File size: 87,570 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 |
"""Gradient Boosted Regression Trees.
This module contains methods for fitting gradient boosted regression trees for
both classification and regression.
The module structure is the following:
- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
for all the estimators in the module. Regression and classification
only differ in the concrete ``LossFunction`` used.
- ``GradientBoostingClassifier`` implements gradient boosting for
classification problems.
- ``GradientBoostingRegressor`` implements gradient boosting for
regression problems.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import math
import warnings
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
from time import time
import numpy as np
from scipy.sparse import csc_matrix, csr_matrix, issparse
from .._loss.loss import (
_LOSSES,
AbsoluteError,
ExponentialLoss,
HalfBinomialLoss,
HalfMultinomialLoss,
HalfSquaredError,
HuberLoss,
PinballLoss,
)
from ..base import ClassifierMixin, RegressorMixin, _fit_context, is_classifier
from ..dummy import DummyClassifier, DummyRegressor
from ..exceptions import NotFittedError
from ..model_selection import train_test_split
from ..preprocessing import LabelEncoder
from ..tree import DecisionTreeRegressor
from ..tree._tree import DOUBLE, DTYPE, TREE_LEAF
from ..utils import check_array, check_random_state, column_or_1d
from ..utils._param_validation import HasMethods, Interval, StrOptions
from ..utils.multiclass import check_classification_targets
from ..utils.stats import _weighted_percentile
from ..utils.validation import _check_sample_weight, check_is_fitted, validate_data
from ._base import BaseEnsemble
from ._gradient_boosting import _random_sample_mask, predict_stage, predict_stages
_LOSSES = _LOSSES.copy()
_LOSSES.update(
{
"quantile": PinballLoss,
"huber": HuberLoss,
}
)
def _safe_divide(numerator, denominator):
"""Prevents overflow and division by zero."""
# This is used for classifiers where the denominator might become zero exatly.
# For instance for log loss, HalfBinomialLoss, if proba=0 or proba=1 exactly, then
# denominator = hessian = 0, and we should set the node value in the line search to
# zero as there is no improvement of the loss possible.
# For numerical safety, we do this already for extremely tiny values.
if abs(denominator) < 1e-150:
return 0.0
else:
# Cast to Python float to trigger Python errors, e.g. ZeroDivisionError,
# without relying on `np.errstate` that is not supported by Pyodide.
result = float(numerator) / float(denominator)
# Cast to Python float to trigger a ZeroDivisionError without relying
# on `np.errstate` that is not supported by Pyodide.
result = float(numerator) / float(denominator)
if math.isinf(result):
warnings.warn("overflow encountered in _safe_divide", RuntimeWarning)
return result
def _init_raw_predictions(X, estimator, loss, use_predict_proba):
"""Return the initial raw predictions.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The data array.
estimator : object
The estimator to use to compute the predictions.
loss : BaseLoss
An instance of a loss function class.
use_predict_proba : bool
Whether estimator.predict_proba is used instead of estimator.predict.
Returns
-------
raw_predictions : ndarray of shape (n_samples, K)
The initial raw predictions. K is equal to 1 for binary
classification and regression, and equal to the number of classes
for multiclass classification. ``raw_predictions`` is casted
into float64.
"""
# TODO: Use loss.fit_intercept_only where appropriate instead of
# DummyRegressor which is the default given by the `init` parameter,
# see also _init_state.
if use_predict_proba:
# Our parameter validation, set via _fit_context and _parameter_constraints
# already guarantees that estimator has a predict_proba method.
predictions = estimator.predict_proba(X)
if not loss.is_multiclass:
predictions = predictions[:, 1] # probability of positive class
eps = np.finfo(np.float32).eps # FIXME: This is quite large!
predictions = np.clip(predictions, eps, 1 - eps, dtype=np.float64)
else:
predictions = estimator.predict(X).astype(np.float64)
if predictions.ndim == 1:
return loss.link.link(predictions).reshape(-1, 1)
else:
return loss.link.link(predictions)
def _update_terminal_regions(
loss,
tree,
X,
y,
neg_gradient,
raw_prediction,
sample_weight,
sample_mask,
learning_rate=0.1,
k=0,
):
"""Update the leaf values to be predicted by the tree and raw_prediction.
The current raw predictions of the model (of this stage) are updated.
Additionally, the terminal regions (=leaves) of the given tree are updated as well.
This corresponds to the line search step in "Greedy Function Approximation" by
Friedman, Algorithm 1 step 5.
Update equals:
argmin_{x} loss(y_true, raw_prediction_old + x * tree.value)
For non-trivial cases like the Binomial loss, the update has no closed formula and
is an approximation, again, see the Friedman paper.
Also note that the update formula for the SquaredError is the identity. Therefore,
in this case, the leaf values don't need an update and only the raw_predictions are
updated (with the learning rate included).
Parameters
----------
loss : BaseLoss
tree : tree.Tree
The tree object.
X : ndarray of shape (n_samples, n_features)
The data array.
y : ndarray of shape (n_samples,)
The target labels.
neg_gradient : ndarray of shape (n_samples,)
The negative gradient.
raw_prediction : ndarray of shape (n_samples, n_trees_per_iteration)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
sample_weight : ndarray of shape (n_samples,)
The weight of each sample.
sample_mask : ndarray of shape (n_samples,)
The sample mask to be used.
learning_rate : float, default=0.1
Learning rate shrinks the contribution of each tree by
``learning_rate``.
k : int, default=0
The index of the estimator being updated.
"""
# compute leaf for each sample in ``X``.
terminal_regions = tree.apply(X)
if not isinstance(loss, HalfSquaredError):
# mask all which are not in sample mask.
masked_terminal_regions = terminal_regions.copy()
masked_terminal_regions[~sample_mask] = -1
if isinstance(loss, HalfBinomialLoss):
