File size: 115,104 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
"""
Forest of trees-based ensemble methods.

Those methods include random forests and extremely randomized trees.

The module structure is the following:

- The ``BaseForest`` base class implements a common ``fit`` method for all
  the estimators in the module. The ``fit`` method of the base ``Forest``
  class calls the ``fit`` method of each sub-estimator on random samples
  (with replacement, a.k.a. bootstrap) of the training set.

  The init of the sub-estimator is further delegated to the
  ``BaseEnsemble`` constructor.

- The ``ForestClassifier`` and ``ForestRegressor`` base classes further
  implement the prediction logic by computing an average of the predicted
  outcomes of the sub-estimators.

- The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived
  classes provide the user with concrete implementations of
  the forest ensemble method using classical, deterministic
  ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as
  sub-estimator implementations.

- The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived
  classes provide the user with concrete implementations of the
  forest ensemble method using the extremely randomized trees
  ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as
  sub-estimator implementations.

Single and multi-output problems are both handled.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


import threading
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
from warnings import catch_warnings, simplefilter, warn

import numpy as np
from scipy.sparse import hstack as sparse_hstack
from scipy.sparse import issparse

from ..base import (
    ClassifierMixin,
    MultiOutputMixin,
    RegressorMixin,
    TransformerMixin,
    _fit_context,
    is_classifier,
)
from ..exceptions import DataConversionWarning
from ..metrics import accuracy_score, r2_score
from ..preprocessing import OneHotEncoder
from ..tree import (
    BaseDecisionTree,
    DecisionTreeClassifier,
    DecisionTreeRegressor,
    ExtraTreeClassifier,
    ExtraTreeRegressor,
)
from ..tree._tree import DOUBLE, DTYPE
from ..utils import check_random_state, compute_sample_weight
from ..utils._param_validation import Interval, RealNotInt, StrOptions
from ..utils._tags import get_tags
from ..utils.multiclass import check_classification_targets, type_of_target
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
    _check_feature_names_in,
    _check_sample_weight,
    _num_samples,
    check_is_fitted,
    validate_data,
)
from ._base import BaseEnsemble, _partition_estimators

__all__ = [
    "RandomForestClassifier",
    "RandomForestRegressor",
    "ExtraTreesClassifier",
    "ExtraTreesRegressor",
    "RandomTreesEmbedding",
]

MAX_INT = np.iinfo(np.int32).max


def _get_n_samples_bootstrap(n_samples, max_samples):
    """
    Get the number of samples in a bootstrap sample.

    Parameters
    ----------
    n_samples : int
        Number of samples in the dataset.
    max_samples : int or float
        The maximum number of samples to draw from the total available:
            - if float, this indicates a fraction of the total and should be
              the interval `(0.0, 1.0]`;
            - if int, this indicates the exact number of samples;
            - if None, this indicates the total number of samples.

    Returns
    -------
    n_samples_bootstrap : int
        The total number of samples to draw for the bootstrap sample.
    """
    if max_samples is None:
        return n_samples

    if isinstance(max_samples, Integral):
        if max_samples > n_samples:
            msg = "`max_samples` must be <= n_samples={} but got value {}"
            raise ValueError(msg.format(n_samples, max_samples))
        return max_samples

    if isinstance(max_samples, Real):
        return max(round(n_samples * max_samples), 1)


def _generate_sample_indices(random_state, n_samples, n_samples_bootstrap):
    """
    Private function used to _parallel_build_trees function."""

    random_instance = check_random_state(random_state)
    sample_indices = random_instance.randint(
        0, n_samples, n_samples_bootstrap, dtype=np.int32
    )

    return sample_indices


def _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap):
    """
    Private function used to forest._set_oob_score function."""
    sample_indices = _generate_sample_indices(
        random_state, n_samples, n_samples_bootstrap
    )
    sample_counts = np.bincount(sample_indices, minlength=n_samples)
    unsampled_mask = sample_counts == 0
    indices_range = np.arange(n_samples)
    unsampled_indices = indices_range[unsampled_mask]

    return unsampled_indices


def _parallel_build_trees(
    tree,
    bootstrap,
    X,
    y,
    sample_weight,
    tree_idx,
    n_trees,
    verbose=0,
    class_weight=None,
    n_samples_bootstrap=None,
    missing_values_in_feature_mask=None,
):
    """
    Private function used to fit a single tree in parallel."""
    if verbose > 1:
        print("building tree %d of %d" % (tree_idx + 1, n_trees))

    if bootstrap:
        n_samples = X.shape[0]
        if sample_weight is None:
            curr_sample_weight = np.ones((n_samples,), dtype=np.float64)
        else:
            curr_sample_weight = sample_weight.copy()

        indices = _generate_sample_indices(
            tree.random_state, n_samples, n_samples_bootstrap
        )
        sample_counts = np.bincount(indices, minlength=n_samples)
        curr_sample_weight *= sample_counts

        if class_weight == "subsample":
            with catch_warnings():
                simplefilter("ignore", DeprecationWarning)
                curr_sample_weight *= compute_sample_weight("auto", y, indices=indices)
        elif class_weight == "balanced_subsample":
            curr_sample_weight *= compute_sample_weight("balanced", y, indices=indices)

        tree._fit(
            X,
            y,
            sample_weight=curr_sample_weight,
            check_input=False,
            missing_values_in_feature_mask=missing_values_in_feature_mask,
        )
    else:
        tree._fit(
            X,
            y,
            sample_weight=sample_weight,
            check_input=False,
            missing_values_in_feature_mask=missing_values_in_feature_mask,
        )

    return tree


class BaseForest(MultiOutputMixin, BaseEnsemble, metaclass=ABCMeta):
    """
    Base class for forests of trees.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    _parameter_constraints: dict = {
        "n_estimators": [Interval(Integral, 1, None, closed="left")],
        "bootstrap": ["boolean"],
        "oob_score": ["boolean", callable],
        "n_jobs": [Integral, None],
        "random_state": ["random_state"],
        "verbose": ["verbose"],
        "warm_start": ["boolean"],
        "max_samples": [
            None,
            Interval(RealNotInt, 0.0, 1.0, closed="right"),
            Interval(Integral, 1, None, closed="left"),
        ],
    }

