import FLOAT_DTYPES, check_array, check_is_fitted, validate_data
from ._hash import FeatureHasher
from ._stop_words import ENGLISH_STOP_WORDS

__all__ = [
    "HashingVectorizer",
    "CountVectorizer",
    "ENGLISH_STOP_WORDS",
    "TfidfTransformer",
    "TfidfVectorizer",
    "strip_accents_ascii",
    "strip_accents_unicode",
    "strip_tags",
]


def _preprocess(doc, accent_function=None, lower=False):
    """Chain together an optional series of text preprocessing steps to
    apply to a document.

    Parameters
    ----------
    doc: str
        The string to preprocess
    accent_function: callable, default=None
        Function for handling accented characters. Common strategies include
        normalizing and removing.
    lower: bool, default=False
        Whether to use str.lower to lowercase all of the text

    Returns
    -------
    doc: str
        preprocessed string
    """
    if lower:
        doc = doc.lower()
    if accent_function is not None:
        doc = accent_function(doc)
    return doc


def _analyze(
    doc,
    analyzer=None,
    tokenizer=None,
    ngrams=None,
    preprocessor=None,
    decoder=None,
    stop_words=None,
):
    """Chain together an optional series of text processing steps to go from
    a single document to ngrams, with or without tokenizing or preprocessing.

    If analyzer is used, only the decoder argument is used, as the analyzer is
    intended to replace the preprocessor, tokenizer, and ngrams steps.

    Parameters
    ----------
    analyzer: callable, default=None
    tokenizer: callable, default=None
    ngrams: callable, default=None
    preprocessor: callable, default=None
    decoder: callable, default=None
    stop_words: list, default=None

    Returns
    -------
    ngrams: list
        A sequence of tokens, possibly with pairs, triples, etc.
    """

    if decoder is not None:
        doc = decoder(doc)
    if analyzer is not None:
        doc = analyzer(doc)
    else:
        if preprocessor is not None:
            doc = preprocessor(doc)
        if tokenizer is not None:
            doc = tokenizer(doc)
        if ngrams is not None:
            if stop_words is not None:
                doc = ngrams(doc, stop_words)
            else:
                doc = ngrams(doc)
    return doc


def strip_accents_unicode(s):
    """Transform accentuated unicode symbols into their simple counterpart.

    Warning: the python-level loop and join operations make this
    implementation 20 times slower than the strip_accents_ascii basic
    normalization.

    Parameters
    ----------
    s : str
        The string to strip.

    Returns
    -------
    s : str
        The stripped string.

    See Also
    --------
    strip_accents_ascii : Remove accentuated char for any unicode symbol that
        has a direct ASCII equivalent.
    """
    try:
        # If `s` is ASCII-compatible, then it does not contain any accented
        # characters and we can avoid an expensive list comprehension
        s.encode("ASCII", errors="strict")
        return s
    except UnicodeEncodeError:
        normalized = unicodedata.normalize("NFKD", s)
        return "".join([c for c in normalized if not unicodedata.combining(c)])


def strip_accents_ascii(s):
    """Transform accentuated unicode symbols into ascii or nothing.

    Warning: this solution is only suited for languages that have a direct
    transliteration to ASCII symbols.

    Parameters
    ----------
    s : str
        The string to strip.

    Returns
    -------
    s : str
        The stripped string.

    See Also
    --------
    strip_accents_unicode : Remove accentuated char for any unicode symbol.
    """
    nkfd_form = unicodedata.normalize("NFKD", s)
    return nkfd_form.encode("ASCII", "ignore").decode("ASCII")


def strip_tags(s):
    """Basic regexp based HTML / XML tag stripper function.

    For serious HTML/XML preprocessing you should rather use an external
    library such as lxml or BeautifulSoup.

    Parameters
    ----------
    s : str
        The string to strip.

    Returns
    -------
    s : str
        The stripped string.
    """
    return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s)


def _check_stop_list(stop):
    if stop == "english":
        return ENGLISH_STOP_WORDS
    elif isinstance(stop, str):
        raise ValueError("not a built-in stop list: %s" % stop)
    elif stop is None:
        return None
    else:  # assume it's a collection
        return frozenset(stop)


class _VectorizerMixin:
    """Provides common code for text vectorizers (tokenization logic)."""

    _white_spaces = re.compile(r"\s\s+")

    def decode(self, doc):
        """Decode the input into a string of unicode symbols.

        The decoding strategy depends on the vectorizer parameters.

        Parameters
        ----------
        doc : bytes or str
            The string to decode.

        Returns
        -------
        doc: str
            A string of unicode symbols.
        """
        if self.input == "filename":
            with open(doc, "rb") as fh:
                doc = fh.read()

        elif self.input == "file":
            doc = doc.read()

        if isinstance(doc, bytes):
            doc = doc.decode(self.encoding, self.decode_error)

        if doc is np.nan:
            raise ValueError(
                "np.nan is an invalid document, expected byte or unicode string."
            )

        return doc

    def _word_ngrams(self, tokens, stop_words=None):
        """Turn tokens into a sequence of n-grams after stop words filtering"""
        # handle stop words
        if stop_words is not None:
            tokens = [w for w in tokens if w not in stop_words]

        # handle token n-grams
        min_n, max_n = self.ngram_range
        if max_n != 1:
            original_tokens = tokens
            if min_n == 1:
                # no need to do any slicing for unigrams
                # just iterate through the original tokens
                tokens = list(original_tokens)
                min_n += 1
            else:
                tokens = []

            n_original_tokens = len(original_tokens)

            # bind method outside of loop to reduce overhead
            tokens_append = tokens.append
            space_join = " ".join

            for n in range(min_n, min(max_n + 1, n_original_tokens + 1)):
                for i in range(n_original_tokens - n + 1):
                    tokens_append(space_join(original_tokens[i : i + n]))

        return tokens

    def _char_ngrams(self, text_document):
        """Tokenize text_document into a sequence of character n-grams"""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        text_len = len(text_document)
        min_n, max_n = self.ngram_range
        if min_n == 1:
            # no need to do any slicing for unigrams
            # iterate through the string
            ngrams = list(text_document)
            min_n += 1
        else:
            ngrams = []

        # bind method outside of loop to reduce overhead
        ngrams_append = ngrams.append

        for n in range(min_n, min(max_n + 1, text_len + 1)):
            for i in range(text_len - n + 1):
                ngrams_append(text_document[i : i + n])
        return ngrams

    def _char_wb_ngrams(self, text_document):
        """Whitespace sensitive char-n-gram tokenization.

        Tokenize text_document into a sequence of character n-grams
        operating only inside word boundaries. n-grams at the edges
        of words are padded with space."""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        min_n, max_n = self.ngram_range
        ngrams = []

        # bind method outside of loop to reduce overhead
        ngrams_append = ngrams.append

        for w in text_document.split():
            w = " " + w + " "
            w_len = len(w)
            for n in range(min_n, max_n + 1):
                offset = 0
                ngrams_append(w[offset : offset + n])
                while offset + n < w_len:
                    offset += 1
                    ngrams_append(w[offset : offset + n])
                if offset == 0:  # count a short word (w_len < n) only once
                    break
        return ngrams

    def build_preprocessor(self):
        """Return a function to preprocess the text before tokenization.