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
# Make a single Newton-Raphson step, see "Additive Logistic Regression:
# A Statistical View of Boosting" FHT00 and note that we use a slightly
# different version (factor 2) of "F" with proba=expit(raw_prediction).
# Our node estimate is given by:
# sum(w * (y - prob)) / sum(w * prob * (1 - prob))
# we take advantage that: y - prob = neg_gradient
neg_g = neg_gradient.take(indices, axis=0)
prob = y_ - neg_g
# numerator = negative gradient = y - prob
numerator = np.average(neg_g, weights=sw)
# denominator = hessian = prob * (1 - prob)
denominator = np.average(prob * (1 - prob), weights=sw)
return _safe_divide(numerator, denominator)
elif isinstance(loss, HalfMultinomialLoss):
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
# we take advantage that: y - prob = neg_gradient
neg_g = neg_gradient.take(indices, axis=0)
prob = y_ - neg_g
K = loss.n_classes
# numerator = negative gradient * (k - 1) / k
# Note: The factor (k - 1)/k appears in the original papers "Greedy
# Function Approximation" by Friedman and "Additive Logistic
# Regression" by Friedman, Hastie, Tibshirani. This factor is, however,
# wrong or at least arbitrary as it directly multiplies the
# learning_rate. We keep it for backward compatibility.
numerator = np.average(neg_g, weights=sw)
numerator *= (K - 1) / K
# denominator = (diagonal) hessian = prob * (1 - prob)
denominator = np.average(prob * (1 - prob), weights=sw)
return _safe_divide(numerator, denominator)
elif isinstance(loss, ExponentialLoss):
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
neg_g = neg_gradient.take(indices, axis=0)
# numerator = negative gradient = y * exp(-raw) - (1-y) * exp(raw)
numerator = np.average(neg_g, weights=sw)
# denominator = hessian = y * exp(-raw) + (1-y) * exp(raw)
# if y=0: hessian = exp(raw) = -neg_g
# y=1: hessian = exp(-raw) = neg_g
hessian = neg_g.copy()
hessian[y_ == 0] *= -1
denominator = np.average(hessian, weights=sw)
return _safe_divide(numerator, denominator)
else:
def compute_update(y_, indices, neg_gradient, raw_prediction, k):
return loss.fit_intercept_only(
y_true=y_ - raw_prediction[indices, k],
sample_weight=sw,
)
# update each leaf (= perform line search)
for leaf in np.nonzero(tree.children_left == TREE_LEAF)[0]:
indices = np.nonzero(masked_terminal_regions == leaf)[
0
] # of terminal regions
y_ = y.take(indices, axis=0)
sw = None if sample_weight is None else sample_weight[indices]
update = compute_update(y_, indices, neg_gradient, raw_prediction, k)
# TODO: Multiply here by learning rate instead of everywhere else.
tree.value[leaf, 0, 0] = update
# update predictions (both in-bag and out-of-bag)
raw_prediction[:, k] += learning_rate * tree.value[:, 0, 0].take(
terminal_regions, axis=0
)
def set_huber_delta(loss, y_true, raw_prediction, sample_weight=None):
"""Calculate and set self.closs.delta based on self.quantile."""
abserr = np.abs(y_true - raw_prediction.squeeze())
# sample_weight is always a ndarray, never None.
delta = _weighted_percentile(abserr, sample_weight, 100 * loss.quantile)
loss.closs.delta = float(delta)
class VerboseReporter:
"""Reports verbose output to stdout.
Parameters
----------
verbose : int
Verbosity level. If ``verbose==1`` output is printed once in a while
(when iteration mod verbose_mod is zero).; if larger than 1 then output
is printed for each update.
"""
def __init__(self, verbose):
self.verbose = verbose
def init(self, est, begin_at_stage=0):
"""Initialize reporter
Parameters
----------
est : Estimator
The estimator
begin_at_stage : int, default=0
stage at which to begin reporting
"""
# header fields and line format str
header_fields = ["Iter", "Train Loss"]
verbose_fmt = ["{iter:>10d}", "{train_score:>16.4f}"]
# do oob?
if est.subsample < 1:
header_fields.append("OOB Improve")
verbose_fmt.append("{oob_impr:>16.4f}")
header_fields.append("Remaining Time")
verbose_fmt.append("{remaining_time:>16s}")
# print the header line
print(("%10s " + "%16s " * (len(header_fields) - 1)) % tuple(header_fields))
self.verbose_fmt = " ".join(verbose_fmt)
# plot verbose info each time i % verbose_mod == 0
self.verbose_mod = 1
self.start_time = time()
self.begin_at_stage = begin_at_stage
def update(self, j, est):
"""Update reporter with new iteration.
Parameters
----------
j : int
The new iteration.
est : Estimator
The estimator.
"""
do_oob = est.subsample < 1
# we need to take into account if we fit additional estimators.
i = j - self.begin_at_stage # iteration relative to the start iter
if (i + 1) % self.verbose_mod == 0:
oob_impr = est.oob_improvement_[j] if do_oob else 0
remaining_time = (
(est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)
)
if remaining_time > 60:
remaining_time = "{0:.2f}m".format(remaining_time / 60.0)
else:
remaining_time = "{0:.2f}s".format(remaining_time)
print(
self.verbose_fmt.format(
iter=j + 1,
train_score=est.train_score_[j],
oob_impr=oob_impr,
remaining_time=remaining_time,
)
)
if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
# adjust verbose frequency (powers of 10)
self.verbose_mod *= 10
class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
"""Abstract base class for Gradient Boosting."""
_parameter_constraints: dict = {
**DecisionTreeRegressor._parameter_constraints,
"learning_rate": [Interval(Real, 0.0, None, closed="left")],
"n_estimators": [Interval(Integral, 1, None, closed="left")],
"criterion": [StrOptions({"friedman_mse", "squared_error"})],
"subsample": [Interval(Real, 0.0, 1.0, closed="right")],
"verbose": ["verbose"],
"warm_start": ["boolean"],
"validation_fraction": [Interval(Real, 0.0, 1.0, closed="neither")],
"n_iter_no_change": [Interval(Integral, 1, None, closed="left"), None],
"tol": [Interval(Real, 0.0, None, closed="left")],
}
_parameter_constraints.pop("splitter")
_parameter_constraints.pop("monotonic_cst")
@abstractmethod
def __init__(
self,
*,
loss,
learning_rate,
n_estimators,
criterion,
min_samples_split,
min_samples_leaf,
min_weight_fraction_leaf,
max_depth,
min_impurity_decrease,
init,
subsample,
max_features,
ccp_alpha,
random_state,
alpha=0.9,
verbose=0,
max_leaf_nodes=None,
warm_start=False,
validation_fraction=0.1,
n_iter_no_change=None,
tol=1e-4,
):
self.n_estimators = n_estimators
self.learning_rate = learning_rate
self.loss = loss
self.criterion = criterion
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.subsample = subsample
self.max_features = max_features
self.max_depth = max_depth
self.min_impurity_decrease = min_impurity_decrease
self.ccp_alpha = ccp_alpha
self.init = init
self.random_state = random_state
self.alpha = alpha
self.verbose = verbose
self.max_leaf_nodes = max_leaf_nodes
self.warm_start = warm_start
self.validation_fraction = validation_fraction
self.n_iter_no_change = n_iter_no_change
self.tol = tol
@abstractmethod
def _encode_y(self, y=None, sample_weight=None):
"""Called by fit to validate and encode y."""
@abstractmethod
def _get_loss(self, sample_weight):
"""Get loss object from sklearn._loss.loss."""
def _fit_stage(
self,
i,
X,
y,
raw_predictions,
sample_weight,
sample_mask,
random_state,
X_csc=None,
X_csr=None,
):
"""Fit another stage of ``n_trees_per_iteration_`` trees."""
original_y = y
if isinstance(self._loss, HuberLoss):
set_huber_delta(
loss=self._loss,
y_true=y,
raw_prediction=raw_predictions,
sample_weight=sample_weight,
)
# TODO: Without oob, i.e. with self.subsample = 1.0, we could call
# self._loss.loss_gradient and use it to set train_score_.
# But note that train_score_[i] is the score AFTER fitting the i-th tree.
# Note: We need the negative gradient!
neg_gradient = -self._loss.gradient(
y_true=y,
raw_prediction=raw_predictions,
sample_weight=None, # We pass sample_weights to the tree directly.