    @abstractmethod
    def __init__(
        self,
        estimator,
        n_estimators=100,
        *,
        estimator_params=tuple(),
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        class_weight=None,
        max_samples=None,
    ):
        super().__init__(
            estimator=estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
        )

        self.bootstrap = bootstrap
        self.oob_score = oob_score
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.verbose = verbose
        self.warm_start = warm_start
        self.class_weight = class_weight
        self.max_samples = max_samples

    def apply(self, X):
        """
        Apply trees in the forest to X, return leaf indices.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : ndarray of shape (n_samples, n_estimators)
            For each datapoint x in X and for each tree in the forest,
            return the index of the leaf x ends up in.
        """
        X = self._validate_X_predict(X)
        results = Parallel(
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            prefer="threads",
        )(delayed(tree.apply)(X, check_input=False) for tree in self.estimators_)

        return np.array(results).T

    def decision_path(self, X):
        """
        Return the decision path in the forest.

        .. versionadded:: 0.18

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        indicator : sparse matrix of shape (n_samples, n_nodes)
            Return a node indicator matrix where non zero elements indicates
            that the samples goes through the nodes. The matrix is of CSR
            format.

        n_nodes_ptr : ndarray of shape (n_estimators + 1,)
            The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
            gives the indicator value for the i-th estimator.
        """
        X = self._validate_X_predict(X)
        indicators = Parallel(
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            prefer="threads",
        )(
            delayed(tree.decision_path)(X, check_input=False)
            for tree in self.estimators_
        )

        n_nodes = [0]
        n_nodes.extend([i.shape[1] for i in indicators])
        n_nodes_ptr = np.array(n_nodes).cumsum()

        return sparse_hstack(indicators).tocsr(), n_nodes_ptr

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """
        Build a forest of trees from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, its dtype will be converted
            to ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        # Validate or convert input data
        if issparse(y):
            raise ValueError("sparse multilabel-indicator for y is not supported.")

        X, y = validate_data(
            self,
            X,
            y,
            multi_output=True,
            accept_sparse="csc",
            dtype=DTYPE,
            ensure_all_finite=False,
        )
        # _compute_missing_values_in_feature_mask checks if X has missing values and
        # will raise an error if the underlying tree base estimator can't handle missing
        # values. Only the criterion is required to determine if the tree supports
        # missing values.
        estimator = type(self.estimator)(criterion=self.criterion)
        missing_values_in_feature_mask = (
            estimator._compute_missing_values_in_feature_mask(
                X, estimator_name=self.__class__.__name__
            )
        )

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)

        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        y = np.atleast_1d(y)
        if y.ndim == 2 and y.shape[1] == 1:
            warn(
                (
                    "A column-vector y was passed when a 1d array was"
                    " expected. Please change the shape of y to "
                    "(n_samples,), for example using ravel()."
                ),
                DataConversionWarning,
                stacklevel=2,
            )

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        if self.criterion == "poisson":
            if np.any(y < 0):
                raise ValueError(
                    "Some value(s) of y are negative which is "
                    "not allowed for Poisson regression."
                )
            if np.sum(y) <= 0:
                raise ValueError(
                    "Sum of y is not strictly positive which "
                    "is necessary for Poisson regression."
                )

        self._n_samples, self.n_outputs_ = y.shape

        y, expanded_class_weight = self._validate_y_class_weight(y)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        if not self.bootstrap and self.max_samples is not None:
            raise ValueError(
                "`max_sample` cannot be set if `bootstrap=False`. "
                "Either switch to `bootstrap=True` or set "
                "`max_sample=None`."
            )
        elif self.bootstrap:
            n_samples_bootstrap = _get_n_samples_bootstrap(
                n_samples=X.shape[0], max_samples=self.max_samples
            )
        else:
            n_samples_bootstrap = None

        self._n_samples_bootstrap = n_samples_bootstrap

        self._validate_estimator()

        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available if bootstrap=True")

        random_state = check_random_state(self.random_state)

        if not self.warm_start or not hasattr(self, "estimators_"):
            # Free allocated memory, if any
            self.estimators_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError(
                "n_estimators=%d must be larger or equal to "
                "len(estimators_)=%d when warm_start==True"
                % (self.n_estimators, len(self.estimators_))
            )

        elif n_more_estimators == 0:
            warn(
                "Warm-start fitting without increasing n_estimators does not "
                "fit new trees."
            )
        else:
            if self.warm_start and len(self.estimators_) > 0:
                # We draw from the random state to get the random state we
                # would have got if we hadn't used a warm_start.
                random_state.randint(MAX_INT, size=len(self.estimators_))

            trees = [
                self._make_estimator(append=False, random_state=random_state)
                for i in range(n_more_estimators)
            ]

            # Parallel loop: we prefer the threading backend as the Cython code
            # for fitting the trees is internally releasing the Python GIL
            # making threading more efficient than multiprocessing in
            # that case. However, for joblib 0.12+ we respect any
            # parallel_backend contexts set at a higher level,
            # since correctness does not rely on using threads.
            trees = Parallel(
                n_jobs=self.n_jobs,
                verbose=self.verbose,
                prefer="threads",
            )(
                delayed(_parallel_build_trees)(
                    t,
                    self.bootstrap,
                    X,
                    y,
                    sample_weight,
                    i,
                    len(trees),
                    verbose=self.verbose,
                    class_weight=self.class_weight,
                    n_samples_bootstrap=n_samples_bootstrap,
                    missing_values_in_feature_mask=missing_values_in_feature_mask,
                )
                for i, t in enumerate(trees)
            )

