File size: 9,106 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import pytest

from sklearn.base import ClassifierMixin, clone, is_classifier
from sklearn.datasets import (
    load_diabetes,
    load_iris,
    make_classification,
    make_regression,
)
from sklearn.ensemble import (
    RandomForestClassifier,
    RandomForestRegressor,
    StackingClassifier,
    StackingRegressor,
    VotingClassifier,
    VotingRegressor,
)
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR

X, y = load_iris(return_X_y=True)

X_r, y_r = load_diabetes(return_X_y=True)


@pytest.mark.parametrize(
    "X, y, estimator",
    [
        (
            *make_classification(n_samples=10),
            StackingClassifier(
                estimators=[
                    ("lr", LogisticRegression()),
                    ("svm", LinearSVC()),
                    ("rf", RandomForestClassifier(n_estimators=5, max_depth=3)),
                ],
                cv=2,
            ),
        ),
        (
            *make_classification(n_samples=10),
            VotingClassifier(
                estimators=[
                    ("lr", LogisticRegression()),
                    ("svm", LinearSVC()),
                    ("rf", RandomForestClassifier(n_estimators=5, max_depth=3)),
                ]
            ),
        ),
        (
            *make_regression(n_samples=10),
            StackingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR()),
                    ("rf", RandomForestRegressor(n_estimators=5, max_depth=3)),
                ],
                cv=2,
            ),
        ),
        (
            *make_regression(n_samples=10),
            VotingRegressor(
                estimators=[
                    ("lr", LinearRegression()),
                    ("svm", LinearSVR()),
                    ("rf", RandomForestRegressor(n_estimators=5, max_depth=3)),
                ]
            ),
        ),
    ],
    ids=[
        "stacking-classifier",
        "voting-classifier",
        "stacking-regressor",
        "voting-regressor",
    ],
)
def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator):
    # check that the behavior of `estimators`, `estimators_`,
    # `named_estimators`, `named_estimators_` is consistent across all
    # ensemble classes and when using `set_params()`.

    # before fit
    assert "svm" in estimator.named_estimators
    assert estimator.named_estimators.svm is estimator.estimators[1][1]
    assert estimator.named_estimators.svm is estimator.named_estimators["svm"]

    # check fitted attributes
    estimator.fit(X, y)
    assert len(estimator.named_estimators) == 3
    assert len(estimator.named_estimators_) == 3
    assert sorted(list(estimator.named_estimators_.keys())) == sorted(
        ["lr", "svm", "rf"]
    )

    # check that set_params() does not add a new attribute
    estimator_new_params = clone(estimator)
    svm_estimator = SVC() if is_classifier(estimator) else SVR()
    estimator_new_params.set_params(svm=svm_estimator).fit(X, y)
    assert not hasattr(estimator_new_params, "svm")
    assert (
        estimator_new_params.named_estimators.lr.get_params()
        == estimator.named_estimators.lr.get_params()
    )
    assert (
        estimator_new_params.named_estimators.rf.get_params()
        == estimator.named_estimators.rf.get_params()
    )

    # check the behavior when setting an dropping an estimator
    estimator_dropped = clone(estimator)
    estimator_dropped.set_params(svm="drop")
    estimator_dropped.fit(X, y)
    assert len(estimator_dropped.named_estimators) == 3
    assert estimator_dropped.named_estimators.svm == "drop"
    assert len(estimator_dropped.named_estimators_) == 3
    assert sorted(list(estimator_dropped.named_estimators_.keys())) == sorted(
        ["lr", "svm", "rf"]
    )
    for sub_est in estimator_dropped.named_estimators_:
        # check that the correspondence is correct
        assert not isinstance(sub_est, type(estimator.named_estimators.svm))