)
# 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
# on neg_gradient to simplify the loop over n_trees_per_iteration_.
if neg_gradient.ndim == 1:
neg_g_view = neg_gradient.reshape((-1, 1))
else:
neg_g_view = neg_gradient
for k in range(self.n_trees_per_iteration_):
if self._loss.is_multiclass:
y = np.array(original_y == k, dtype=np.float64)
# induce regression tree on the negative gradient
tree = DecisionTreeRegressor(
criterion=self.criterion,
splitter="best",
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
min_weight_fraction_leaf=self.min_weight_fraction_leaf,
min_impurity_decrease=self.min_impurity_decrease,
max_features=self.max_features,
max_leaf_nodes=self.max_leaf_nodes,
random_state=random_state,
ccp_alpha=self.ccp_alpha,
)
if self.subsample < 1.0:
# no inplace multiplication!
sample_weight = sample_weight * sample_mask.astype(np.float64)
X = X_csc if X_csc is not None else X
tree.fit(
X, neg_g_view[:, k], sample_weight=sample_weight, check_input=False
)
# update tree leaves
X_for_tree_update = X_csr if X_csr is not None else X
_update_terminal_regions(
self._loss,
tree.tree_,
X_for_tree_update,
y,
neg_g_view[:, k],
raw_predictions,
sample_weight,
sample_mask,
learning_rate=self.learning_rate,
k=k,
)
# add tree to ensemble
self.estimators_[i, k] = tree
return raw_predictions
def _set_max_features(self):
"""Set self.max_features_."""
if isinstance(self.max_features, str):
if self.max_features == "auto":
if is_classifier(self):
max_features = max(1, int(np.sqrt(self.n_features_in_)))
else:
max_features = self.n_features_in_
elif self.max_features == "sqrt":
max_features = max(1, int(np.sqrt(self.n_features_in_)))
else: # self.max_features == "log2"
max_features = max(1, int(np.log2(self.n_features_in_)))
elif self.max_features is None:
max_features = self.n_features_in_
elif isinstance(self.max_features, Integral):
max_features = self.max_features
else: # float
max_features = max(1, int(self.max_features * self.n_features_in_))
self.max_features_ = max_features
def _init_state(self):
"""Initialize model state and allocate model state data structures."""
self.init_ = self.init
if self.init_ is None:
if is_classifier(self):
self.init_ = DummyClassifier(strategy="prior")
elif isinstance(self._loss, (AbsoluteError, HuberLoss)):
self.init_ = DummyRegressor(strategy="quantile", quantile=0.5)
elif isinstance(self._loss, PinballLoss):
self.init_ = DummyRegressor(strategy="quantile", quantile=self.alpha)
else:
self.init_ = DummyRegressor(strategy="mean")
self.estimators_ = np.empty(
(self.n_estimators, self.n_trees_per_iteration_), dtype=object
)
self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
# do oob?
if self.subsample < 1.0:
self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64)
self.oob_scores_ = np.zeros((self.n_estimators), dtype=np.float64)
self.oob_score_ = np.nan
def _clear_state(self):
"""Clear the state of the gradient boosting model."""
if hasattr(self, "estimators_"):
self.estimators_ = np.empty((0, 0), dtype=object)
if hasattr(self, "train_score_"):
del self.train_score_
if hasattr(self, "oob_improvement_"):
del self.oob_improvement_
if hasattr(self, "oob_scores_"):
del self.oob_scores_
if hasattr(self, "oob_score_"):
del self.oob_score_
if hasattr(self, "init_"):
del self.init_
if hasattr(self, "_rng"):
del self._rng
def _resize_state(self):
"""Add additional ``n_estimators`` entries to all attributes."""
# self.n_estimators is the number of additional est to fit
total_n_estimators = self.n_estimators
if total_n_estimators < self.estimators_.shape[0]:
raise ValueError(
"resize with smaller n_estimators %d < %d"
% (total_n_estimators, self.estimators_[0])
)
self.estimators_ = np.resize(
self.estimators_, (total_n_estimators, self.n_trees_per_iteration_)
)
self.train_score_ = np.resize(self.train_score_, total_n_estimators)
if self.subsample < 1 or hasattr(self, "oob_improvement_"):
# if do oob resize arrays or create new if not available
if hasattr(self, "oob_improvement_"):
self.oob_improvement_ = np.resize(
self.oob_improvement_, total_n_estimators
)
self.oob_scores_ = np.resize(self.oob_scores_, total_n_estimators)
self.oob_score_ = np.nan
else:
self.oob_improvement_ = np.zeros(
(total_n_estimators,), dtype=np.float64
)
self.oob_scores_ = np.zeros((total_n_estimators,), dtype=np.float64)
self.oob_score_ = np.nan
def _is_fitted(self):
return len(getattr(self, "estimators_", [])) > 0
def _check_initialized(self):
"""Check that the estimator is initialized, raising an error if not."""
check_is_fitted(self)
@_fit_context(
# GradientBoosting*.init is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, sample_weight=None, monitor=None):
"""Fit the gradient boosting model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
y : array-like of shape (n_samples,)
Target values (strings or integers in classification, real numbers
in regression)
For classification, labels must correspond to classes.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any
single class carrying a negative weight in either child node.
monitor : callable, default=None
The monitor is called after each iteration with the current
iteration, a reference to the estimator and the local variables of
``_fit_stages`` as keyword arguments ``callable(i, self,
locals())``. If the callable returns ``True`` the fitting procedure
is stopped. The monitor can be used for various things such as
computing held-out estimates, early stopping, model introspect, and
snapshotting.
Returns
-------
self : object
Fitted estimator.
"""
if not self.warm_start:
self._clear_state()
# Check input
# Since check_array converts both X and y to the same dtype, but the
# trees use different types for X and y, checking them separately.
X, y = validate_data(
self,
X,
y,
accept_sparse=["csr", "csc", "coo"],
dtype=DTYPE,
multi_output=True,
)
sample_weight_is_none = sample_weight is None
sample_weight = _check_sample_weight(sample_weight, X)
if sample_weight_is_none:
y = self._encode_y(y=y, sample_weight=None)
else:
y = self._encode_y(y=y, sample_weight=sample_weight)
y = column_or_1d(y, warn=True) # TODO: Is this still required?
self._set_max_features()
# self.loss is guaranteed to be a string
self._loss = self._get_loss(sample_weight=sample_weight)
if self.n_iter_no_change is not None:
stratify = y if is_classifier(self) else None
(
X_train,
X_val,
y_train,
y_val,
sample_weight_train,
sample_weight_val,
) = train_test_split(
X,
y,
sample_weight,
random_state=self.random_state,
test_size=self.validation_fraction,
stratify=stratify,
)
if is_classifier(self):
if self.n_classes_ != np.unique(y_train).shape[0]:
# We choose to error here. The problem is that the init
# estimator would be trained on y, which has some missing
# classes now, so its predictions would not have the
# correct shape.
raise ValueError(
"The training data after the early stopping split "
"is missing some classes. Try using another random "
"seed."