        Returns
        -------
        preprocessor: callable
              A function to preprocess the text before tokenization.
        """
        if self.preprocessor is not None:
            return self.preprocessor

        # accent stripping
        if not self.strip_accents:
            strip_accents = None
        elif callable(self.strip_accents):
            strip_accents = self.strip_accents
        elif self.strip_accents == "ascii":
            strip_accents = strip_accents_ascii
        elif self.strip_accents == "unicode":
            strip_accents = strip_accents_unicode
        else:
            raise ValueError(
                'Invalid value for "strip_accents": %s' % self.strip_accents
            )

        return partial(_preprocess, accent_function=strip_accents, lower=self.lowercase)

    def build_tokenizer(self):
        """Return a function that splits a string into a sequence of tokens.

        Returns
        -------
        tokenizer: callable
              A function to split a string into a sequence of tokens.
        """
        if self.tokenizer is not None:
            return self.tokenizer
        token_pattern = re.compile(self.token_pattern)

        if token_pattern.groups > 1:
            raise ValueError(
                "More than 1 capturing group in token pattern. Only a single "
                "group should be captured."
            )

        return token_pattern.findall

    def get_stop_words(self):
        """Build or fetch the effective stop words list.

        Returns
        -------
        stop_words: list or None
                A list of stop words.
        """
        return _check_stop_list(self.stop_words)

    def _check_stop_words_consistency(self, stop_words, preprocess, tokenize):
        """Check if stop words are consistent

        Returns
        -------
        is_consistent : True if stop words are consistent with the preprocessor
                        and tokenizer, False if they are not, None if the check
                        was previously performed, "error" if it could not be
                        performed (e.g. because of the use of a custom
                        preprocessor / tokenizer)
        """
        if id(self.stop_words) == getattr(self, "_stop_words_id", None):
            # Stop words are were previously validated
            return None

        # NB: stop_words is validated, unlike self.stop_words
        try:
            inconsistent = set()
            for w in stop_words or ():
                tokens = list(tokenize(preprocess(w)))
                for token in tokens:
                    if token not in stop_words:
                        inconsistent.add(token)
            self._stop_words_id = id(self.stop_words)

            if inconsistent:
                warnings.warn(
                    "Your stop_words may be inconsistent with "
                    "your preprocessing. Tokenizing the stop "
                    "words generated tokens %r not in "
                    "stop_words." % sorted(inconsistent)
                )
            return not inconsistent
        except Exception:
            # Failed to check stop words consistency (e.g. because a custom
            # preprocessor or tokenizer was used)
            self._stop_words_id = id(self.stop_words)
            return "error"

    def build_analyzer(self):
        """Return a callable to process input data.

        The callable handles preprocessing, tokenization, and n-grams generation.

        Returns
        -------
        analyzer: callable
            A function to handle preprocessing, tokenization
            and n-grams generation.
        """

        if callable(self.analyzer):
            return partial(_analyze, analyzer=self.analyzer, decoder=self.decode)

        preprocess = self.build_preprocessor()

        if self.analyzer == "char":
            return partial(
                _analyze,
                ngrams=self._char_ngrams,
                preprocessor=preprocess,
                decoder=self.decode,
            )

        elif self.analyzer == "char_wb":
            return partial(
                _analyze,
                ngrams=self._char_wb_ngrams,
                preprocessor=preprocess,
                decoder=self.decode,
            )

        elif self.analyzer == "word":
            stop_words = self.get_stop_words()
            tokenize = self.build_tokenizer()
            self._check_stop_words_consistency(stop_words, preprocess, tokenize)
            return partial(
                _analyze,
                ngrams=self._word_ngrams,
                tokenizer=tokenize,
                preprocessor=preprocess,
                decoder=self.decode,
                stop_words=stop_words,
            )

        else:
            raise ValueError(
                "%s is not a valid tokenization scheme/analyzer" % self.analyzer
            )

    def _validate_vocabulary(self):
        vocabulary = self.vocabulary
        if vocabulary is not None:
            if isinstance(vocabulary, set):
                vocabulary = sorted(vocabulary)
            if not isinstance(vocabulary, Mapping):
                vocab = {}
                for i, t in enumerate(vocabulary):
                    if vocab.setdefault(t, i) != i:
                        msg = "Duplicate term in vocabulary: %r" % t
                        raise ValueError(msg)
                vocabulary = vocab
            else:
                indices = set(vocabulary.values())
                if len(indices) != len(vocabulary):
                    raise ValueError("Vocabulary contains repeated indices.")
                for i in range(len(vocabulary)):
                    if i not in indices:
                        msg = "Vocabulary of size %d doesn't contain index %d." % (
                            len(vocabulary),
                            i,
                        )
                        raise ValueError(msg)
            if not vocabulary:
                raise ValueError("empty vocabulary passed to fit")
            self.fixed_vocabulary_ = True
            self.vocabulary_ = dict(vocabulary)
        else:
            self.fixed_vocabulary_ = False

    def _check_vocabulary(self):
        """Check if vocabulary is empty or missing (not fitted)"""
        if not hasattr(self, "vocabulary_"):
            self._validate_vocabulary()
            if not self.fixed_vocabulary_:
                raise NotFittedError("Vocabulary not fitted or provided")

        if len(self.vocabulary_) == 0:
            raise ValueError("Vocabulary is empty")

    def _validate_ngram_range(self):
        """Check validity of ngram_range parameter"""
        min_n, max_m = self.ngram_range
        if min_n > max_m:
            raise ValueError(
                "Invalid value for ngram_range=%s "
                "lower boundary larger than the upper boundary." % str(self.ngram_range)
            )

    def _warn_for_unused_params(self):
        if self.tokenizer is not None and self.token_pattern is not None:
            warnings.warn(
                "The parameter 'token_pattern' will not be used"
                " since 'tokenizer' is not None'"
            )

        if self.preprocessor is not None and callable(self.analyzer):
            warnings.warn(
                "The parameter 'preprocessor' will not be used"
                " since 'analyzer' is callable'"
            )

        if (
            self.ngram_range != (1, 1)
            and self.ngram_range is not None
            and callable(self.analyzer)
        ):
            warnings.warn(
                "The parameter 'ngram_range' will not be used"
                " since 'analyzer' is callable'"
            )
        if self.analyzer != "word" or callable(self.analyzer):
            if self.stop_words is not None:
                warnings.warn(
                    "The parameter 'stop_words' will not be used"
                    " since 'analyzer' != 'word'"
                )
            if (
                self.token_pattern is not None
                and self.token_pattern != r"(?u)\b\w\w+\b"
            ):
                warnings.warn(
                    "The parameter 'token_pattern' will not be used"
                    " since 'analyzer' != 'word'"
                )
            if self.tokenizer is not None:
                warnings.warn(
                    "The parameter 'tokenizer' will not be used"
                    " since 'analyzer' != 'word'"
                )


class HashingVectorizer(
    TransformerMixin, _VectorizerMixin, BaseEstimator, auto_wrap_output_keys=None
):
    r"""Convert a collection of text documents to a matrix of token occurrences.