            # Collect newly grown trees
            self.estimators_.extend(trees)

        if self.oob_score and (
            n_more_estimators > 0 or not hasattr(self, "oob_score_")
        ):
            y_type = type_of_target(y)
            if y_type == "unknown" or (
                is_classifier(self) and y_type == "multiclass-multioutput"
            ):
                # FIXME: we could consider to support multiclass-multioutput if
                # we introduce or reuse a constructor parameter (e.g.
                # oob_score) allowing our user to pass a callable defining the
                # scoring strategy on OOB sample.
                raise ValueError(
                    "The type of target cannot be used to compute OOB "
                    f"estimates. Got {y_type} while only the following are "
                    "supported: continuous, continuous-multioutput, binary, "
                    "multiclass, multilabel-indicator."
                )

            if callable(self.oob_score):
                self._set_oob_score_and_attributes(
                    X, y, scoring_function=self.oob_score
                )
            else:
                self._set_oob_score_and_attributes(X, y)

        # Decapsulate classes_ attributes
        if hasattr(self, "classes_") and self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self

    @abstractmethod
    def _set_oob_score_and_attributes(self, X, y, scoring_function=None):
        """Compute and set the OOB score and attributes.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.
        y : ndarray of shape (n_samples, n_outputs)
            The target matrix.
        scoring_function : callable, default=None
            Scoring function for OOB score. Default depends on whether
            this is a regression (R2 score) or classification problem
            (accuracy score).
        """

    def _compute_oob_predictions(self, X, y):
        """Compute and set the OOB score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.
        y : ndarray of shape (n_samples, n_outputs)
            The target matrix.

        Returns
        -------
        oob_pred : ndarray of shape (n_samples, n_classes, n_outputs) or \
                (n_samples, 1, n_outputs)
            The OOB predictions.
        """
        # Prediction requires X to be in CSR format
        if issparse(X):
            X = X.tocsr()

        n_samples = y.shape[0]
        n_outputs = self.n_outputs_
        if is_classifier(self) and hasattr(self, "n_classes_"):
            # n_classes_ is a ndarray at this stage
            # all the supported type of target will have the same number of
            # classes in all outputs
            oob_pred_shape = (n_samples, self.n_classes_[0], n_outputs)
        else:
            # for regression, n_classes_ does not exist and we create an empty
            # axis to be consistent with the classification case and make
            # the array operations compatible with the 2 settings
            oob_pred_shape = (n_samples, 1, n_outputs)

        oob_pred = np.zeros(shape=oob_pred_shape, dtype=np.float64)
        n_oob_pred = np.zeros((n_samples, n_outputs), dtype=np.int64)

        n_samples_bootstrap = _get_n_samples_bootstrap(
            n_samples,
            self.max_samples,
        )
        for estimator in self.estimators_:
            unsampled_indices = _generate_unsampled_indices(
                estimator.random_state,
                n_samples,
                n_samples_bootstrap,
            )

            y_pred = self._get_oob_predictions(estimator, X[unsampled_indices, :])
            oob_pred[unsampled_indices, ...] += y_pred
            n_oob_pred[unsampled_indices, :] += 1

        for k in range(n_outputs):
            if (n_oob_pred == 0).any():
                warn(
                    (
                        "Some inputs do not have OOB scores. This probably means "
                        "too few trees were used to compute any reliable OOB "
                        "estimates."
                    ),
                    UserWarning,
                )
                n_oob_pred[n_oob_pred == 0] = 1
            oob_pred[..., k] /= n_oob_pred[..., [k]]

        return oob_pred

    def _validate_y_class_weight(self, y):
        # Default implementation
        return y, None

    def _validate_X_predict(self, X):
        """
        Validate X whenever one tries to predict, apply, predict_proba."""
        check_is_fitted(self)
        if self.estimators_[0]._support_missing_values(X):
            ensure_all_finite = "allow-nan"
        else:
            ensure_all_finite = True

        X = validate_data(
            self,
            X,
            dtype=DTYPE,
            accept_sparse="csr",
            reset=False,
            ensure_all_finite=ensure_all_finite,
        )
        if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc):
            raise ValueError("No support for np.int64 index based sparse matrices")
        return X

    @property
    def feature_importances_(self):
        """
        The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            The values of this array sum to 1, unless all trees are single node
            trees consisting of only the root node, in which case it will be an
            array of zeros.
        """
        check_is_fitted(self)

        all_importances = Parallel(n_jobs=self.n_jobs, prefer="threads")(
            delayed(getattr)(tree, "feature_importances_")
            for tree in self.estimators_
            if tree.tree_.node_count > 1
        )

        if not all_importances:
            return np.zeros(self.n_features_in_, dtype=np.float64)

        all_importances = np.mean(all_importances, axis=0, dtype=np.float64)
        return all_importances / np.sum(all_importances)

    def _get_estimators_indices(self):
        # Get drawn indices along both sample and feature axes
        for tree in self.estimators_:
            if not self.bootstrap:
                yield np.arange(self._n_samples, dtype=np.int32)
            else:
                # tree.random_state is actually an immutable integer seed rather
                # than a mutable RandomState instance, so it's safe to use it
                # repeatedly when calling this property.
                seed = tree.random_state
                # Operations accessing random_state must be performed identically
                # to those in `_parallel_build_trees()`
                yield _generate_sample_indices(
                    seed, self._n_samples, self._n_samples_bootstrap
                )

    @property
    def estimators_samples_(self):
        """The subset of drawn samples for each base estimator.

        Returns a dynamically generated list of indices identifying
        the samples used for fitting each member of the ensemble, i.e.,
        the in-bag samples.