)
else:
X_train, y_train, sample_weight_train = X, y, sample_weight
X_val = y_val = sample_weight_val = None
n_samples = X_train.shape[0]
# First time calling fit.
if not self._is_fitted():
# init state
self._init_state()
# fit initial model and initialize raw predictions
if self.init_ == "zero":
raw_predictions = np.zeros(
shape=(n_samples, self.n_trees_per_iteration_),
dtype=np.float64,
)
else:
# XXX clean this once we have a support_sample_weight tag
if sample_weight_is_none:
self.init_.fit(X_train, y_train)
else:
msg = (
"The initial estimator {} does not support sample "
"weights.".format(self.init_.__class__.__name__)
)
try:
self.init_.fit(
X_train, y_train, sample_weight=sample_weight_train
)
except TypeError as e:
if "unexpected keyword argument 'sample_weight'" in str(e):
# regular estimator without SW support
raise ValueError(msg) from e
else: # regular estimator whose input checking failed
raise
except ValueError as e:
if (
"pass parameters to specific steps of "
"your pipeline using the "
"stepname__parameter" in str(e)
): # pipeline
raise ValueError(msg) from e
else: # regular estimator whose input checking failed
raise
raw_predictions = _init_raw_predictions(
X_train, self.init_, self._loss, is_classifier(self)
)
begin_at_stage = 0
# The rng state must be preserved if warm_start is True
self._rng = check_random_state(self.random_state)
# warm start: this is not the first time fit was called
else:
# add more estimators to fitted model
# invariant: warm_start = True
if self.n_estimators < self.estimators_.shape[0]:
raise ValueError(
"n_estimators=%d must be larger or equal to "
"estimators_.shape[0]=%d when "
"warm_start==True" % (self.n_estimators, self.estimators_.shape[0])
)
begin_at_stage = self.estimators_.shape[0]
# The requirements of _raw_predict
# are more constrained than fit. It accepts only CSR
# matrices. Finite values have already been checked in _validate_data.
X_train = check_array(
X_train,
dtype=DTYPE,
order="C",
accept_sparse="csr",
ensure_all_finite=False,
)
raw_predictions = self._raw_predict(X_train)
self._resize_state()
# fit the boosting stages
n_stages = self._fit_stages(
X_train,
y_train,
raw_predictions,
sample_weight_train,
self._rng,
X_val,
y_val,
sample_weight_val,
begin_at_stage,
monitor,
)
# change shape of arrays after fit (early-stopping or additional ests)
if n_stages != self.estimators_.shape[0]:
self.estimators_ = self.estimators_[:n_stages]
self.train_score_ = self.train_score_[:n_stages]
if hasattr(self, "oob_improvement_"):
# OOB scores were computed
self.oob_improvement_ = self.oob_improvement_[:n_stages]
self.oob_scores_ = self.oob_scores_[:n_stages]
self.oob_score_ = self.oob_scores_[-1]
self.n_estimators_ = n_stages
return self
def _fit_stages(
self,
X,
y,
raw_predictions,
sample_weight,
random_state,
X_val,
y_val,
sample_weight_val,
begin_at_stage=0,
monitor=None,
):
"""Iteratively fits the stages.
For each stage it computes the progress (OOB, train score)
and delegates to ``_fit_stage``.
Returns the number of stages fit; might differ from ``n_estimators``
due to early stopping.
"""
n_samples = X.shape[0]
do_oob = self.subsample < 1.0
sample_mask = np.ones((n_samples,), dtype=bool)
n_inbag = max(1, int(self.subsample * n_samples))
if self.verbose:
verbose_reporter = VerboseReporter(verbose=self.verbose)
verbose_reporter.init(self, begin_at_stage)
X_csc = csc_matrix(X) if issparse(X) else None
X_csr = csr_matrix(X) if issparse(X) else None
if self.n_iter_no_change is not None:
loss_history = np.full(self.n_iter_no_change, np.inf)
# We create a generator to get the predictions for X_val after
# the addition of each successive stage
y_val_pred_iter = self._staged_raw_predict(X_val, check_input=False)
# Older versions of GBT had its own loss functions. With the new common
# private loss function submodule _loss, we often are a factor of 2
# away from the old version. Here we keep backward compatibility for
# oob_scores_ and oob_improvement_, even if the old way is quite
# inconsistent (sometimes the gradient is half the gradient, sometimes
# not).
if isinstance(
self._loss,
(
HalfSquaredError,
HalfBinomialLoss,
),
):
factor = 2
else:
factor = 1
# perform boosting iterations
i = begin_at_stage
for i in range(begin_at_stage, self.n_estimators):
# subsampling
if do_oob:
sample_mask = _random_sample_mask(n_samples, n_inbag, random_state)
y_oob_masked = y[~sample_mask]
sample_weight_oob_masked = sample_weight[~sample_mask]
if i == 0: # store the initial loss to compute the OOB score
initial_loss = factor * self._loss(
y_true=y_oob_masked,
raw_prediction=raw_predictions[~sample_mask],
sample_weight=sample_weight_oob_masked,
)
# fit next stage of trees
raw_predictions = self._fit_stage(
i,
X,
y,
raw_predictions,
sample_weight,
sample_mask,
random_state,
X_csc=X_csc,
X_csr=X_csr,
)
# track loss
if do_oob:
self.train_score_[i] = factor * self._loss(
y_true=y[sample_mask],
raw_prediction=raw_predictions[sample_mask],
sample_weight=sample_weight[sample_mask],
)
self.oob_scores_[i] = factor * self._loss(
y_true=y_oob_masked,
raw_prediction=raw_predictions[~sample_mask],
sample_weight=sample_weight_oob_masked,
)
previous_loss = initial_loss if i == 0 else self.oob_scores_[i - 1]
self.oob_improvement_[i] = previous_loss - self.oob_scores_[i]
self.oob_score_ = self.oob_scores_[-1]
else:
# no need to fancy index w/ no subsampling
self.train_score_[i] = factor * self._loss(
y_true=y,
raw_prediction=raw_predictions,
sample_weight=sample_weight,
)
if self.verbose > 0:
verbose_reporter.update(i, self)
if monitor is not None:
early_stopping = monitor(i, self, locals())
if early_stopping:
break
# We also provide an early stopping based on the score from
# validation set (X_val, y_val), if n_iter_no_change is set
if self.n_iter_no_change is not None:
# By calling next(y_val_pred_iter), we get the predictions
# for X_val after the addition of the current stage
validation_loss = factor * self._loss(
y_val, next(y_val_pred_iter), sample_weight_val
)
# Require validation_score to be better (less) than at least
# one of the last n_iter_no_change evaluations
if np.any(validation_loss + self.tol < loss_history):
loss_history[i % len(loss_history)] = validation_loss
else:
break
return i + 1
def _make_estimator(self, append=True):
# we don't need _make_estimator
raise NotImplementedError()
def _raw_predict_init(self, X):
"""Check input and compute raw predictions of the init estimator."""