    It turns a collection of text documents into a scipy.sparse matrix holding
    token occurrence counts (or binary occurrence information), possibly
    normalized as token frequencies if norm='l1' or projected on the euclidean
    unit sphere if norm='l2'.

    This text vectorizer implementation uses the hashing trick to find the
    token string name to feature integer index mapping.

    This strategy has several advantages:

    - it is very low memory scalable to large datasets as there is no need to
      store a vocabulary dictionary in memory.

    - it is fast to pickle and un-pickle as it holds no state besides the
      constructor parameters.

    - it can be used in a streaming (partial fit) or parallel pipeline as there
      is no state computed during fit.

    There are also a couple of cons (vs using a CountVectorizer with an
    in-memory vocabulary):

    - there is no way to compute the inverse transform (from feature indices to
      string feature names) which can be a problem when trying to introspect
      which features are most important to a model.

    - there can be collisions: distinct tokens can be mapped to the same
      feature index. However in practice this is rarely an issue if n_features
      is large enough (e.g. 2 ** 18 for text classification problems).

    - no IDF weighting as this would render the transformer stateful.

    The hash function employed is the signed 32-bit version of Murmurhash3.

    For an efficiency comparison of the different feature extractors, see
    :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`.

    For an example of document clustering and comparison with
    :class:`~sklearn.feature_extraction.text.TfidfVectorizer`, see
    :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    input : {'filename', 'file', 'content'}, default='content'
        - If `'filename'`, the sequence passed as an argument to fit is
          expected to be a list of filenames that need reading to fetch
          the raw content to analyze.

        - If `'file'`, the sequence items must have a 'read' method (file-like
          object) that is called to fetch the bytes in memory.

        - If `'content'`, the input is expected to be a sequence of items that
          can be of type string or byte.

    encoding : str, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'} or callable, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        a direct ASCII mapping.
        'unicode' is a slightly slower method that works on any character.
        None (default) means no character normalization is performed.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (string transformation) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer`` is not callable.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    stop_words : {'english'}, list, default=None
        If 'english', a built-in stop word list for English is used.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

    token_pattern : str or None, default=r"(?u)\\b\\w\\w+\\b"
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp selects tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

        If there is a capturing group in token_pattern then the
        captured group content, not the entire match, becomes the token.
        At most one capturing group is permitted.

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        n-grams to be extracted. All values of n such that min_n <= n <= max_n
        will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
        unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
        only bigrams.
        Only applies if ``analyzer`` is not callable.

    analyzer : {'word', 'char', 'char_wb'} or callable, default='word'
        Whether the feature should be made of word or character n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21
            Since v0.21, if ``input`` is ``'filename'`` or ``'file'``, the data
            is first read from the file and then passed to the given callable
            analyzer.

    n_features : int, default=(2 ** 20)
        The number of features (columns) in the output matrices. Small numbers
        of features are likely to cause hash collisions, but large numbers
        will cause larger coefficient dimensions in linear learners.

    binary : bool, default=False
        If True, all non zero counts are set to 1. This is useful for discrete
        probabilistic models that model binary events rather than integer
        counts.

    norm : {'l1', 'l2'}, default='l2'
        Norm used to normalize term vectors. None for no normalization.

    alternate_sign : bool, default=True
        When True, an alternating sign is added to the features as to
        approximately conserve the inner product in the hashed space even for
        small n_features. This approach is similar to sparse random projection.

        .. versionadded:: 0.19

    dtype : type, default=np.float64
        Type of the matrix returned by fit_transform() or transform().

    See Also
    --------
    CountVectorizer : Convert a collection of text documents to a matrix of
        token counts.
    TfidfVectorizer : Convert a collection of raw documents to a matrix of
        TF-IDF features.

    Notes
    -----
    This estimator is :term:`stateless` and does not need to be fitted.
    However, we recommend to call :meth:`fit_transform` instead of
    :meth:`transform`, as parameter validation is only performed in
    :meth:`fit`.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import HashingVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = HashingVectorizer(n_features=2**4)
    >>> X = vectorizer.fit_transform(corpus)
    >>> print(X.shape)
    (4, 16)
    """

    _parameter_constraints: dict = {
        "input": [StrOptions({"filename", "file", "content"})],
        "encoding": [str],
        "decode_error": [StrOptions({"strict", "ignore", "replace"})],
        "strip_accents": [StrOptions({"ascii", "unicode"}), None, callable],
        "lowercase": ["boolean"],
        "preprocessor": [callable, None],
        "tokenizer": [callable, None],
        "stop_words": [StrOptions({"english"}), list, None],
        "token_pattern": [str, None],
        "ngram_range": [tuple],
        "analyzer": [StrOptions({"word", "char", "char_wb"}), callable],
        "n_features": [Interval(Integral, 1, np.iinfo(np.int32).max, closed="left")],
        "binary": ["boolean"],
        "norm": [StrOptions({"l1", "l2"}), None],
        "alternate_sign": ["boolean"],
        "dtype": "no_validation",  # delegate to numpy
    }

    def __init__(
        self,
        *,
        input="content",
        encoding="utf-8",
        decode_error="strict",
        strip_accents=None,
        lowercase=True,
        preprocessor=None,
        tokenizer=None,
        stop_words=None,
        token_pattern=r"(?u)\b\w\w+\b",
        ngram_range=(1, 1),
        analyzer="word",
        n_features=(2**20),
        binary=False,
        norm="l2",
        alternate_sign=True,
        dtype=np.float64,
    ):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.n_features = n_features
        self.ngram_range = ngram_range
        self.binary = binary
        self.norm = norm
        self.alternate_sign = alternate_sign
        self.dtype = dtype

    @_fit_context(prefer_skip_nested_validation=True)
    def partial_fit(self, X, y=None):
        """Only validates estimator's parameters.

        This method allows to: (i) validate the estimator's parameters and
        (ii) be consistent with the scikit-learn transformer API.

        Parameters
        ----------
        X : ndarray of shape [n_samples, n_features]
            Training data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            HashingVectorizer instance.
        """
        return self

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Only validates estimator's parameters.

        This method allows to: (i) validate the estimator's parameters and
        (ii) be consistent with the scikit-learn transformer API.

        Parameters
        ----------
        X : ndarray of shape [n_samples, n_features]
            Training data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            HashingVectorizer instance.
        """
        # triggers a parameter validation
        if isinstance(X, str):
            raise ValueError(
                "Iterable over raw text documents expected, string object received."
            )

        self._warn_for_unused_params()
        self._validate_ngram_range()

        self._get_hasher().fit(X, y=y)
        return self

    def transform(self, X):
        """Transform a sequence of documents to a document-term matrix.