        Note: the list is re-created at each call to the property in order
        to reduce the object memory footprint by not storing the sampling
        data. Thus fetching the property may be slower than expected.
        """
        return [sample_indices for sample_indices in self._get_estimators_indices()]

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        # Only the criterion is required to determine if the tree supports
        # missing values
        estimator = type(self.estimator)(criterion=self.criterion)
        tags.input_tags.allow_nan = get_tags(estimator).input_tags.allow_nan
        return tags


def _accumulate_prediction(predict, X, out, lock):
    """
    This is a utility function for joblib's Parallel.

    It can't go locally in ForestClassifier or ForestRegressor, because joblib
    complains that it cannot pickle it when placed there.
    """
    prediction = predict(X, check_input=False)
    with lock:
        if len(out) == 1:
            out[0] += prediction
        else:
            for i in range(len(out)):
                out[i] += prediction[i]


class ForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
    """
    Base class for forest of trees-based classifiers.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(
        self,
        estimator,
        n_estimators=100,
        *,
        estimator_params=tuple(),
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        class_weight=None,
        max_samples=None,
    ):
        super().__init__(
            estimator=estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples,
        )

    @staticmethod
    def _get_oob_predictions(tree, X):
        """Compute the OOB predictions for an individual tree.

        Parameters
        ----------
        tree : DecisionTreeClassifier object
            A single decision tree classifier.
        X : ndarray of shape (n_samples, n_features)
            The OOB samples.

        Returns
        -------
        y_pred : ndarray of shape (n_samples, n_classes, n_outputs)
            The OOB associated predictions.
        """
        y_pred = tree.predict_proba(X, check_input=False)
        y_pred = np.asarray(y_pred)
        if y_pred.ndim == 2:
            # binary and multiclass
            y_pred = y_pred[..., np.newaxis]
        else:
            # Roll the first `n_outputs` axis to the last axis. We will reshape
            # from a shape of (n_outputs, n_samples, n_classes) to a shape of
            # (n_samples, n_classes, n_outputs).
            y_pred = np.rollaxis(y_pred, axis=0, start=3)
        return y_pred

    def _set_oob_score_and_attributes(self, X, y, scoring_function=None):
        """Compute and set the OOB score and attributes.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.
        y : ndarray of shape (n_samples, n_outputs)
            The target matrix.
        scoring_function : callable, default=None
            Scoring function for OOB score. Defaults to `accuracy_score`.
        """
        self.oob_decision_function_ = super()._compute_oob_predictions(X, y)
        if self.oob_decision_function_.shape[-1] == 1:
            # drop the n_outputs axis if there is a single output
            self.oob_decision_function_ = self.oob_decision_function_.squeeze(axis=-1)

        if scoring_function is None:
            scoring_function = accuracy_score

        self.oob_score_ = scoring_function(
            y, np.argmax(self.oob_decision_function_, axis=1)
        )

    def _validate_y_class_weight(self, y):
        check_classification_targets(y)

        y = np.copy(y)
        expanded_class_weight = None

        if self.class_weight is not None:
            y_original = np.copy(y)

        self.classes_ = []
        self.n_classes_ = []

        y_store_unique_indices = np.zeros(y.shape, dtype=int)
        for k in range(self.n_outputs_):
            classes_k, y_store_unique_indices[:, k] = np.unique(
                y[:, k], return_inverse=True
            )
            self.classes_.append(classes_k)
            self.n_classes_.append(classes_k.shape[0])
        y = y_store_unique_indices

        if self.class_weight is not None:
            valid_presets = ("balanced", "balanced_subsample")
            if isinstance(self.class_weight, str):
                if self.class_weight not in valid_presets:
                    raise ValueError(
                        "Valid presets for class_weight include "
                        '"balanced" and "balanced_subsample".'
                        'Given "%s".' % self.class_weight
                    )
                if self.warm_start:
                    warn(
                        'class_weight presets "balanced" or '
                        '"balanced_subsample" are '
                        "not recommended for warm_start if the fitted data "
                        "differs from the full dataset. In order to use "
                        '"balanced" weights, use compute_class_weight '
                        '("balanced", classes, y). In place of y you can use '
                        "a large enough sample of the full training set "
                        "target to properly estimate the class frequency "
                        "distributions. Pass the resulting weights as the "
                        "class_weight parameter."
                    )

            if self.class_weight != "balanced_subsample" or not self.bootstrap:
                if self.class_weight == "balanced_subsample":
                    class_weight = "balanced"
                else:
                    class_weight = self.class_weight
                expanded_class_weight = compute_sample_weight(class_weight, y_original)

        return y, expanded_class_weight

    def predict(self, X):
        """
        Predict class for X.

        The predicted class of an input sample is a vote by the trees in
        the forest, weighted by their probability estimates. That is,
        the predicted class is the one with highest mean probability
        estimate across the trees.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The predicted classes.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return self.classes_.take(np.argmax(proba, axis=1), axis=0)

        else:
            n_samples = proba[0].shape[0]
            # all dtypes should be the same, so just take the first
            class_type = self.classes_[0].dtype
            predictions = np.empty((n_samples, self.n_outputs_), dtype=class_type)

            for k in range(self.n_outputs_):
                predictions[:, k] = self.classes_[k].take(
                    np.argmax(proba[k], axis=1), axis=0
                )

            return predictions

    def predict_proba(self, X):
        """
        Predict class probabilities for X.