self._check_initialized()
X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
if self.init_ == "zero":
raw_predictions = np.zeros(
shape=(X.shape[0], self.n_trees_per_iteration_), dtype=np.float64
)
else:
raw_predictions = _init_raw_predictions(
X, self.init_, self._loss, is_classifier(self)
)
return raw_predictions
def _raw_predict(self, X):
"""Return the sum of the trees raw predictions (+ init estimator)."""
check_is_fitted(self)
raw_predictions = self._raw_predict_init(X)
predict_stages(self.estimators_, X, self.learning_rate, raw_predictions)
return raw_predictions
def _staged_raw_predict(self, X, check_input=True):
"""Compute raw predictions of ``X`` for each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
check_input : bool, default=True
If False, the input arrays X will not be checked.
Returns
-------
raw_predictions : generator of ndarray of shape (n_samples, k)
The raw predictions of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
Regression and binary classification are special cases with
``k == 1``, otherwise ``k==n_classes``.
"""
if check_input:
X = validate_data(
self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
)
raw_predictions = self._raw_predict_init(X)
for i in range(self.estimators_.shape[0]):
predict_stage(self.estimators_, i, X, self.learning_rate, raw_predictions)
yield raw_predictions.copy()
@property
def feature_importances_(self):
"""The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
Returns
-------
feature_importances_ : ndarray of shape (n_features,)
The values of this array sum to 1, unless all trees are single node
trees consisting of only the root node, in which case it will be an
array of zeros.
"""
self._check_initialized()
relevant_trees = [
tree
for stage in self.estimators_
for tree in stage
if tree.tree_.node_count > 1
]
if not relevant_trees:
# degenerate case where all trees have only one node
return np.zeros(shape=self.n_features_in_, dtype=np.float64)
relevant_feature_importances = [
tree.tree_.compute_feature_importances(normalize=False)
for tree in relevant_trees
]
avg_feature_importances = np.mean(
relevant_feature_importances, axis=0, dtype=np.float64
)
return avg_feature_importances / np.sum(avg_feature_importances)
def _compute_partial_dependence_recursion(self, grid, target_features):
"""Fast partial dependence computation.
Parameters
----------
grid : ndarray of shape (n_samples, n_target_features), dtype=np.float32
The grid points on which the partial dependence should be
evaluated.
target_features : ndarray of shape (n_target_features,), dtype=np.intp
The set of target features for which the partial dependence
should be evaluated.
Returns
-------
averaged_predictions : ndarray of shape \
(n_trees_per_iteration_, n_samples)
The value of the partial dependence function on each grid point.
"""
if self.init is not None:
warnings.warn(
"Using recursion method with a non-constant init predictor "
"will lead to incorrect partial dependence values. "
"Got init=%s." % self.init,
UserWarning,
)
grid = np.asarray(grid, dtype=DTYPE, order="C")
n_estimators, n_trees_per_stage = self.estimators_.shape
averaged_predictions = np.zeros(
(n_trees_per_stage, grid.shape[0]), dtype=np.float64, order="C"
)
target_features = np.asarray(target_features, dtype=np.intp, order="C")
for stage in range(n_estimators):
for k in range(n_trees_per_stage):
tree = self.estimators_[stage, k].tree_
tree.compute_partial_dependence(
grid, target_features, averaged_predictions[k]
)
averaged_predictions *= self.learning_rate
return averaged_predictions
def apply(self, X):
"""Apply trees in the ensemble to X, return leaf indices.
.. versionadded:: 0.17
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will
be converted to a sparse ``csr_matrix``.
Returns
-------
X_leaves : array-like of shape (n_samples, n_estimators, n_classes)
For each datapoint x in X and for each tree in the ensemble,
return the index of the leaf x ends up in each estimator.
In the case of binary classification n_classes is 1.
"""
self._check_initialized()
X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
# n_classes will be equal to 1 in the binary classification or the
# regression case.
n_estimators, n_classes = self.estimators_.shape
leaves = np.zeros((X.shape[0], n_estimators, n_classes))
for i in range(n_estimators):
for j in range(n_classes):
estimator = self.estimators_[i, j]
leaves[:, i, j] = estimator.apply(X, check_input=False)
return leaves
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = True
return tags
class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
"""Gradient Boosting for classification.
This algorithm builds an additive model in a forward stage-wise fashion; it
allows for the optimization of arbitrary differentiable loss functions. In
each stage ``n_classes_`` regression trees are fit on the negative gradient
of the loss function, e.g. binary or multiclass log loss. Binary
classification is a special case where only a single regression tree is
induced.
:class:`~sklearn.ensemble.HistGradientBoostingClassifier` is a much faster variant
of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
supports monotonic constraints.
Read more in the :ref:`User Guide <gradient_boosting>`.
Parameters
----------
loss : {'log_loss', 'exponential'}, default='log_loss'
The loss function to be optimized. 'log_loss' refers to binomial and
multinomial deviance, the same as used in logistic regression.
It is a good choice for classification with probabilistic outputs.
For loss 'exponential', gradient boosting recovers the AdaBoost algorithm.
learning_rate : float, default=0.1
Learning rate shrinks the contribution of each tree by `learning_rate`.
There is a trade-off between learning_rate and n_estimators.
Values must be in the range `[0.0, inf)`.
n_estimators : int, default=100
The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually
results in better performance.
Values must be in the range `[1, inf)`.
subsample : float, default=1.0
The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient
Boosting. `subsample` interacts with the parameter `n_estimators`.
Choosing `subsample < 1.0` leads to a reduction of variance
and an increase in bias.
Values must be in the range `(0.0, 1.0]`.
criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
The function to measure the quality of a split. Supported criteria are
'friedman_mse' for the mean squared error with improvement score by
Friedman, 'squared_error' for mean squared error. The default value of
'friedman_mse' is generally the best as it can provide a better
approximation in some cases.
.. versionadded:: 0.18
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, values must be in the range `[2, inf)`.
- If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
will be `ceil(min_samples_split * n_samples)`.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, values must be in the range `[1, inf)`.
- If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
will be `ceil(min_samples_leaf * n_samples)`.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
Values must be in the range `[0.0, 0.5]`.
max_depth : int or None, default=3
Maximum depth of the individual regression estimators. The maximum
depth limits the number of nodes in the tree. Tune this parameter
for best performance; the best value depends on the interaction
of the input variables. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
If int, values must be in the range `[1, inf)`.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
Values must be in the range `[0.0, inf)`.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
init : estimator or 'zero', default=None
An estimator object that is used to compute the initial predictions.