        Parameters
        ----------
        X : iterable over raw text documents, length = n_samples
            Samples. Each sample must be a text document (either bytes or
            unicode strings, file name or file object depending on the
            constructor argument) which will be tokenized and hashed.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        if isinstance(X, str):
            raise ValueError(
                "Iterable over raw text documents expected, string object received."
            )

        self._validate_ngram_range()

        analyzer = self.build_analyzer()
        X = self._get_hasher().transform(analyzer(doc) for doc in X)
        if self.binary:
            X.data.fill(1)
        if self.norm is not None:
            X = normalize(X, norm=self.norm, copy=False)
        return X

    def fit_transform(self, X, y=None):
        """Transform a sequence of documents to a document-term matrix.

        Parameters
        ----------
        X : iterable over raw text documents, length = n_samples
            Samples. Each sample must be a text document (either bytes or
            unicode strings, file name or file object depending on the
            constructor argument) which will be tokenized and hashed.
        y : any
            Ignored. This parameter exists only for compatibility with
            sklearn.pipeline.Pipeline.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        return self.fit(X, y).transform(X)

    def _get_hasher(self):
        return FeatureHasher(
            n_features=self.n_features,
            input_type="string",
            dtype=self.dtype,
            alternate_sign=self.alternate_sign,
        )

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.string = True
        tags.input_tags.two_d_array = False
        return tags


def _document_frequency(X):
    """Count the number of non-zero values for each feature in sparse X."""
    if sp.issparse(X) and X.format == "csr":
        return np.bincount(X.indices, minlength=X.shape[1])
    else:
        return np.diff(X.indptr)


class CountVectorizer(_VectorizerMixin, BaseEstimator):
    r"""Convert a collection of text documents to a matrix of token counts.

    This implementation produces a sparse representation of the counts using
    scipy.sparse.csr_matrix.

    If you do not provide an a-priori dictionary and you do not use an analyzer
    that does some kind of feature selection then the number of features will
    be equal to the vocabulary size found by analyzing the data.

    For an efficiency comparison of the different feature extractors, see
    :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    input : {'filename', 'file', 'content'}, default='content'
        - If `'filename'`, the sequence passed as an argument to fit is
          expected to be a list of filenames that need reading to fetch
          the raw content to analyze.

        - If `'file'`, the sequence items must have a 'read' method (file-like
          object) that is called to fetch the bytes in memory.

        - If `'content'`, the input is expected to be a sequence of items that
          can be of type string or byte.

    encoding : str, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'} or callable, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        a direct ASCII mapping.
        'unicode' is a slightly slower method that works on any characters.
        None (default) means no character normalization is performed.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (strip_accents and lowercase) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer`` is not callable.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    stop_words : {'english'}, list, default=None
        If 'english', a built-in stop word list for English is used.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

        If None, no stop words will be used. In this case, setting `max_df`
        to a higher value, such as in the range (0.7, 1.0), can automatically detect
        and filter stop words based on intra corpus document frequency of terms.

    token_pattern : str or None, default=r"(?u)\\b\\w\\w+\\b"
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp select tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

        If there is a capturing group in token_pattern then the
        captured group content, not the entire match, becomes the token.
        At most one capturing group is permitted.

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        word n-grams or char n-grams to be extracted. All values of n such
        such that min_n <= n <= max_n will be used. For example an
        ``ngram_range`` of ``(1, 1)`` means only unigrams, ``(1, 2)`` means
        unigrams and bigrams, and ``(2, 2)`` means only bigrams.
        Only applies if ``analyzer`` is not callable.

    analyzer : {'word', 'char', 'char_wb'} or callable, default='word'
        Whether the feature should be made of word n-gram or character
        n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21

        Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
        first read from the file and then passed to the given callable
        analyzer.

    max_df : float in range [0.0, 1.0] or int, default=1.0
        When building the vocabulary ignore terms that have a document
        frequency strictly higher than the given threshold (corpus-specific
        stop words).
        If float, the parameter represents a proportion of documents, integer
        absolute counts.
        This parameter is ignored if vocabulary is not None.

    min_df : float in range [0.0, 1.0] or int, default=1
        When building the vocabulary ignore terms that have a document
        frequency strictly lower than the given threshold. This value is also
        called cut-off in the literature.
        If float, the parameter represents a proportion of documents, integer
        absolute counts.
        This parameter is ignored if vocabulary is not None.

    max_features : int, default=None
        If not None, build a vocabulary that only consider the top
        `max_features` ordered by term frequency across the corpus.
        Otherwise, all features are used.

        This parameter is ignored if vocabulary is not None.

    vocabulary : Mapping or iterable, default=None
        Either a Mapping (e.g., a dict) where keys are terms and values are
        indices in the feature matrix, or an iterable over terms. If not
        given, a vocabulary is determined from the input documents. Indices
        in the mapping should not be repeated and should not have any gap
        between 0 and the largest index.

    binary : bool, default=False
        If True, all non zero counts are set to 1. This is useful for discrete
        probabilistic models that model binary events rather than integer
        counts.

    dtype : dtype, default=np.int64
        Type of the matrix returned by fit_transform() or transform().

    Attributes
    ----------
    vocabulary_ : dict
        A mapping of terms to feature indices.

    fixed_vocabulary_ : bool
        True if a fixed vocabulary of term to indices mapping
        is provided by the user.

    See Also
    --------
    HashingVectorizer : Convert a collection of text documents to a
        matrix of token counts.

    TfidfVectorizer : Convert a collection of raw documents to a matrix
        of TF-IDF features.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = CountVectorizer()
    >>> X = vectorizer.fit_transform(corpus)
    >>> vectorizer.get_feature_names_out()
    array(['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third',
           'this'], ...)
    >>> print(X.toarray())
    [[0 1 1 1 0 0 1 0 1]
     [0 2 0 1 0 1 1 0 1]
     [1 0 0 1 1 0 1 1 1]
     [0 1 1 1 0 0 1 0 1]]
    >>> vectorizer2 = CountVectorizer(analyzer='word', ngram_range=(2, 2))
    >>> X2 = vectorizer2.fit_transform(corpus)
    >>> vectorizer2.get_feature_names_out()
    array(['and this', 'document is', 'first document', 'is the', 'is this',
           'second document', 'the first', 'the second', 'the third', 'third one',
           'this document', 'this is', 'this the'], ...)
     >>> print(X2.toarray())
     [[0 0 1 1 0 0 1 0 0 0 0 1 0]
     [0 1 0 1 0 1 0 1 0 0 1 0 0]
     [1 0 0 1 0 0 0 0 1 1 0 1 0]
     [0 0 1 0 1 0 1 0 0 0 0 0 1]]
    """