    # check that we can set the parameters of the underlying classifier
    estimator.set_params(svm__C=10.0)
    estimator.set_params(rf__max_depth=5)
    assert (
        estimator.get_params()["svm__C"]
        == estimator.get_params()["svm"].get_params()["C"]
    )
    assert (
        estimator.get_params()["rf__max_depth"]
        == estimator.get_params()["rf"].get_params()["max_depth"]
    )


@pytest.mark.parametrize(
    "Ensemble",
    [VotingClassifier, StackingRegressor, VotingRegressor],
)
def test_ensemble_heterogeneous_estimators_type(Ensemble):
    # check that ensemble will fail during validation if the underlying
    # estimators are not of the same type (i.e. classifier or regressor)
    # StackingClassifier can have an underlying regresor so it's not checked
    if issubclass(Ensemble, ClassifierMixin):
        X, y = make_classification(n_samples=10)
        estimators = [("lr", LinearRegression())]
        ensemble_type = "classifier"
    else:
        X, y = make_regression(n_samples=10)
        estimators = [("lr", LogisticRegression())]
        ensemble_type = "regressor"
    ensemble = Ensemble(estimators=estimators)

    err_msg = "should be a {}".format(ensemble_type)
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)


@pytest.mark.parametrize(
    "X, y, Ensemble",
    [
        (*make_classification(n_samples=10), StackingClassifier),
        (*make_classification(n_samples=10), VotingClassifier),
        (*make_regression(n_samples=10), StackingRegressor),
        (*make_regression(n_samples=10), VotingRegressor),
    ],
)
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble):
    # raise an error when the name contains dunder
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [("lr__", LogisticRegression())]
    else:
        estimators = [("lr__", LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Estimator names must not contain __: got \['lr__'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name is not unique
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [("lr", LogisticRegression()), ("lr", LogisticRegression())]
    else:
        estimators = [("lr", LinearRegression()), ("lr", LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Names provided are not unique: \['lr', 'lr'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name conflicts with the parameters
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [("estimators", LogisticRegression())]
    else:
        estimators = [("estimators", LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = "Estimator names conflict with constructor arguments"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)


@pytest.mark.parametrize(
    "X, y, estimator",
    [
        (
            *make_classification(n_samples=10),
            StackingClassifier(estimators=[("lr", LogisticRegression())]),
        ),
        (
            *make_classification(n_samples=10),
            VotingClassifier(estimators=[("lr", LogisticRegression())]),
        ),
        (
            *make_regression(n_samples=10),
            StackingRegressor(estimators=[("lr", LinearRegression())]),
        ),
        (
            *make_regression(n_samples=10),
            VotingRegressor(estimators=[("lr", LinearRegression())]),
        ),
    ],
    ids=[
        "stacking-classifier",
        "voting-classifier",
        "stacking-regressor",
        "voting-regressor",
    ],
)
def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator):
    # check that we raise a consistent error when all estimators are
    # dropped
    estimator.set_params(lr="drop")
    with pytest.raises(ValueError, match="All estimators are dropped."):
        estimator.fit(X, y)


@pytest.mark.parametrize(
    "Ensemble, Estimator, X, y",
    [
        (StackingClassifier, LogisticRegression, X, y),
        (StackingRegressor, LinearRegression, X_r, y_r),
        (VotingClassifier, LogisticRegression, X, y),
        (VotingRegressor, LinearRegression, X_r, y_r),
    ],
)
# FIXME: we should move this test in `estimator_checks` once we are able
# to construct meta-estimator instances
def test_heterogeneous_ensemble_support_missing_values(Ensemble, Estimator, X, y):
    # check that Voting and Stacking predictor delegate the missing values
    # validation to the underlying estimator.
    X = X.copy()
    mask = np.random.choice([1, 0], X.shape, p=[0.1, 0.9]).astype(bool)
    X[mask] = np.nan
    pipe = make_pipeline(SimpleImputer(), Estimator())
    ensemble = Ensemble(estimators=[("pipe1", pipe), ("pipe2", pipe)])
    ensemble.fit(X, y).score(X, y)