``init`` has to provide :term:`fit` and :term:`predict_proba`. If
'zero', the initial raw predictions are set to zero. By default, a
``DummyEstimator`` predicting the classes priors is used.
random_state : int, RandomState instance or None, default=None
Controls the random seed given to each Tree estimator at each
boosting iteration.
In addition, it controls the random permutation of the features at
each split (see Notes for more details).
It also controls the random splitting of the training data to obtain a
validation set if `n_iter_no_change` is not None.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
max_features : {'sqrt', 'log2'}, int or float, default=None
The number of features to consider when looking for the best split:
- If int, values must be in the range `[1, inf)`.
- If float, values must be in the range `(0.0, 1.0]` and the features
considered at each split will be `max(1, int(max_features * n_features_in_))`.
- If 'sqrt', then `max_features=sqrt(n_features)`.
- If 'log2', then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Choosing `max_features < n_features` leads to a reduction of variance
and an increase in bias.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
verbose : int, default=0
Enable verbose output. If 1 then it prints progress and performance
once in a while (the more trees the lower the frequency). If greater
than 1 then it prints progress and performance for every tree.
Values must be in the range `[0, inf)`.
max_leaf_nodes : int, default=None
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
Values must be in the range `[2, inf)`.
If `None`, then unlimited number of leaf nodes.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just erase the
previous solution. See :term:`the Glossary <warm_start>`.
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Values must be in the range `(0.0, 1.0)`.
Only used if ``n_iter_no_change`` is set to an integer.
.. versionadded:: 0.20
n_iter_no_change : int, default=None
``n_iter_no_change`` is used to decide if early stopping will be used
to terminate training when validation score is not improving. By
default it is set to None to disable early stopping. If set to a
number, it will set aside ``validation_fraction`` size of the training
data as validation and terminate training when validation score is not
improving in all of the previous ``n_iter_no_change`` numbers of
iterations. The split is stratified.
Values must be in the range `[1, inf)`.
See
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.
.. versionadded:: 0.20
tol : float, default=1e-4
Tolerance for the early stopping. When the loss is not improving
by at least tol for ``n_iter_no_change`` iterations (if set to a
number), the training stops.
Values must be in the range `[0.0, inf)`.
.. versionadded:: 0.20
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed.
Values must be in the range `[0.0, inf)`.
See :ref:`minimal_cost_complexity_pruning` for details. See
:ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
for an example of such pruning.
.. versionadded:: 0.22
Attributes
----------
n_estimators_ : int
The number of estimators as selected by early stopping (if
``n_iter_no_change`` is specified). Otherwise it is set to
``n_estimators``.
.. versionadded:: 0.20
n_trees_per_iteration_ : int
The number of trees that are built at each iteration. For binary classifiers,
this is always 1.
.. versionadded:: 1.4.0
feature_importances_ : ndarray of shape (n_features,)
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
oob_improvement_ : ndarray of shape (n_estimators,)
The improvement in loss on the out-of-bag samples
relative to the previous iteration.
``oob_improvement_[0]`` is the improvement in
loss of the first stage over the ``init`` estimator.
Only available if ``subsample < 1.0``.
oob_scores_ : ndarray of shape (n_estimators,)
The full history of the loss values on the out-of-bag
samples. Only available if `subsample < 1.0`.
.. versionadded:: 1.3
oob_score_ : float
The last value of the loss on the out-of-bag samples. It is
the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.
.. versionadded:: 1.3
train_score_ : ndarray of shape (n_estimators,)
The i-th score ``train_score_[i]`` is the loss of the
model at iteration ``i`` on the in-bag sample.
If ``subsample == 1`` this is the loss on the training data.
init_ : estimator
The estimator that provides the initial predictions. Set via the ``init``
argument.
estimators_ : ndarray of DecisionTreeRegressor of \
shape (n_estimators, ``n_trees_per_iteration_``)
The collection of fitted sub-estimators. ``n_trees_per_iteration_`` is 1 for
binary classification, otherwise ``n_classes``.
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_classes_ : int
The number of classes.
max_features_ : int
The inferred value of max_features.
See Also
--------
HistGradientBoostingClassifier : Histogram-based Gradient Boosting
Classification Tree.
sklearn.tree.DecisionTreeClassifier : A decision tree classifier.
RandomForestClassifier : A meta-estimator that fits a number of decision
tree classifiers on various sub-samples of the dataset and uses
averaging to improve the predictive accuracy and control over-fitting.
AdaBoostClassifier : A meta-estimator that begins by fitting a classifier
on the original dataset and then fits additional copies of the
classifier on the same dataset where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers
focus more on difficult cases.
Notes
-----
The features are always randomly permuted at each split. Therefore,
the best found split may vary, even with the same training data and
``max_features=n_features``, if the improvement of the criterion is
identical for several splits enumerated during the search of the best
split. To obtain a deterministic behaviour during fitting,
``random_state`` has to be fixed.
References
----------
J. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
J. Friedman, Stochastic Gradient Boosting, 1999
T. Hastie, R. Tibshirani and J. Friedman.
Elements of Statistical Learning Ed. 2, Springer, 2009.
Examples
--------
The following example shows how to fit a gradient boosting classifier with
100 decision stumps as weak learners.
>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.913...
"""
_parameter_constraints: dict = {
**BaseGradientBoosting._parameter_constraints,
"loss": [StrOptions({"log_loss", "exponential"})],
"init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict_proba"])],
}
def __init__(
self,
*,
loss="log_loss",
learning_rate=0.1,
n_estimators=100,
subsample=1.0,
criterion="friedman_mse",
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
init=None,
random_state=None,
max_features=None,
verbose=0,
max_leaf_nodes=None,
warm_start=False,
validation_fraction=0.1,
n_iter_no_change=None,
tol=1e-4,
ccp_alpha=0.0,
):
super().__init__(
loss=loss,
learning_rate=learning_rate,
n_estimators=n_estimators,
criterion=criterion,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_depth=max_depth,
init=init,
subsample=subsample,
max_features=max_features,
random_state=random_state,
verbose=verbose,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
warm_start=warm_start,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
tol=tol,
ccp_alpha=ccp_alpha,
)
def _encode_y(self, y, sample_weight):
# encode classes into 0 ... n_classes - 1 and sets attributes classes_
# and n_trees_per_iteration_
check_classification_targets(y)
label_encoder = LabelEncoder()
encoded_y_int = label_encoder.fit_transform(y)
self.classes_ = label_encoder.classes_
n_classes = self.classes_.shape[0]
# only 1 tree for binary classification. For multiclass classification,
# we build 1 tree per class.
self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
encoded_y = encoded_y_int.astype(float, copy=False)
# From here on, it is additional to the HGBT case.
# expose n_classes_ attribute
self.n_classes_ = n_classes
if sample_weight is None:
n_trim_classes = n_classes
else:
n_trim_classes = np.count_nonzero(np.bincount(encoded_y_int, sample_weight))
if n_trim_classes < 2:
raise ValueError(
"y contains %d class after sample_weight "
"trimmed classes with zero weights, while a "
"minimum of 2 classes are required." % n_trim_classes
)
return encoded_y
def _get_loss(self, sample_weight):
if self.loss == "log_loss":
if self.n_classes_ == 2:
return HalfBinomialLoss(sample_weight=sample_weight)
else:
return HalfMultinomialLoss(
sample_weight=sample_weight, n_classes=self.n_classes_
)
elif self.loss == "exponential":
if self.n_classes_ > 2:
raise ValueError(
f"loss='{self.loss}' is only suitable for a binary classification "
f"problem, you have n_classes={self.n_classes_}. "
"Please use loss='log_loss' instead."