    # raw_documents should not be in the routing mechanism. It should have been
    # called X in the first place.
    __metadata_request__fit = {"raw_documents": metadata_routing.UNUSED}
    __metadata_request__transform = {"raw_documents": metadata_routing.UNUSED}

    _parameter_constraints: dict = {
        "input": [StrOptions({"filename", "file", "content"})],
        "encoding": [str],
        "decode_error": [StrOptions({"strict", "ignore", "replace"})],
        "strip_accents": [StrOptions({"ascii", "unicode"}), None, callable],
        "lowercase": ["boolean"],
        "preprocessor": [callable, None],
        "tokenizer": [callable, None],
        "stop_words": [StrOptions({"english"}), list, None],
        "token_pattern": [str, None],
        "ngram_range": [tuple],
        "analyzer": [StrOptions({"word", "char", "char_wb"}), callable],
        "max_df": [
            Interval(RealNotInt, 0, 1, closed="both"),
            Interval(Integral, 1, None, closed="left"),
        ],
        "min_df": [
            Interval(RealNotInt, 0, 1, closed="both"),
            Interval(Integral, 1, None, closed="left"),
        ],
        "max_features": [Interval(Integral, 1, None, closed="left"), None],
        "vocabulary": [Mapping, HasMethods("__iter__"), None],
        "binary": ["boolean"],
        "dtype": "no_validation",  # delegate to numpy
    }

    def __init__(
        self,
        *,
        input="content",
        encoding="utf-8",
        decode_error="strict",
        strip_accents=None,
        lowercase=True,
        preprocessor=None,
        tokenizer=None,
        stop_words=None,
        token_pattern=r"(?u)\b\w\w+\b",
        ngram_range=(1, 1),
        analyzer="word",
        max_df=1.0,
        min_df=1,
        max_features=None,
        vocabulary=None,
        binary=False,
        dtype=np.int64,
    ):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.max_df = max_df
        self.min_df = min_df
        self.max_features = max_features
        self.ngram_range = ngram_range
        self.vocabulary = vocabulary
        self.binary = binary
        self.dtype = dtype

    def _sort_features(self, X, vocabulary):
        """Sort features by name

        Returns a reordered matrix and modifies the vocabulary in place
        """
        sorted_features = sorted(vocabulary.items())
        map_index = np.empty(len(sorted_features), dtype=X.indices.dtype)
        for new_val, (term, old_val) in enumerate(sorted_features):
            vocabulary[term] = new_val
            map_index[old_val] = new_val

        X.indices = map_index.take(X.indices, mode="clip")
        return X

    def _limit_features(self, X, vocabulary, high=None, low=None, limit=None):
        """Remove too rare or too common features.

        Prune features that are non zero in more samples than high or less
        documents than low, modifying the vocabulary, and restricting it to
        at most the limit most frequent.

        This does not prune samples with zero features.
        """
        if high is None and low is None and limit is None:
            return X, set()

        # Calculate a mask based on document frequencies
        dfs = _document_frequency(X)
        mask = np.ones(len(dfs), dtype=bool)
        if high is not None:
            mask &= dfs <= high
        if low is not None:
            mask &= dfs >= low
        if limit is not None and mask.sum() > limit:
            tfs = np.asarray(X.sum(axis=0)).ravel()
            mask_inds = (-tfs[mask]).argsort()[:limit]
            new_mask = np.zeros(len(dfs), dtype=bool)
            new_mask[np.where(mask)[0][mask_inds]] = True
            mask = new_mask

        new_indices = np.cumsum(mask) - 1  # maps old indices to new
        for term, old_index in list(vocabulary.items()):
            if mask[old_index]:
                vocabulary[term] = new_indices[old_index]
            else:
                del vocabulary[term]
        kept_indices = np.where(mask)[0]
        if len(kept_indices) == 0:
            raise ValueError(
                "After pruning, no terms remain. Try a lower min_df or a higher max_df."
            )
        return X[:, kept_indices]

    def _count_vocab(self, raw_documents, fixed_vocab):
        """Create sparse feature matrix, and vocabulary where fixed_vocab=False"""
        if fixed_vocab:
            vocabulary = self.vocabulary_
        else:
            # Add a new value when a new vocabulary item is seen
            vocabulary = defaultdict()
            vocabulary.default_factory = vocabulary.__len__

        analyze = self.build_analyzer()
        j_indices = []
        indptr = []

        values = _make_int_array()
        indptr.append(0)
        for doc in raw_documents:
            feature_counter = {}
            for feature in analyze(doc):
                try:
                    feature_idx = vocabulary[feature]
                    if feature_idx not in feature_counter:
                        feature_counter[feature_idx] = 1
                    else:
                        feature_counter[feature_idx] += 1
                except KeyError:
                    # Ignore out-of-vocabulary items for fixed_vocab=True
                    continue

            j_indices.extend(feature_counter.keys())
            values.extend(feature_counter.values())
            indptr.append(len(j_indices))

        if not fixed_vocab:
            # disable defaultdict behaviour
            vocabulary = dict(vocabulary)
            if not vocabulary:
                raise ValueError(
                    "empty vocabulary; perhaps the documents only contain stop words"
                )

        if indptr[-1] > np.iinfo(np.int32).max:  # = 2**31 - 1
            if _IS_32BIT:
                raise ValueError(
                    (
                        "sparse CSR array has {} non-zero "
                        "elements and requires 64 bit indexing, "
                        "which is unsupported with 32 bit Python."
                    ).format(indptr[-1])
                )
            indices_dtype = np.int64

        else:
            indices_dtype = np.int32
        j_indices = np.asarray(j_indices, dtype=indices_dtype)
        indptr = np.asarray(indptr, dtype=indices_dtype)
        values = np.frombuffer(values, dtype=np.intc)

        X = sp.csr_matrix(
            (values, j_indices, indptr),
            shape=(len(indptr) - 1, len(vocabulary)),
            dtype=self.dtype,
        )
        X.sort_indices()
        return vocabulary, X

    def fit(self, raw_documents, y=None):
        """Learn a vocabulary dictionary of all tokens in the raw documents.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        y : None
            This parameter is ignored.

        Returns
        -------
        self : object
            Fitted vectorizer.
        """
        self.fit_transform(raw_documents)
        return self

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, raw_documents, y=None):
        """Learn the vocabulary dictionary and return document-term matrix.

        This is equivalent to fit followed by transform, but more efficiently
        implemented.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        y : None
            This parameter is ignored.