        The predicted class probabilities of an input sample are computed as
        the mean predicted class probabilities of the trees in the forest.
        The class probability of a single tree is the fraction of samples of
        the same class in a leaf.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes), or a list of such arrays
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # avoid storing the output of every estimator by summing them here
        all_proba = [
            np.zeros((X.shape[0], j), dtype=np.float64)
            for j in np.atleast_1d(self.n_classes_)
        ]
        lock = threading.Lock()
        Parallel(n_jobs=n_jobs, verbose=self.verbose, require="sharedmem")(
            delayed(_accumulate_prediction)(e.predict_proba, X, all_proba, lock)
            for e in self.estimators_
        )

        for proba in all_proba:
            proba /= len(self.estimators_)

        if len(all_proba) == 1:
            return all_proba[0]
        else:
            return all_proba

    def predict_log_proba(self, X):
        """
        Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the log of the mean predicted class probabilities of the trees in the
        forest.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes), or a list of such arrays
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return np.log(proba)

        else:
            for k in range(self.n_outputs_):
                proba[k] = np.log(proba[k])

            return proba

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.classifier_tags.multi_label = True
        tags.input_tags.sparse = True
        return tags


class ForestRegressor(RegressorMixin, BaseForest, metaclass=ABCMeta):
    """
    Base class for forest of trees-based regressors.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(
        self,
        estimator,
        n_estimators=100,
        *,
        estimator_params=tuple(),
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        max_samples=None,
    ):
        super().__init__(
            estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples,
        )

    def predict(self, X):
        """
        Predict regression target for X.

        The predicted regression target of an input sample is computed as the
        mean predicted regression targets of the trees in the forest.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The predicted values.
        """
        check_is_fitted(self)
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # avoid storing the output of every estimator by summing them here
        if self.n_outputs_ > 1:
            y_hat = np.zeros((X.shape[0], self.n_outputs_), dtype=np.float64)
        else:
            y_hat = np.zeros((X.shape[0]), dtype=np.float64)

        # Parallel loop
        lock = threading.Lock()
        Parallel(n_jobs=n_jobs, verbose=self.verbose, require="sharedmem")(
            delayed(_accumulate_prediction)(e.predict, X, [y_hat], lock)
            for e in self.estimators_
        )

        y_hat /= len(self.estimators_)

        return y_hat

    @staticmethod
    def _get_oob_predictions(tree, X):
        """Compute the OOB predictions for an individual tree.

        Parameters
        ----------
        tree : DecisionTreeRegressor object
            A single decision tree regressor.
        X : ndarray of shape (n_samples, n_features)
            The OOB samples.

        Returns
        -------
        y_pred : ndarray of shape (n_samples, 1, n_outputs)
            The OOB associated predictions.
        """
        y_pred = tree.predict(X, check_input=False)
        if y_pred.ndim == 1:
            # single output regression
            y_pred = y_pred[:, np.newaxis, np.newaxis]
        else:
            # multioutput regression
            y_pred = y_pred[:, np.newaxis, :]
        return y_pred

    def _set_oob_score_and_attributes(self, X, y, scoring_function=None):
        """Compute and set the OOB score and attributes.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.
        y : ndarray of shape (n_samples, n_outputs)
            The target matrix.
        scoring_function : callable, default=None
            Scoring function for OOB score. Defaults to `r2_score`.
        """
        self.oob_prediction_ = super()._compute_oob_predictions(X, y).squeeze(axis=1)
        if self.oob_prediction_.shape[-1] == 1:
            # drop the n_outputs axis if there is a single output
            self.oob_prediction_ = self.oob_prediction_.squeeze(axis=-1)

        if scoring_function is None:
            scoring_function = r2_score

        self.oob_score_ = scoring_function(y, self.oob_prediction_)

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features), dtype=DTYPE
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features), dtype=np.intp
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape (n_samples,)
            The value of the partial dependence function on each grid point.
        """
        grid = np.asarray(grid, dtype=DTYPE, order="C")
        target_features = np.asarray(target_features, dtype=np.intp, order="C")
        averaged_predictions = np.zeros(
            shape=grid.shape[0], dtype=np.float64, order="C"
        )

        for tree in self.estimators_:
            # Note: we don't sum in parallel because the GIL isn't released in
            # the fast method.
            tree.tree_.compute_partial_dependence(
                grid, target_features, averaged_predictions
            )
        # Average over the forest
        averaged_predictions /= len(self.estimators_)

        return averaged_predictions

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags


class RandomForestClassifier(ForestClassifier):
    """
    A random forest classifier.

    A random forest is a meta estimator that fits a number of decision tree
    classifiers on various sub-samples of the dataset and uses averaging to
    improve the predictive accuracy and control over-fitting.
    Trees in the forest use the best split strategy, i.e. equivalent to passing
    `splitter="best"` to the underlying :class:`~sklearn.tree.DecisionTreeClassifier`.
    The sub-sample size is controlled with the `max_samples` parameter if
    `bootstrap=True` (default), otherwise the whole dataset is used to build
    each tree.

    For a comparison between tree-based ensemble models see the example
    :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "log_loss" and "entropy" both for the
        Shannon information gain, see :ref:`tree_mathematical_formulation`.
        Note: This parameter is tree-specific.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"sqrt", "log2", None}, int or float, default="sqrt"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to `"sqrt"`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool or callable, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        By default, :func:`~sklearn.metrics.accuracy_score` is used.
        Provide a callable with signature `metric(y_true, y_pred)` to use a
        custom metric. Only available if `bootstrap=True`.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`Glossary <warm_start>` and
        :ref:`tree_ensemble_warm_start` for details.

    class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
            default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that
        weights are computed based on the bootstrap sample for every tree
        grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
          `max_samples` should be in the interval `(0.0, 1.0]`.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonic increase
          - 0: no constraint
          - -1: monotonic decrease

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multiclass classifications (i.e. when `n_classes > 2`),
          - multioutput classifications (i.e. when `n_outputs_ > 1`),
          - classifications trained on data with missing values.