)
else:
return ExponentialLoss(sample_weight=sample_weight)
def decision_function(self, X):
"""Compute the decision function of ``X``.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
score : ndarray of shape (n_samples, n_classes) or (n_samples,)
The decision function of the input samples, which corresponds to
the raw values predicted from the trees of the ensemble . The
order of the classes corresponds to that in the attribute
:term:`classes_`. Regression and binary classification produce an
array of shape (n_samples,).
"""
X = validate_data(
self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
)
raw_predictions = self._raw_predict(X)
if raw_predictions.shape[1] == 1:
return raw_predictions.ravel()
return raw_predictions
def staged_decision_function(self, X):
"""Compute decision function of ``X`` for each iteration.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Yields
------
score : generator of ndarray of shape (n_samples, k)
The decision function of the input samples, which corresponds to
the raw values predicted from the trees of the ensemble . The
classes corresponds to that in the attribute :term:`classes_`.
Regression and binary classification are special cases with
``k == 1``, otherwise ``k==n_classes``.
"""
yield from self._staged_raw_predict(X)
def predict(self, X):
"""Predict class for X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted values.
"""
raw_predictions = self.decision_function(X)
if raw_predictions.ndim == 1: # decision_function already squeezed it
encoded_classes = (raw_predictions >= 0).astype(int)
else:
encoded_classes = np.argmax(raw_predictions, axis=1)
return self.classes_[encoded_classes]
def staged_predict(self, X):
"""Predict class at each stage for X.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted value of the input samples.
"""
if self.n_classes_ == 2: # n_trees_per_iteration_ = 1
for raw_predictions in self._staged_raw_predict(X):
encoded_classes = (raw_predictions.squeeze() >= 0).astype(int)
yield self.classes_.take(encoded_classes, axis=0)
else:
for raw_predictions in self._staged_raw_predict(X):
encoded_classes = np.argmax(raw_predictions, axis=1)
yield self.classes_.take(encoded_classes, axis=0)
def predict_proba(self, X):
"""Predict class probabilities for X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
Raises
------
AttributeError
If the ``loss`` does not support probabilities.
"""
raw_predictions = self.decision_function(X)
return self._loss.predict_proba(raw_predictions)
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
Raises
------
AttributeError
If the ``loss`` does not support probabilities.
"""
proba = self.predict_proba(X)
return np.log(proba)
def staged_predict_proba(self, X):
"""Predict class probabilities at each stage for X.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted value of the input samples.
"""
try:
for raw_predictions in self._staged_raw_predict(X):
yield self._loss.predict_proba(raw_predictions)
except NotFittedError:
raise
except AttributeError as e:
raise AttributeError(
"loss=%r does not support predict_proba" % self.loss
) from e
class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
"""Gradient Boosting for regression.
This estimator builds an additive model in a forward stage-wise fashion; it
allows for the optimization of arbitrary differentiable loss functions. In
each stage a regression tree is fit on the negative gradient of the given
loss function.
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` is a much faster variant
of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
supports monotonic constraints.
Read more in the :ref:`User Guide <gradient_boosting>`.
Parameters
----------
loss : {'squared_error', 'absolute_error', 'huber', 'quantile'}, \
default='squared_error'
Loss function to be optimized. 'squared_error' refers to the squared
error for regression. 'absolute_error' refers to the absolute error of
regression and is a robust loss function. 'huber' is a
combination of the two. 'quantile' allows quantile regression (use
`alpha` to specify the quantile).
See
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
for an example that demonstrates quantile regression for creating
prediction intervals with `loss='quantile'`.
learning_rate : float, default=0.1
Learning rate shrinks the contribution of each tree by `learning_rate`.
There is a trade-off between learning_rate and n_estimators.
Values must be in the range `[0.0, inf)`.
n_estimators : int, default=100
The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually
results in better performance.
Values must be in the range `[1, inf)`.
subsample : float, default=1.0
The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient
Boosting. `subsample` interacts with the parameter `n_estimators`.
Choosing `subsample < 1.0` leads to a reduction of variance
and an increase in bias.
Values must be in the range `(0.0, 1.0]`.
criterion : {'friedman_mse', 'squared_error'}, default='friedman_mse'
The function to measure the quality of a split. Supported criteria are
"friedman_mse" for the mean squared error with improvement score by
Friedman, "squared_error" for mean squared error. The default value of
"friedman_mse" is generally the best as it can provide a better
approximation in some cases.
.. versionadded:: 0.18
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, values must be in the range `[2, inf)`.
- If float, values must be in the range `(0.0, 1.0]` and `min_samples_split`
will be `ceil(min_samples_split * n_samples)`.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, values must be in the range `[1, inf)`.
- If float, values must be in the range `(0.0, 1.0)` and `min_samples_leaf`
will be `ceil(min_samples_leaf * n_samples)`.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
Values must be in the range `[0.0, 0.5]`.
max_depth : int or None, default=3
Maximum depth of the individual regression estimators. The maximum
depth limits the number of nodes in the tree. Tune this parameter
for best performance; the best value depends on the interaction
of the input variables. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
If int, values must be in the range `[1, inf)`.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
Values must be in the range `[0.0, inf)`.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
init : estimator or 'zero', default=None
An estimator object that is used to compute the initial predictions.
``init`` has to provide :term:`fit` and :term:`predict`. If 'zero', the
initial raw predictions are set to zero. By default a
``DummyEstimator`` is used, predicting either the average target value
(for loss='squared_error'), or a quantile for the other losses.
random_state : int, RandomState instance or None, default=None
Controls the random seed given to each Tree estimator at each
boosting iteration.
In addition, it controls the random permutation of the features at
each split (see Notes for more details).
It also controls the random splitting of the training data to obtain a
validation set if `n_iter_no_change` is not None.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
max_features : {'sqrt', 'log2'}, int or float, default=None
The number of features to consider when looking for the best split:
- If int, values must be in the range `[1, inf)`.
- If float, values must be in the range `(0.0, 1.0]` and the features
considered at each split will be `max(1, int(max_features * n_features_in_))`.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Choosing `max_features < n_features` leads to a reduction of variance
and an increase in bias.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
alpha : float, default=0.9
The alpha-quantile of the huber loss function and the quantile
loss function. Only if ``loss='huber'`` or ``loss='quantile'``.