        Returns
        -------
        X : array of shape (n_samples, n_features)
            Document-term matrix.
        """
        # We intentionally don't call the transform method to make
        # fit_transform overridable without unwanted side effects in
        # TfidfVectorizer.
        if isinstance(raw_documents, str):
            raise ValueError(
                "Iterable over raw text documents expected, string object received."
            )

        self._validate_ngram_range()
        self._warn_for_unused_params()
        self._validate_vocabulary()
        max_df = self.max_df
        min_df = self.min_df
        max_features = self.max_features

        if self.fixed_vocabulary_ and self.lowercase:
            for term in self.vocabulary:
                if any(map(str.isupper, term)):
                    warnings.warn(
                        "Upper case characters found in"
                        " vocabulary while 'lowercase'"
                        " is True. These entries will not"
                        " be matched with any documents"
                    )
                    break

        vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_)

        if self.binary:
            X.data.fill(1)

        if not self.fixed_vocabulary_:
            n_doc = X.shape[0]
            max_doc_count = max_df if isinstance(max_df, Integral) else max_df * n_doc
            min_doc_count = min_df if isinstance(min_df, Integral) else min_df * n_doc
            if max_doc_count < min_doc_count:
                raise ValueError("max_df corresponds to < documents than min_df")
            if max_features is not None:
                X = self._sort_features(X, vocabulary)
            X = self._limit_features(
                X, vocabulary, max_doc_count, min_doc_count, max_features
            )
            if max_features is None:
                X = self._sort_features(X, vocabulary)
            self.vocabulary_ = vocabulary

        return X

    def transform(self, raw_documents):
        """Transform documents to document-term matrix.

        Extract token counts out of raw text documents using the vocabulary
        fitted with fit or the one provided to the constructor.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        if isinstance(raw_documents, str):
            raise ValueError(
                "Iterable over raw text documents expected, string object received."
            )
        self._check_vocabulary()

        # use the same matrix-building strategy as fit_transform
        _, X = self._count_vocab(raw_documents, fixed_vocab=True)
        if self.binary:
            X.data.fill(1)
        return X

    def inverse_transform(self, X):
        """Return terms per document with nonzero entries in X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Document-term matrix.

        Returns
        -------
        X_inv : list of arrays of shape (n_samples,)
            List of arrays of terms.
        """
        self._check_vocabulary()
        # We need CSR format for fast row manipulations.
        X = check_array(X, accept_sparse="csr")
        n_samples = X.shape[0]

        terms = np.array(list(self.vocabulary_.keys()))
        indices = np.array(list(self.vocabulary_.values()))
        inverse_vocabulary = terms[np.argsort(indices)]

        if sp.issparse(X):
            return [
                inverse_vocabulary[X[i, :].nonzero()[1]].ravel()
                for i in range(n_samples)
            ]
        else:
            return [
                inverse_vocabulary[np.flatnonzero(X[i, :])].ravel()
                for i in range(n_samples)
            ]

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Not used, present here for API consistency by convention.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        self._check_vocabulary()
        return np.asarray(
            [t for t, i in sorted(self.vocabulary_.items(), key=itemgetter(1))],
            dtype=object,
        )

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.string = True
        tags.input_tags.two_d_array = False
        return tags


def _make_int_array():
    """Construct an array.array of a type suitable for scipy.sparse indices."""
    return array.array(str("i"))


class TfidfTransformer(
    OneToOneFeatureMixin, TransformerMixin, BaseEstimator, auto_wrap_output_keys=None
):
    """Transform a count matrix to a normalized tf or tf-idf representation.

    Tf means term-frequency while tf-idf means term-frequency times inverse
    document-frequency. This is a common term weighting scheme in information
    retrieval, that has also found good use in document classification.

    The goal of using tf-idf instead of the raw frequencies of occurrence of a
    token in a given document is to scale down the impact of tokens that occur
    very frequently in a given corpus and that are hence empirically less
    informative than features that occur in a small fraction of the training
    corpus.

    The formula that is used to compute the tf-idf for a term t of a document d
    in a document set is tf-idf(t, d) = tf(t, d) * idf(t), and the idf is
    computed as idf(t) = log [ n / df(t) ] + 1 (if ``smooth_idf=False``), where
    n is the total number of documents in the document set and df(t) is the
    document frequency of t; the document frequency is the number of documents
    in the document set that contain the term t. The effect of adding "1" to
    the idf in the equation above is that terms with zero idf, i.e., terms
    that occur in all documents in a training set, will not be entirely
    ignored.
    (Note that the idf formula above differs from the standard textbook
    notation that defines the idf as
    idf(t) = log [ n / (df(t) + 1) ]).

    If ``smooth_idf=True`` (the default), the constant "1" is added to the
    numerator and denominator of the idf as if an extra document was seen
    containing every term in the collection exactly once, which prevents
    zero divisions: idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1.

    Furthermore, the formulas used to compute tf and idf depend
    on parameter settings that correspond to the SMART notation used in IR
    as follows:

    Tf is "n" (natural) by default, "l" (logarithmic) when
    ``sublinear_tf=True``.
    Idf is "t" when use_idf is given, "n" (none) otherwise.
    Normalization is "c" (cosine) when ``norm='l2'``, "n" (none)
    when ``norm=None``.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    norm : {'l1', 'l2'} or None, default='l2'
        Each output row will have unit norm, either:

        - 'l2': Sum of squares of vector elements is 1. The cosine
          similarity between two vectors is their dot product when l2 norm has
          been applied.
        - 'l1': Sum of absolute values of vector elements is 1.
          See :func:`~sklearn.preprocessing.normalize`.
        - None: No normalization.

    use_idf : bool, default=True
        Enable inverse-document-frequency reweighting. If False, idf(t) = 1.

    smooth_idf : bool, default=True
        Smooth idf weights by adding one to document frequencies, as if an
        extra document was seen containing every term in the collection
        exactly once. Prevents zero divisions.

    sublinear_tf : bool, default=False
        Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

    Attributes
    ----------
    idf_ : array of shape (n_features)
        The inverse document frequency (IDF) vector; only defined
        if  ``use_idf`` is True.

        .. versionadded:: 0.20

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 1.0

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    CountVectorizer : Transforms text into a sparse matrix of n-gram counts.

    TfidfVectorizer : Convert a collection of raw documents to a matrix of
        TF-IDF features.

    HashingVectorizer : Convert a collection of text documents to a matrix
        of token occurrences.

    References
    ----------
    .. [Yates2011] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern
                   Information Retrieval. Addison Wesley, pp. 68-74.

    .. [MRS2008] C.D. Manning, P. Raghavan and H. Schütze  (2008).
                   Introduction to Information Retrieval. Cambridge University
                   Press, pp. 118-120.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import TfidfTransformer
    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> from sklearn.pipeline import Pipeline
    >>> corpus = ['this is the first document',
    ...           'this document is the second document',
    ...           'and this is the third one',
    ...           'is this the first document']
    >>> vocabulary = ['this', 'document', 'first', 'is', 'second', 'the',
    ...               'and', 'one']
    >>> pipe = Pipeline([('count', CountVectorizer(vocabulary=vocabulary)),
    ...                  ('tfid', TfidfTransformer())]).fit(corpus)
    >>> pipe['count'].transform(corpus).toarray()
    array([[1, 1, 1, 1, 0, 1, 0, 0],
           [1, 2, 0, 1, 1, 1, 0, 0],
           [1, 0, 0, 1, 0, 1, 1, 1],
           [1, 1, 1, 1, 0, 1, 0, 0]])
    >>> pipe['tfid'].idf_
    array([1.        , 1.22314355, 1.51082562, 1.        , 1.91629073,
           1.        , 1.91629073, 1.91629073])
    >>> pipe.transform(corpus).shape
    (4, 8)
    """

    _parameter_constraints: dict = {
        "norm": [StrOptions({"l1", "l2"}), None],
        "use_idf": ["boolean"],
        "smooth_idf": ["boolean"],
        "sublinear_tf": ["boolean"],
    }

    def __init__(self, *, norm="l2", use_idf=True, smooth_idf=True, sublinear_tf=False):
        self.norm = norm
        self.use_idf = use_idf
        self.smooth_idf = smooth_idf
        self.sublinear_tf = sublinear_tf

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Learn the idf vector (global term weights).