        The constraints hold over the probability of the positive class.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    estimator_ : :class:`~sklearn.tree.DecisionTreeClassifier`
        The child estimator template used to create the collection of fitted
        sub-estimators.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : ndarray of shape (n_classes,) or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_decision_function_ : ndarray of shape (n_samples, n_classes) or \
            (n_samples, n_classes, n_outputs)
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN. This attribute exists
        only when ``oob_score`` is True.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

        .. versionadded:: 1.4

    See Also
    --------
    sklearn.tree.DecisionTreeClassifier : A decision tree classifier.
    sklearn.ensemble.ExtraTreesClassifier : Ensemble of extremely randomized
        tree classifiers.
    sklearn.ensemble.HistGradientBoostingClassifier : A Histogram-based Gradient
        Boosting Classification Tree, very fast for big datasets (n_samples >=
        10_000).

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    Examples
    --------
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=1000, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = RandomForestClassifier(max_depth=2, random_state=0)
    >>> clf.fit(X, y)
    RandomForestClassifier(...)
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]
    """

    _parameter_constraints: dict = {
        **ForestClassifier._parameter_constraints,
        **DecisionTreeClassifier._parameter_constraints,
        "class_weight": [
            StrOptions({"balanced_subsample", "balanced"}),
            dict,
            list,
            None,
        ],
    }
    _parameter_constraints.pop("splitter")

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="gini",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features="sqrt",
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        class_weight=None,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
    ):
        super().__init__(
            estimator=DecisionTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.monotonic_cst = monotonic_cst
        self.ccp_alpha = ccp_alpha


class RandomForestRegressor(ForestRegressor):
    """
    A random forest regressor.

    A random forest is a meta estimator that fits a number of decision tree
    regressors on various sub-samples of the dataset and uses averaging to
    improve the predictive accuracy and control over-fitting.
    Trees in the forest use the best split strategy, i.e. equivalent to passing
    `splitter="best"` to the underlying :class:`~sklearn.tree.DecisionTreeRegressor`.
    The sub-sample size is controlled with the `max_samples` parameter if
    `bootstrap=True` (default), otherwise the whole dataset is used to build
    each tree.

    For a comparison between tree-based ensemble models see the example
    :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"squared_error", "absolute_error", "friedman_mse", "poisson"}, \
            default="squared_error"
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to
        variance reduction as feature selection criterion and minimizes the L2
        loss using the mean of each terminal node, "friedman_mse", which uses
        mean squared error with Friedman's improvement score for potential
        splits, "absolute_error" for the mean absolute error, which minimizes
        the L1 loss using the median of each terminal node, and "poisson" which
        uses reduction in Poisson deviance to find splits.
        Training using "absolute_error" is significantly slower
        than when using "squared_error".

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

        .. versionadded:: 1.0
           Poisson criterion.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"sqrt", "log2", None}, int or float, default=1.0
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None or 1.0, then `max_features=n_features`.

        .. note::
            The default of 1.0 is equivalent to bagged trees and more
            randomness can be achieved by setting smaller values, e.g. 0.3.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to 1.0.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool or callable, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        By default, :func:`~sklearn.metrics.r2_score` is used.
        Provide a callable with signature `metric(y_true, y_pred)` to use a
        custom metric. Only available if `bootstrap=True`.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`Glossary <warm_start>` and
        :ref:`tree_ensemble_warm_start` for details.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
          `max_samples` should be in the interval `(0.0, 1.0]`.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonically increasing
          - 0: no constraint
          - -1: monotonically decreasing

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multioutput regressions (i.e. when `n_outputs_ > 1`),
          - regressions trained on data with missing values.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    estimator_ : :class:`~sklearn.tree.DecisionTreeRegressor`
        The child estimator template used to create the collection of fitted
        sub-estimators.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_prediction_ : ndarray of shape (n_samples,) or (n_samples, n_outputs)
        Prediction computed with out-of-bag estimate on the training set.
        This attribute exists only when ``oob_score`` is True.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

        .. versionadded:: 1.4

    See Also
    --------
    sklearn.tree.DecisionTreeRegressor : A decision tree regressor.
    sklearn.ensemble.ExtraTreesRegressor : Ensemble of extremely randomized
        tree regressors.
    sklearn.ensemble.HistGradientBoostingRegressor : A Histogram-based Gradient
        Boosting Regression Tree, very fast for big datasets (n_samples >=
        10_000).

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    The default value ``max_features=1.0`` uses ``n_features``
    rather than ``n_features / 3``. The latter was originally suggested in
    [1], whereas the former was more recently justified empirically in [2].

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    .. [2] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
           trees", Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.ensemble import RandomForestRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=4, n_informative=2,
    ...                        random_state=0, shuffle=False)
    >>> regr = RandomForestRegressor(max_depth=2, random_state=0)
    >>> regr.fit(X, y)
    RandomForestRegressor(...)
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-8.32987858]
    """

    _parameter_constraints: dict = {
        **ForestRegressor._parameter_constraints,
        **DecisionTreeRegressor._parameter_constraints,
    }
    _parameter_constraints.pop("splitter")

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="squared_error",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=1.0,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
    ):
        super().__init__(
            estimator=DecisionTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst


class ExtraTreesClassifier(ForestClassifier):
    """
    An extra-trees classifier.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and uses averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "log_loss" and "entropy" both for the
        Shannon information gain, see :ref:`tree_mathematical_formulation`.
        Note: This parameter is tree-specific.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"sqrt", "log2", None}, int or float, default="sqrt"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to `"sqrt"`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    bootstrap : bool, default=False
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool or callable, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        By default, :func:`~sklearn.metrics.accuracy_score` is used.
        Provide a callable with signature `metric(y_true, y_pred)` to use a
        custom metric. Only available if `bootstrap=True`.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls 3 sources of randomness:

        - the bootstrapping of the samples used when building trees
          (if ``bootstrap=True``)
        - the sampling of the features to consider when looking for the best
          split at each node (if ``max_features < n_features``)
        - the draw of the splits for each of the `max_features`

        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`Glossary <warm_start>` and
        :ref:`tree_ensemble_warm_start` for details.

    class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
            default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that
        weights are computed based on the bootstrap sample for every tree
        grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0.0, 1.0]`.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonically increasing
          - 0: no constraint
          - -1: monotonically decreasing

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multiclass classifications (i.e. when `n_classes > 2`),
          - multioutput classifications (i.e. when `n_outputs_ > 1`),
          - classifications trained on data with missing values.