Values must be in the range `(0.0, 1.0)`.
verbose : int, default=0
Enable verbose output. If 1 then it prints progress and performance
once in a while (the more trees the lower the frequency). If greater
than 1 then it prints progress and performance for every tree.
Values must be in the range `[0, inf)`.
max_leaf_nodes : int, default=None
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
Values must be in the range `[2, inf)`.
If None, then unlimited number of leaf nodes.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just erase the
previous solution. See :term:`the Glossary <warm_start>`.
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Values must be in the range `(0.0, 1.0)`.
Only used if ``n_iter_no_change`` is set to an integer.
.. versionadded:: 0.20
n_iter_no_change : int, default=None
``n_iter_no_change`` is used to decide if early stopping will be used
to terminate training when validation score is not improving. By
default it is set to None to disable early stopping. If set to a
number, it will set aside ``validation_fraction`` size of the training
data as validation and terminate training when validation score is not
improving in all of the previous ``n_iter_no_change`` numbers of
iterations.
Values must be in the range `[1, inf)`.
See
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`.
.. versionadded:: 0.20
tol : float, default=1e-4
Tolerance for the early stopping. When the loss is not improving
by at least tol for ``n_iter_no_change`` iterations (if set to a
number), the training stops.
Values must be in the range `[0.0, inf)`.
.. versionadded:: 0.20
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed.
Values must be in the range `[0.0, inf)`.
See :ref:`minimal_cost_complexity_pruning` for details. See
:ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
for an example of such pruning.
.. versionadded:: 0.22
Attributes
----------
n_estimators_ : int
The number of estimators as selected by early stopping (if
``n_iter_no_change`` is specified). Otherwise it is set to
``n_estimators``.
n_trees_per_iteration_ : int
The number of trees that are built at each iteration. For regressors, this is
always 1.
.. versionadded:: 1.4.0
feature_importances_ : ndarray of shape (n_features,)
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
oob_improvement_ : ndarray of shape (n_estimators,)
The improvement in loss on the out-of-bag samples
relative to the previous iteration.
``oob_improvement_[0]`` is the improvement in
loss of the first stage over the ``init`` estimator.
Only available if ``subsample < 1.0``.
oob_scores_ : ndarray of shape (n_estimators,)
The full history of the loss values on the out-of-bag
samples. Only available if `subsample < 1.0`.
.. versionadded:: 1.3
oob_score_ : float
The last value of the loss on the out-of-bag samples. It is
the same as `oob_scores_[-1]`. Only available if `subsample < 1.0`.
.. versionadded:: 1.3
train_score_ : ndarray of shape (n_estimators,)
The i-th score ``train_score_[i]`` is the loss of the
model at iteration ``i`` on the in-bag sample.
If ``subsample == 1`` this is the loss on the training data.
init_ : estimator
The estimator that provides the initial predictions. Set via the ``init``
argument.
estimators_ : ndarray of DecisionTreeRegressor of shape (n_estimators, 1)
The collection of fitted sub-estimators.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
max_features_ : int
The inferred value of max_features.
See Also
--------
HistGradientBoostingRegressor : Histogram-based Gradient Boosting
Classification Tree.
sklearn.tree.DecisionTreeRegressor : A decision tree regressor.
sklearn.ensemble.RandomForestRegressor : A random forest regressor.
Notes
-----
The features are always randomly permuted at each split. Therefore,
the best found split may vary, even with the same training data and
``max_features=n_features``, if the improvement of the criterion is
identical for several splits enumerated during the search of the best
split. To obtain a deterministic behaviour during fitting,
``random_state`` has to be fixed.
References
----------
J. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
J. Friedman, Stochastic Gradient Boosting, 1999
T. Hastie, R. Tibshirani and J. Friedman.
Elements of Statistical Learning Ed. 2, Springer, 2009.
Examples
--------
>>> from sklearn.datasets import make_regression
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_regression(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> reg = GradientBoostingRegressor(random_state=0)
>>> reg.fit(X_train, y_train)
GradientBoostingRegressor(random_state=0)
>>> reg.predict(X_test[1:2])
array([-61...])
>>> reg.score(X_test, y_test)
0.4...
For a detailed example of utilizing
:class:`~sklearn.ensemble.GradientBoostingRegressor`
to fit an ensemble of weak predictive models, please refer to
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`.
"""
_parameter_constraints: dict = {
**BaseGradientBoosting._parameter_constraints,
"loss": [StrOptions({"squared_error", "absolute_error", "huber", "quantile"})],
"init": [StrOptions({"zero"}), None, HasMethods(["fit", "predict"])],
"alpha": [Interval(Real, 0.0, 1.0, closed="neither")],
}
def __init__(
self,
*,
loss="squared_error",
learning_rate=0.1,
n_estimators=100,
subsample=1.0,
criterion="friedman_mse",
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
init=None,
random_state=None,
max_features=None,
alpha=0.9,
verbose=0,
max_leaf_nodes=None,
warm_start=False,
validation_fraction=0.1,
n_iter_no_change=None,
tol=1e-4,
ccp_alpha=0.0,
):
super().__init__(
loss=loss,
learning_rate=learning_rate,
n_estimators=n_estimators,
criterion=criterion,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_depth=max_depth,
init=init,
subsample=subsample,
max_features=max_features,
min_impurity_decrease=min_impurity_decrease,
random_state=random_state,
alpha=alpha,
verbose=verbose,
max_leaf_nodes=max_leaf_nodes,
warm_start=warm_start,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
tol=tol,
ccp_alpha=ccp_alpha,
)
def _encode_y(self, y=None, sample_weight=None):
# Just convert y to the expected dtype
self.n_trees_per_iteration_ = 1
y = y.astype(DOUBLE, copy=False)
return y
def _get_loss(self, sample_weight):
if self.loss in ("quantile", "huber"):
return _LOSSES[self.loss](sample_weight=sample_weight, quantile=self.alpha)
else:
return _LOSSES[self.loss](sample_weight=sample_weight)
def predict(self, X):
"""Predict regression target for X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted values.
"""
X = validate_data(
self, X, dtype=DTYPE, order="C", accept_sparse="csr", reset=False
)
# In regression we can directly return the raw value from the trees.
return self._raw_predict(X).ravel()
def staged_predict(self, X):
"""Predict regression target at each stage for X.
This method allows monitoring (i.e. determine error on testing set)
after each stage.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted value of the input samples.
"""
for raw_predictions in self._staged_raw_predict(X):
yield raw_predictions.ravel()
def apply(self, X):
"""Apply trees in the ensemble to X, return leaf indices.
.. versionadded:: 0.17
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will
be converted to a sparse ``csr_matrix``.
Returns
-------
X_leaves : array-like of shape (n_samples, n_estimators)
For each datapoint x in X and for each tree in the ensemble,
return the index of the leaf x ends up in each estimator.
"""
leaves = super().apply(X)
leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
return leaves
|