        Parameters
        ----------
        X : sparse matrix of shape (n_samples, n_features)
            A matrix of term/token counts.

        y : None
            This parameter is not needed to compute tf-idf.

        Returns
        -------
        self : object
            Fitted transformer.
        """
        # large sparse data is not supported for 32bit platforms because
        # _document_frequency uses np.bincount which works on arrays of
        # dtype NPY_INTP which is int32 for 32bit platforms. See #20923
        X = validate_data(
            self, X, accept_sparse=("csr", "csc"), accept_large_sparse=not _IS_32BIT
        )
        if not sp.issparse(X):
            X = sp.csr_matrix(X)
        dtype = X.dtype if X.dtype in (np.float64, np.float32) else np.float64

        if self.use_idf:
            n_samples, _ = X.shape
            df = _document_frequency(X)
            df = df.astype(dtype, copy=False)

            # perform idf smoothing if required
            df += float(self.smooth_idf)
            n_samples += int(self.smooth_idf)

            # log+1 instead of log makes sure terms with zero idf don't get
            # suppressed entirely.
            # Force the dtype of `idf_` to be the same as `df`. In NumPy < 2, the dtype
            # was depending on the value of `n_samples`.
            self.idf_ = np.full_like(df, fill_value=n_samples, dtype=dtype)
            self.idf_ /= df
            # `np.log` preserves the dtype of `df` and thus `dtype`.
            np.log(self.idf_, out=self.idf_)
            self.idf_ += 1.0

        return self

    def transform(self, X, copy=True):
        """Transform a count matrix to a tf or tf-idf representation.

        Parameters
        ----------
        X : sparse matrix of (n_samples, n_features)
            A matrix of term/token counts.

        copy : bool, default=True
            Whether to copy X and operate on the copy or perform in-place
            operations. `copy=False` will only be effective with CSR sparse matrix.

        Returns
        -------
        vectors : sparse matrix of shape (n_samples, n_features)
            Tf-idf-weighted document-term matrix.
        """
        check_is_fitted(self)
        X = validate_data(
            self,
            X,
            accept_sparse="csr",
            dtype=[np.float64, np.float32],
            copy=copy,
            reset=False,
        )
        if not sp.issparse(X):
            X = sp.csr_matrix(X, dtype=X.dtype)

        if self.sublinear_tf:
            np.log(X.data, X.data)
            X.data += 1.0

        if hasattr(self, "idf_"):
            # the columns of X (CSR matrix) can be accessed with `X.indices `and
            # multiplied with the corresponding `idf` value
            X.data *= self.idf_[X.indices]

        if self.norm is not None:
            X = normalize(X, norm=self.norm, copy=False)

        return X

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        # FIXME: np.float16 could be preserved if _inplace_csr_row_normalize_l2
        # accepted it.
        tags.transformer_tags.preserves_dtype = ["float64", "float32"]
        return tags


class TfidfVectorizer(CountVectorizer):
    r"""Convert a collection of raw documents to a matrix of TF-IDF features.

    Equivalent to :class:`CountVectorizer` followed by
    :class:`TfidfTransformer`.

    For an example of usage, see
    :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`.

    For an efficiency comparison of the different feature extractors, see
    :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`.

    For an example of document clustering and comparison with
    :class:`~sklearn.feature_extraction.text.HashingVectorizer`, see
    :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    input : {'filename', 'file', 'content'}, default='content'
        - If `'filename'`, the sequence passed as an argument to fit is
          expected to be a list of filenames that need reading to fetch
          the raw content to analyze.

        - If `'file'`, the sequence items must have a 'read' method (file-like
          object) that is called to fetch the bytes in memory.

        - If `'content'`, the input is expected to be a sequence of items that
          can be of type string or byte.

    encoding : str, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'} or callable, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        a direct ASCII mapping.
        'unicode' is a slightly slower method that works on any characters.
        None (default) means no character normalization is performed.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (string transformation) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer`` is not callable.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    analyzer : {'word', 'char', 'char_wb'} or callable, default='word'
        Whether the feature should be made of word or character n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21
            Since v0.21, if ``input`` is ``'filename'`` or ``'file'``, the data
            is first read from the file and then passed to the given callable
            analyzer.

    stop_words : {'english'}, list, default=None
        If a string, it is passed to _check_stop_list and the appropriate stop
        list is returned. 'english' is currently the only supported string
        value.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

        If None, no stop words will be used. In this case, setting `max_df`
        to a higher value, such as in the range (0.7, 1.0), can automatically detect
        and filter stop words based on intra corpus document frequency of terms.

    token_pattern : str, default=r"(?u)\\b\\w\\w+\\b"
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp selects tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

        If there is a capturing group in token_pattern then the
        captured group content, not the entire match, becomes the token.
        At most one capturing group is permitted.

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        n-grams to be extracted. All values of n such that min_n <= n <= max_n
        will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
        unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
        only bigrams.
        Only applies if ``analyzer`` is not callable.

    max_df : float or int, default=1.0
        When building the vocabulary ignore terms that have a document
        frequency strictly higher than the given threshold (corpus-specific
        stop words).
        If float in range [0.0, 1.0], the parameter represents a proportion of
        documents, integer absolute counts.
        This parameter is ignored if vocabulary is not None.

    min_df : float or int, default=1
        When building the vocabulary ignore terms that have a document
        frequency strictly lower than the given threshold. This value is also
        called cut-off in the literature.
        If float in range of [0.0, 1.0], the parameter represents a proportion
        of documents, integer absolute counts.
        This parameter is ignored if vocabulary is not None.

    max_features : int, default=None
        If not None, build a vocabulary that only consider the top
        `max_features` ordered by term frequency across the corpus.
        Otherwise, all features are used.

        This parameter is ignored if vocabulary is not None.

    vocabulary : Mapping or iterable, default=None
        Either a Mapping (e.g., a dict) where keys are terms and values are
        indices in the feature matrix, or an iterable over terms. If not
        given, a vocabulary is determined from the input documents.

    binary : bool, default=False
        If True, all non-zero term counts are set to 1. This does not mean
        outputs will have only 0/1 values, only that the tf term in tf-idf
        is binary. (Set `binary` to True, `use_idf` to False and
        `norm` to None to get 0/1 outputs).

    dtype : dtype, default=float64
        Type of the matrix returned by fit_transform() or transform().

    norm : {'l1', 'l2'} or None, default='l2'
        Each output row will have unit norm, either:

        - 'l2': Sum of squares of vector elements is 1. The cosine
          similarity between two vectors is their dot product when l2 norm has
          been applied.
        - 'l1': Sum of absolute values of vector elements is 1.
          See :func:`~sklearn.preprocessing.normalize`.
        - None: No normalization.

    use_idf : bool, default=True
        Enable inverse-document-frequency reweighting. If False, idf(t) = 1.

    smooth_idf : bool, default=True
        Smooth idf weights by adding one to document frequencies, as if an
        extra document was seen containing every term in the collection
        exactly once. Prevents zero divisions.

    sublinear_tf : bool, default=False
        Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

    Attributes
    ----------
    vocabulary_ : dict
        A mapping of terms to feature indices.

    fixed_vocabulary_ : bool
        True if a fixed vocabulary of term to indices mapping
        is provided by the user.

    idf_ : array of shape (n_features,)
        The inverse document frequency (IDF) vector; only defined
        if ``use_idf`` is True.

    See Also
    --------
    CountVectorizer : Transforms text into a sparse matrix of n-gram counts.

    TfidfTransformer : Performs the TF-IDF transformation from a provided
        matrix of counts.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import TfidfVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = TfidfVectorizer()
    >>> X = vectorizer.fit_transform(corpus)
    >>> vectorizer.get_feature_names_out()
    array(['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third',
           'this'], ...)
    >>> print(X.shape)
    (4, 9)
    """

    _parameter_constraints: dict = {**CountVectorizer._parameter_constraints}
    _parameter_constraints.update(
        {
            "norm": [StrOptions({"l1", "l2"}), None],
            "use_idf": ["boolean"],
            "smooth_idf": ["boolean"],
            "sublinear_tf": ["boolean"],
        }
    )

    def __init__(
        self,
        *,
        input="content",
        encoding="utf-8",
        decode_error="strict",
        strip_accents=None,
        lowercase=True,
        preprocessor=None,
        tokenizer=None,
        analyzer="word",
        stop_words=None,
        token_pattern=r"(?u)\b\w\w+\b",
        ngram_range=(1, 1),
        max_df=1.0,
        min_df=1,
        max_features=None,
        vocabulary=None,
        binary=False,
        dtype=np.float64,
        norm="l2",
        use_idf=True,
        smooth_idf=True,
        sublinear_tf=False,
    ):
        super().__init__(
            input=input,
            encoding=encoding,
            decode_error=decode_error,
            strip_accents=strip_accents,
            lowercase=lowercase,
            preprocessor=preprocessor,
            tokenizer=tokenizer,
            analyzer=analyzer,
            stop_words=stop_words,
            token_pattern=token_pattern,
            ngram_range=ngram_range,
            max_df=max_df,
            min_df=min_df,
            max_features=max_features,
            vocabulary=vocabulary,
            binary=binary,
            dtype=dtype,
        )
        self.norm = norm
        self.use_idf = use_idf
        self.smooth_idf = smooth_idf
        self.sublinear_tf = sublinear_tf

    # Broadcast the TF-IDF parameters to the underlying transformer instance
    # for easy grid search and repr

    @property
    def idf_(self):
        """Inverse document frequency vector, only defined if `use_idf=True`.

        Returns
        -------
        ndarray of shape (n_features,)
        """
        if not hasattr(self, "_tfidf"):
            raise NotFittedError(
                f"{self.__class__.__name__} is not fitted yet. Call 'fit' with "
                "appropriate arguments before using this attribute."
            )
        return self._tfidf.idf_

    @idf_.setter
    def idf_(self, value):
        if not self.use_idf:
            raise ValueError("`idf_` cannot be set when `user_idf=False`.")
        if not hasattr(self, "_tfidf"):
            # We should support transferring `idf_` from another `TfidfTransformer`
            # and therefore, we need to create the transformer instance it does not
            # exist yet.
            self._tfidf = TfidfTransformer(
                norm=self.norm,
                use_idf=self.use_idf,
                smooth_idf=self.smooth_idf,
                sublinear_tf=self.sublinear_tf,
            )
        self._validate_vocabulary()
        if hasattr(self, "vocabulary_"):
            if len(self.vocabulary_) != len(value):
                raise ValueError(
                    "idf length = %d must be equal to vocabulary size = %d"
                    % (len(value), len(self.vocabulary))
                )
        self._tfidf.idf_ = value

    def _check_params(self):
        if self.dtype not in FLOAT_DTYPES:
            warnings.warn(
                "Only {} 'dtype' should be used. {} 'dtype' will "
                "be converted to np.float64.".format(FLOAT_DTYPES, self.dtype),
                UserWarning,
            )

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, raw_documents, y=None):
        """Learn vocabulary and idf from training set.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        y : None
            This parameter is not needed to compute tfidf.

        Returns
        -------
        self : object
            Fitted vectorizer.
        """
        self._check_params()
        self._warn_for_unused_params()
        self._tfidf = TfidfTransformer(
            norm=self.norm,
            use_idf=self.use_idf,
            smooth_idf=self.smooth_idf,
            sublinear_tf=self.sublinear_tf,
        )
        X = super().fit_transform(raw_documents)
        self._tfidf.fit(X)
        return self

    def fit_transform(self, raw_documents, y=None):
        """Learn vocabulary and idf, return document-term matrix.

        This is equivalent to fit followed by transform, but more efficiently
        implemented.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        y : None
            This parameter is ignored.

        Returns
        -------
        X : sparse matrix of (n_samples, n_features)
            Tf-idf-weighted document-term matrix.
        """
        self._check_params()
        self._tfidf = TfidfTransformer(
            norm=self.norm,
            use_idf=self.use_idf,
            smooth_idf=self.smooth_idf,
            sublinear_tf=self.sublinear_tf,
        )
        X = super().fit_transform(raw_documents)
        self._tfidf.fit(X)
        # X is already a transformed view of raw_documents so
        # we set copy to False
        return self._tfidf.transform(X, copy=False)

    def transform(self, raw_documents):
        """Transform documents to document-term matrix.

        Uses the vocabulary and document frequencies (df) learned by fit (or
        fit_transform).

        Parameters
        ----------
        raw_documents : iterable
            An iterable which generates either str, unicode or file objects.

        Returns
        -------
        X : sparse matrix of (n_samples, n_features)
            Tf-idf-weighted document-term matrix.
        """
        check_is_fitted(self, msg="The TF-IDF vectorizer is not fitted")

        X = super().transform(raw_documents)
        return self._tfidf.transform(X, copy=False)

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.string = True
        tags.input_tags.two_d_array = False
        tags._skip_test = True
        return tags