        The constraints hold over the probability of the positive class.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    estimator_ : :class:`~sklearn.tree.ExtraTreeClassifier`
        The child estimator template used to create the collection of fitted
        sub-estimators.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : ndarray of shape (n_classes,) or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_decision_function_ : ndarray of shape (n_samples, n_classes) or \
            (n_samples, n_classes, n_outputs)
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN. This attribute exists
        only when ``oob_score`` is True.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

        .. versionadded:: 1.4

    See Also
    --------
    ExtraTreesRegressor : An extra-trees regressor with random splits.
    RandomForestClassifier : A random forest classifier with optimal splits.
    RandomForestRegressor : Ensemble regressor using trees with optimal splits.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
           trees", Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.ensemble import ExtraTreesClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = ExtraTreesClassifier(n_estimators=100, random_state=0)
    >>> clf.fit(X, y)
    ExtraTreesClassifier(random_state=0)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])
    """

    _parameter_constraints: dict = {
        **ForestClassifier._parameter_constraints,
        **DecisionTreeClassifier._parameter_constraints,
        "class_weight": [
            StrOptions({"balanced_subsample", "balanced"}),
            dict,
            list,
            None,
        ],
    }
    _parameter_constraints.pop("splitter")

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="gini",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features="sqrt",
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        class_weight=None,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
    ):
        super().__init__(
            estimator=ExtraTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst


class ExtraTreesRegressor(ForestRegressor):
    """
    An extra-trees regressor.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and uses averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"squared_error", "absolute_error", "friedman_mse", "poisson"}, \
            default="squared_error"
        The function to measure the quality of a split. Supported criteria
        are "squared_error" for the mean squared error, which is equal to
        variance reduction as feature selection criterion and minimizes the L2
        loss using the mean of each terminal node, "friedman_mse", which uses
        mean squared error with Friedman's improvement score for potential
        splits, "absolute_error" for the mean absolute error, which minimizes
        the L1 loss using the median of each terminal node, and "poisson" which
        uses reduction in Poisson deviance to find splits.
        Training using "absolute_error" is significantly slower
        than when using "squared_error".

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"sqrt", "log2", None}, int or float, default=1.0
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `max(1, int(max_features * n_features_in_))` features are considered at each
          split.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None or 1.0, then `max_features=n_features`.

        .. note::
            The default of 1.0 is equivalent to bagged trees and more
            randomness can be achieved by setting smaller values, e.g. 0.3.

        .. versionchanged:: 1.1
            The default of `max_features` changed from `"auto"` to 1.0.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    bootstrap : bool, default=False
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool or callable, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        By default, :func:`~sklearn.metrics.r2_score` is used.
        Provide a callable with signature `metric(y_true, y_pred)` to use a
        custom metric. Only available if `bootstrap=True`.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls 3 sources of randomness:

        - the bootstrapping of the samples used when building trees
          (if ``bootstrap=True``)
        - the sampling of the features to consider when looking for the best
          split at each node (if ``max_features < n_features``)
        - the draw of the splits for each of the `max_features`

        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`Glossary <warm_start>` and
        :ref:`tree_ensemble_warm_start` for details.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details. See
        :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
        for an example of such pruning.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0.0, 1.0]`.

        .. versionadded:: 0.22

    monotonic_cst : array-like of int of shape (n_features), default=None
        Indicates the monotonicity constraint to enforce on each feature.
          - 1: monotonically increasing
          - 0: no constraint
          - -1: monotonically decreasing

        If monotonic_cst is None, no constraints are applied.

        Monotonicity constraints are not supported for:
          - multioutput regressions (i.e. when `n_outputs_ > 1`),
          - regressions trained on data with missing values.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 1.4

    Attributes
    ----------
    estimator_ : :class:`~sklearn.tree.ExtraTreeRegressor`
        The child estimator template used to create the collection of fitted
        sub-estimators.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_prediction_ : ndarray of shape (n_samples,) or (n_samples, n_outputs)
        Prediction computed with out-of-bag estimate on the training set.
        This attribute exists only when ``oob_score`` is True.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

        .. versionadded:: 1.4

    See Also
    --------
    ExtraTreesClassifier : An extra-trees classifier with random splits.
    RandomForestClassifier : A random forest classifier with optimal splits.
    RandomForestRegressor : Ensemble regressor using trees with optimal splits.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import ExtraTreesRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> reg = ExtraTreesRegressor(n_estimators=100, random_state=0).fit(
    ...    X_train, y_train)
    >>> reg.score(X_test, y_test)
    0.2727...
    """

    _parameter_constraints: dict = {
        **ForestRegressor._parameter_constraints,
        **DecisionTreeRegressor._parameter_constraints,
    }
    _parameter_constraints.pop("splitter")

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="squared_error",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=1.0,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
    ):
        super().__init__(
            estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst


class RandomTreesEmbedding(TransformerMixin, BaseForest):
    """
    An ensemble of totally random trees.

    An unsupervised transformation of a dataset to a high-dimensional
    sparse representation. A datapoint is coded according to which leaf of
    each tree it is sorted into. Using a one-hot encoding of the leaves,
    this leads to a binary coding with as many ones as there are trees in
    the forest.

    The dimensionality of the resulting representation is
    ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``,
    the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``.

    For an example of applying Random Trees Embedding to non-linear
    classification, see
    :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py`.

    Read more in the :ref:`User Guide <random_trees_embedding>`.

    Parameters
    ----------
    n_estimators : int, default=100
        Number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    max_depth : int, default=5
        The maximum depth of each tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` is the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` is the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    sparse_output : bool, default=True
        Whether or not to return a sparse CSR matrix, as default behavior,
        or to return a dense array compatible with dense pipeline operators.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`transform`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState instance or None, default=None
        Controls the generation of the random `y` used to fit the trees
        and the draw of the splits for each feature at the trees' nodes.
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`Glossary <warm_start>` and
        :ref:`tree_ensemble_warm_start` for details.

    Attributes
    ----------
    estimator_ : :class:`~sklearn.tree.ExtraTreeRegressor` instance
        The child estimator template used to create the collection of fitted
        sub-estimators.

        .. versionadded:: 1.2
           `base_estimator_` was renamed to `estimator_`.

    estimators_ : list of :class:`~sklearn.tree.ExtraTreeRegressor` instances
        The collection of fitted sub-estimators.

    feature_importances_ : ndarray of shape (n_features,)
        The feature importances (the higher, the more important the feature).

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    one_hot_encoder_ : OneHotEncoder instance
        One-hot encoder used to create the sparse embedding.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator. Each subset is defined by an array of the indices selected.

        .. versionadded:: 1.4

    See Also
    --------
    ExtraTreesClassifier : An extra-trees classifier.
    ExtraTreesRegressor : An extra-trees regressor.
    RandomForestClassifier : A random forest classifier.
    RandomForestRegressor : A random forest regressor.
    sklearn.tree.ExtraTreeClassifier: An extremely randomized
        tree classifier.
    sklearn.tree.ExtraTreeRegressor : An extremely randomized
        tree regressor.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.
    .. [2] Moosmann, F. and Triggs, B. and Jurie, F.  "Fast discriminative
           visual codebooks using randomized clustering forests"
           NIPS 2007

    Examples
    --------
    >>> from sklearn.ensemble import RandomTreesEmbedding
    >>> X = [[0,0], [1,0], [0,1], [-1,0], [0,-1]]
    >>> random_trees = RandomTreesEmbedding(
    ...    n_estimators=5, random_state=0, max_depth=1).fit(X)
    >>> X_sparse_embedding = random_trees.transform(X)
    >>> X_sparse_embedding.toarray()
    array([[0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],
           [0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],
           [0., 1., 0., 1., 0., 1., 0., 1., 0., 1.],
           [1., 0., 1., 0., 1., 0., 1., 0., 1., 0.],
           [0., 1., 1., 0., 1., 0., 0., 1., 1., 0.]])
    """

    _parameter_constraints: dict = {
        "n_estimators": [Interval(Integral, 1, None, closed="left")],
        "n_jobs": [Integral, None],
        "verbose": ["verbose"],
        "warm_start": ["boolean"],
        **BaseDecisionTree._parameter_constraints,
        "sparse_output": ["boolean"],
    }
    for param in ("max_features", "ccp_alpha", "splitter", "monotonic_cst"):
        _parameter_constraints.pop(param)

    criterion = "squared_error"
    max_features = 1

    def __init__(
        self,
        n_estimators=100,
        *,
        max_depth=5,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        sparse_output=True,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
    ):
        super().__init__(
            estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
            ),
            bootstrap=False,
            oob_score=False,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=None,
        )

        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.sparse_output = sparse_output

    def _set_oob_score_and_attributes(self, X, y, scoring_function=None):
        raise NotImplementedError("OOB score not supported by tree embedding")

    def fit(self, X, y=None, sample_weight=None):
        """
        Fit estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csc_matrix`` for maximum efficiency.

        y : Ignored
            Not used, present for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        # Parameters are validated in fit_transform
        self.fit_transform(X, y, sample_weight=sample_weight)
        return self

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, X, y=None, sample_weight=None):
        """
        Fit estimator and transform dataset.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input data used to build forests. Use ``dtype=np.float32`` for
            maximum efficiency.

        y : Ignored
            Not used, present for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        X_transformed : sparse matrix of shape (n_samples, n_out)
            Transformed dataset.
        """
        rnd = check_random_state(self.random_state)
        y = rnd.uniform(size=_num_samples(X))
        super().fit(X, y, sample_weight=sample_weight)

        self.one_hot_encoder_ = OneHotEncoder(sparse_output=self.sparse_output)
        output = self.one_hot_encoder_.fit_transform(self.apply(X))
        self._n_features_out = output.shape[1]
        return output

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Only used to validate feature names with the names seen in :meth:`fit`.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names, in the format of
            `randomtreesembedding_{tree}_{leaf}`, where `tree` is the tree used
            to generate the leaf and `leaf` is the index of a leaf node
            in that tree. Note that the node indexing scheme is used to
            index both nodes with children (split nodes) and leaf nodes.
            Only the latter can be present as output features.
            As a consequence, there are missing indices in the output
            feature names.
        """
        check_is_fitted(self, "_n_features_out")
        _check_feature_names_in(
            self, input_features=input_features, generate_names=False
        )

        feature_names = [
            f"randomtreesembedding_{tree}_{leaf}"
            for tree in range(self.n_estimators)
            for leaf in self.one_hot_encoder_.categories_[tree]
        ]
        return np.asarray(feature_names, dtype=object)

    def transform(self, X):
        """
        Transform dataset.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input data to be transformed. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csr_matrix`` for maximum efficiency.

        Returns
        -------
        X_transformed : sparse matrix of shape (n_samples, n_out)
            Transformed dataset.
        """
        check_is_fitted(self)
        return self.one_hot_encoder_.transform(self.apply(X))

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags