File size: 41,713 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 |
import re
import warnings
import numpy as np
import pytest
import scipy as sp
from numpy.testing import assert_array_equal
from sklearn import config_context, datasets
from sklearn.base import clone
from sklearn.datasets import load_iris, make_classification, make_low_rank_matrix
from sklearn.decomposition import PCA
from sklearn.decomposition._pca import _assess_dimension, _infer_dimension
from sklearn.utils._array_api import (
_atol_for_type,
_convert_to_numpy,
yield_namespace_device_dtype_combinations,
)
from sklearn.utils._array_api import device as array_device
from sklearn.utils._test_common.instance_generator import _get_check_estimator_ids
from sklearn.utils._testing import _array_api_for_tests, assert_allclose
from sklearn.utils.estimator_checks import (
check_array_api_input_and_values,
)
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
iris = datasets.load_iris()
PCA_SOLVERS = ["full", "covariance_eigh", "arpack", "randomized", "auto"]
# `SPARSE_M` and `SPARSE_N` could be larger, but be aware:
# * SciPy's generation of random sparse matrix can be costly
# * A (SPARSE_M, SPARSE_N) dense array is allocated to compare against
SPARSE_M, SPARSE_N = 1000, 300 # arbitrary
SPARSE_MAX_COMPONENTS = min(SPARSE_M, SPARSE_N)
def _check_fitted_pca_close(pca1, pca2, rtol=1e-7, atol=1e-12):
assert_allclose(pca1.components_, pca2.components_, rtol=rtol, atol=atol)
assert_allclose(
pca1.explained_variance_, pca2.explained_variance_, rtol=rtol, atol=atol
)
assert_allclose(pca1.singular_values_, pca2.singular_values_, rtol=rtol, atol=atol)
assert_allclose(pca1.mean_, pca2.mean_, rtol=rtol, atol=atol)
assert_allclose(pca1.noise_variance_, pca2.noise_variance_, rtol=rtol, atol=atol)
assert pca1.n_components_ == pca2.n_components_
assert pca1.n_samples_ == pca2.n_samples_
assert pca1.n_features_in_ == pca2.n_features_in_
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
@pytest.mark.parametrize("n_components", range(1, iris.data.shape[1]))
def test_pca(svd_solver, n_components):
X = iris.data
pca = PCA(n_components=n_components, svd_solver=svd_solver)
# check the shape of fit.transform
X_r = pca.fit(X).transform(X)
assert X_r.shape[1] == n_components
# check the equivalence of fit.transform and fit_transform
X_r2 = pca.fit_transform(X)
assert_allclose(X_r, X_r2)
X_r = pca.transform(X)
assert_allclose(X_r, X_r2)
# Test get_covariance and get_precision
cov = pca.get_covariance()
precision = pca.get_precision()
assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)
@pytest.mark.parametrize("density", [0.01, 0.1, 0.30])
@pytest.mark.parametrize("n_components", [1, 2, 10])
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
@pytest.mark.parametrize("svd_solver", ["arpack", "covariance_eigh"])
@pytest.mark.parametrize("scale", [1, 10, 100])
def test_pca_sparse(
global_random_seed, svd_solver, sparse_container, n_components, density, scale
):
"""Check that the results are the same for sparse and dense input."""
# Set atol in addition of the default rtol to account for the very wide range of
# result values (1e-8 to 1e0).
atol = 1e-12
transform_atol = 1e-10
random_state = np.random.default_rng(global_random_seed)
X = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
density=density,
)
)
# Scale the data + vary the column means
scale_vector = random_state.random(X.shape[1]) * scale
X = X.multiply(scale_vector)
pca = PCA(
n_components=n_components,
svd_solver=svd_solver,
random_state=global_random_seed,
)
pca.fit(X)
Xd = X.toarray()
pcad = PCA(
n_components=n_components,
svd_solver=svd_solver,
random_state=global_random_seed,
)
pcad.fit(Xd)
# Fitted attributes equality
_check_fitted_pca_close(pca, pcad, atol=atol)
# Test transform
X2 = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
density=density,
)
)
X2d = X2.toarray()
assert_allclose(pca.transform(X2), pca.transform(X2d), atol=transform_atol)
assert_allclose(pca.transform(X2), pcad.transform(X2d), atol=transform_atol)
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_pca_sparse_fit_transform(global_random_seed, sparse_container):
random_state = np.random.default_rng(global_random_seed)
X = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
density=0.01,
)
)
X2 = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
density=0.01,
)
)
pca_fit = PCA(n_components=10, svd_solver="arpack", random_state=global_random_seed)
pca_fit_transform = PCA(
n_components=10, svd_solver="arpack", random_state=global_random_seed
)
pca_fit.fit(X)
transformed_X = pca_fit_transform.fit_transform(X)
_check_fitted_pca_close(pca_fit, pca_fit_transform)
assert_allclose(transformed_X, pca_fit_transform.transform(X))
assert_allclose(transformed_X, pca_fit.transform(X))
assert_allclose(pca_fit.transform(X2), pca_fit_transform.transform(X2))
@pytest.mark.parametrize("svd_solver", ["randomized", "full"])
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_sparse_pca_solver_error(global_random_seed, svd_solver, sparse_container):
random_state = np.random.RandomState(global_random_seed)
X = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
)
)
pca = PCA(n_components=30, svd_solver=svd_solver)
error_msg_pattern = (
'PCA only support sparse inputs with the "arpack" and "covariance_eigh"'
f' solvers, while "{svd_solver}" was passed'
)
with pytest.raises(TypeError, match=error_msg_pattern):
pca.fit(X)
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_sparse_pca_auto_arpack_singluar_values_consistency(
global_random_seed, sparse_container
):
"""Check that "auto" and "arpack" solvers are equivalent for sparse inputs."""
random_state = np.random.RandomState(global_random_seed)
X = sparse_container(
sp.sparse.random(
SPARSE_M,
SPARSE_N,
random_state=random_state,
)
)
pca_arpack = PCA(n_components=10, svd_solver="arpack").fit(X)
pca_auto = PCA(n_components=10, svd_solver="auto").fit(X)
assert_allclose(pca_arpack.singular_values_, pca_auto.singular_values_, rtol=5e-3)
def test_no_empty_slice_warning():
# test if we avoid numpy warnings for computing over empty arrays
n_components = 10
n_features = n_components + 2 # anything > n_comps triggered it in 0.16
X = np.random.uniform(-1, 1, size=(n_components, n_features))
pca = PCA(n_components=n_components)
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
pca.fit(X)
@pytest.mark.parametrize("copy", [True, False])
@pytest.mark.parametrize("solver", PCA_SOLVERS)
def test_whitening(solver, copy):
# Check that PCA output has unit-variance
rng = np.random.RandomState(0)
n_samples = 100
n_features = 80
n_components = 30
rank = 50
# some low rank data with correlated features
X = np.dot(
rng.randn(n_samples, rank),
np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features)),
)
# the component-wise variance of the first 50 features is 3 times the
# mean component-wise variance of the remaining 30 features
X[:, :50] *= 3
assert X.shape == (n_samples, n_features)
# the component-wise variance is thus highly varying:
assert X.std(axis=0).std() > 43.8
# whiten the data while projecting to the lower dim subspace
X_ = X.copy() # make sure we keep an original across iterations.
pca = PCA(
n_components=n_components,
whiten=True,
copy=copy,
svd_solver=solver,
random_state=0,
iterated_power=7,
)
# test fit_transform
X_whitened = pca.fit_transform(X_.copy())
assert X_whitened.shape == (n_samples, n_components)
X_whitened2 = pca.transform(X_)
assert_allclose(X_whitened, X_whitened2, rtol=5e-4)
assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
assert_allclose(X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12)
X_ = X.copy()
pca = PCA(
n_components=n_components, whiten=False, copy=copy, svd_solver=solver
).fit(X_.copy())
X_unwhitened = pca.transform(X_)
assert X_unwhitened.shape == (n_samples, n_components)
# in that case the output components still have varying variances
assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
# we always center, so no test for non-centering.
@pytest.mark.parametrize(
"other_svd_solver", sorted(list(set(PCA_SOLVERS) - {"full", "auto"}))
)
@pytest.mark.parametrize("data_shape", ["tall", "wide"])
@pytest.mark.parametrize("rank_deficient", [False, True])
@pytest.mark.parametrize("whiten", [False, True])
def test_pca_solver_equivalence(
other_svd_solver,
data_shape,
rank_deficient,
whiten,
global_random_seed,
global_dtype,
):
if data_shape == "tall":
n_samples, n_features = 100, 30
else:
n_samples, n_features = 30, 100
n_samples_test = 10
if rank_deficient:
rng = np.random.default_rng(global_random_seed)
rank = min(n_samples, n_features) // 2
X = rng.standard_normal(
size=(n_samples + n_samples_test, rank)
) @ rng.standard_normal(size=(rank, n_features))
else:
X = make_low_rank_matrix(
n_samples=n_samples + n_samples_test,
n_features=n_features,
tail_strength=0.5,
random_state=global_random_seed,
)
# With a non-zero tail strength, the data is actually full-rank.
rank = min(n_samples, n_features)
X = X.astype(global_dtype, copy=False)
X_train, X_test = X[:n_samples], X[n_samples:]
if global_dtype == np.float32:
tols = dict(atol=3e-2, rtol=1e-5)
variance_threshold = 1e-5
else:
tols = dict(atol=1e-10, rtol=1e-12)
variance_threshold = 1e-12
extra_other_kwargs = {}
if other_svd_solver == "randomized":
# Only check for a truncated result with a large number of iterations
# to make sure that we can recover precise results.
n_components = 10
extra_other_kwargs = {"iterated_power": 50}
elif other_svd_solver == "arpack":
# Test all components except the last one which cannot be estimated by
# arpack.
n_components = np.minimum(n_samples, n_features) - 1
else:
# Test all components to high precision.
n_components = None
pca_full = PCA(n_components=n_components, svd_solver="full", whiten=whiten)
pca_other = PCA(
n_components=n_components,
svd_solver=other_svd_solver,
whiten=whiten,
random_state=global_random_seed,
**extra_other_kwargs,
)
X_trans_full_train = pca_full.fit_transform(X_train)
assert np.isfinite(X_trans_full_train).all()
assert X_trans_full_train.dtype == global_dtype
X_trans_other_train = pca_other.fit_transform(X_train)
assert np.isfinite(X_trans_other_train).all()
assert X_trans_other_train.dtype == global_dtype
assert (pca_full.explained_variance_ >= 0).all()
assert_allclose(pca_full.explained_variance_, pca_other.explained_variance_, **tols)
assert_allclose(
pca_full.explained_variance_ratio_,
pca_other.explained_variance_ratio_,
**tols,
)
reference_components = pca_full.components_
assert np.isfinite(reference_components).all()
other_components = pca_other.components_
assert np.isfinite(other_components).all()
# For some choice of n_components and data distribution, some components
# might be pure noise, let's ignore them in the comparison:
stable = pca_full.explained_variance_ > variance_threshold
assert stable.sum() > 1
assert_allclose(reference_components[stable], other_components[stable], **tols)
# As a result the output of fit_transform should be the same:
assert_allclose(
X_trans_other_train[:, stable], X_trans_full_train[:, stable], **tols
)
# And similarly for the output of transform on new data (except for the
# last component that can be underdetermined):
X_trans_full_test = pca_full.transform(X_test)
assert np.isfinite(X_trans_full_test).all()
assert X_trans_full_test.dtype == global_dtype
X_trans_other_test = pca_other.transform(X_test)
assert np.isfinite(X_trans_other_test).all()
assert X_trans_other_test.dtype == global_dtype
assert_allclose(X_trans_other_test[:, stable], X_trans_full_test[:, stable], **tols)
# Check that inverse transform reconstructions for both solvers are
# compatible.
X_recons_full_test = pca_full.inverse_transform(X_trans_full_test)
assert np.isfinite(X_recons_full_test).all()
assert X_recons_full_test.dtype == global_dtype
X_recons_other_test = pca_other.inverse_transform(X_trans_other_test)
assert np.isfinite(X_recons_other_test).all()
assert X_recons_other_test.dtype == global_dtype
if pca_full.components_.shape[0] == pca_full.components_.shape[1]:
# In this case, the models should have learned the same invertible
# transform. They should therefore both be able to reconstruct the test
# data.
assert_allclose(X_recons_full_test, X_test, **tols)
assert_allclose(X_recons_other_test, X_test, **tols)
elif pca_full.components_.shape[0] < rank:
# In the absence of noisy components, both models should be able to
# reconstruct the same low-rank approximation of the original data.
assert pca_full.explained_variance_.min() > variance_threshold
assert_allclose(X_recons_full_test, X_recons_other_test, **tols)
else:
# When n_features > n_samples and n_components is larger than the rank
# of the training set, the output of the `inverse_transform` function
# is ill-defined. We can only check that we reach the same fixed point
# after another round of transform:
assert_allclose(
pca_full.transform(X_recons_full_test)[:, stable],
pca_other.transform(X_recons_other_test)[:, stable],
**tols,
)
@pytest.mark.parametrize(
"X",
[
np.random.RandomState(0).randn(100, 80),
datasets.make_classification(100, 80, n_informative=78, random_state=0)[0],
np.random.RandomState(0).randn(10, 100),
],
ids=["random-tall", "correlated-tall", "random-wide"],
)
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_explained_variance_empirical(X, svd_solver):
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
X_pca = pca.fit_transform(X)
assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))
expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
expected_result = sorted(expected_result, reverse=True)[:2]
assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_pca_singular_values_consistency(svd_solver):
rng = np.random.RandomState(0)
n_samples, n_features = 100, 80
X = rng.randn(n_samples, n_features)
pca_full = PCA(n_components=2, svd_solver="full", random_state=rng)
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
pca_full.fit(X)
pca_other.fit(X)
assert_allclose(pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3)
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_singular_values(svd_solver):
rng = np.random.RandomState(0)
n_samples, n_features = 100, 80
X = rng.randn(n_samples, n_features)
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
X_trans = pca.fit_transform(X)
# compare to the Frobenius norm
assert_allclose(
np.sum(pca.singular_values_**2), np.linalg.norm(X_trans, "fro") ** 2
)
# Compare to the 2-norms of the score vectors
assert_allclose(pca.singular_values_, np.sqrt(np.sum(X_trans**2, axis=0)))
# set the singular values and see what er get back
n_samples, n_features = 100, 110
X = rng.randn(n_samples, n_features)
pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
X_trans = pca.fit_transform(X)
X_trans /= np.sqrt(np.sum(X_trans**2, axis=0))
X_trans[:, 0] *= 3.142
X_trans[:, 1] *= 2.718
X_hat = np.dot(X_trans, pca.components_)
pca.fit(X_hat)
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection(svd_solver):
# Test that the projection of data is correct
rng = np.random.RandomState(0)
n, p = 100, 3
X = rng.randn(n, p) * 0.1
X[:10] += np.array([3, 4, 5])
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
Yt /= np.sqrt((Yt**2).sum())
assert_allclose(np.abs(Yt[0][0]), 1.0, rtol=5e-3)
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection_list(svd_solver):
# Test that the projection of data is correct
X = [[1.0, 0.0], [0.0, 1.0]]
pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
X_trans = pca.fit_transform(X)
assert X_trans.shape, (2, 1)
assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
assert_allclose(X_trans.std(), 0.71, rtol=5e-3)
@pytest.mark.parametrize("svd_solver", ["full", "arpack", "randomized"])
@pytest.mark.parametrize("whiten", [False, True])
def test_pca_inverse(svd_solver, whiten):
# Test that the projection of data can be inverted
rng = np.random.RandomState(0)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= 0.00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
Y = pca.transform(X)
Y_inverse = pca.inverse_transform(Y)
assert_allclose(X, Y_inverse, rtol=5e-6)
@pytest.mark.parametrize(
"data", [np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
)
@pytest.mark.parametrize(
"svd_solver, n_components, err_msg",
[
("arpack", 0, r"must be between 1 and min\(n_samples, n_features\)"),
("randomized", 0, r"must be between 1 and min\(n_samples, n_features\)"),
("arpack", 2, r"must be strictly less than min"),
(
"auto",
3,
(
r"n_components=3 must be between 0 and min\(n_samples, "
r"n_features\)=2 with svd_solver='full'"
),
),
],
)
def test_pca_validation(svd_solver, data, n_components, err_msg):
# Ensures that solver-specific extreme inputs for the n_components
# parameter raise errors
smallest_d = 2 # The smallest dimension
pca_fitted = PCA(n_components, svd_solver=svd_solver)
with pytest.raises(ValueError, match=err_msg):
pca_fitted.fit(data)
# Additional case for arpack
if svd_solver == "arpack":
n_components = smallest_d
err_msg = (
"n_components={}L? must be strictly less than "
r"min\(n_samples, n_features\)={}L? with "
"svd_solver='arpack'".format(n_components, smallest_d)
)
with pytest.raises(ValueError, match=err_msg):
PCA(n_components, svd_solver=svd_solver).fit(data)
@pytest.mark.parametrize(
"solver, n_components_",
[
("full", min(iris.data.shape)),
("arpack", min(iris.data.shape) - 1),
("randomized", min(iris.data.shape)),
],
)
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
def test_n_components_none(data, solver, n_components_):
pca = PCA(svd_solver=solver)
pca.fit(data)
assert pca.n_components_ == n_components_
@pytest.mark.parametrize("svd_solver", ["auto", "full"])
def test_n_components_mle(svd_solver):
# Ensure that n_components == 'mle' doesn't raise error for auto/full
rng = np.random.RandomState(0)
n_samples, n_features = 600, 10
X = rng.randn(n_samples, n_features)
pca = PCA(n_components="mle", svd_solver=svd_solver)
pca.fit(X)
assert pca.n_components_ == 1
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_n_components_mle_error(svd_solver):
# Ensure that n_components == 'mle' will raise an error for unsupported
# solvers
rng = np.random.RandomState(0)
n_samples, n_features = 600, 10
X = rng.randn(n_samples, n_features)
pca = PCA(n_components="mle", svd_solver=svd_solver)
err_msg = "n_components='mle' cannot be a string with svd_solver='{}'".format(
svd_solver
)
with pytest.raises(ValueError, match=err_msg):
pca.fit(X)
def test_pca_dim():
# Check automated dimensionality setting
rng = np.random.RandomState(0)
n, p = 100, 5
X = rng.randn(n, p) * 0.1
X[:10] += np.array([3, 4, 5, 1, 2])
pca = PCA(n_components="mle", svd_solver="full").fit(X)
assert pca.n_components == "mle"
assert pca.n_components_ == 1
def test_infer_dim_1():
# TODO: explain what this is testing
# Or at least use explicit variable names...
n, p = 1000, 5
rng = np.random.RandomState(0)
X = (
rng.randn(n, p) * 0.1
+ rng.randn(n, 1) * np.array([3, 4, 5, 1, 2])
+ np.array([1, 0, 7, 4, 6])
)
pca = PCA(n_components=p, svd_solver="full")
pca.fit(X)
spect = pca.explained_variance_
ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
assert ll[1] > ll.max() - 0.01 * n
def test_infer_dim_2():
# TODO: explain what this is testing
# Or at least use explicit variable names...
n, p = 1000, 5
rng = np.random.RandomState(0)
X = rng.randn(n, p) * 0.1
X[:10] += np.array([3, 4, 5, 1, 2])
X[10:20] += np.array([6, 0, 7, 2, -1])
pca = PCA(n_components=p, svd_solver="full")
pca.fit(X)
spect = pca.explained_variance_
assert _infer_dimension(spect, n) > 1
def test_infer_dim_3():
n, p = 100, 5
rng = np.random.RandomState(0)
X = rng.randn(n, p) * 0.1
X[:10] += np.array([3, 4, 5, 1, 2])
X[10:20] += np.array([6, 0, 7, 2, -1])
X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
pca = PCA(n_components=p, svd_solver="full")
pca.fit(X)
spect = pca.explained_variance_
assert _infer_dimension(spect, n) > 2
@pytest.mark.parametrize(
"X, n_components, n_components_validated",
[
(iris.data, 0.95, 2), # row > col
(iris.data, 0.01, 1), # row > col
(np.random.RandomState(0).rand(5, 20), 0.5, 2),
], # row < col
)
def test_infer_dim_by_explained_variance(X, n_components, n_components_validated):
pca = PCA(n_components=n_components, svd_solver="full")
pca.fit(X)
assert pca.n_components == pytest.approx(n_components)
assert pca.n_components_ == n_components_validated
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_score(svd_solver):
# Test that probabilistic PCA scoring yields a reasonable score
n, p = 1000, 3
rng = np.random.RandomState(0)
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
pca = PCA(n_components=2, svd_solver=svd_solver)
pca.fit(X)
ll1 = pca.score(X)
h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1**2) * p
assert_allclose(ll1 / h, 1, rtol=5e-2)
ll2 = pca.score(rng.randn(n, p) * 0.2 + np.array([3, 4, 5]))
assert ll1 > ll2
pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
pca.fit(X)
ll2 = pca.score(X)
assert ll1 > ll2
def test_pca_score3():
# Check that probabilistic PCA selects the right model
n, p = 200, 3
rng = np.random.RandomState(0)
Xl = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
Xt = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
ll = np.zeros(p)
for k in range(p):
pca = PCA(n_components=k, svd_solver="full")
pca.fit(Xl)
ll[k] = pca.score(Xt)
assert ll.argmax() == 1
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_sanity_noise_variance(svd_solver):
# Sanity check for the noise_variance_. For more details see
# https://github.com/scikit-learn/scikit-learn/issues/7568
# https://github.com/scikit-learn/scikit-learn/issues/8541
# https://github.com/scikit-learn/scikit-learn/issues/8544
X, _ = datasets.load_digits(return_X_y=True)
pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
pca.fit(X)
assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_pca_score_consistency_solvers(svd_solver):
# Check the consistency of score between solvers
X, _ = datasets.load_digits(return_X_y=True)
pca_full = PCA(n_components=30, svd_solver="full", random_state=0)
pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
pca_full.fit(X)
pca_other.fit(X)
assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)
# arpack raises ValueError for n_components == min(n_samples, n_features)
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
def test_pca_zero_noise_variance_edge_cases(svd_solver):
# ensure that noise_variance_ is 0 in edge cases
# when n_components == min(n_samples, n_features)
n, p = 100, 3
rng = np.random.RandomState(0)
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
pca = PCA(n_components=p, svd_solver=svd_solver)
pca.fit(X)
assert pca.noise_variance_ == 0
# Non-regression test for gh-12489
# ensure no divide-by-zero error for n_components == n_features < n_samples
pca.score(X)
pca.fit(X.T)
assert pca.noise_variance_ == 0
# Non-regression test for gh-12489
# ensure no divide-by-zero error for n_components == n_samples < n_features
pca.score(X.T)
@pytest.mark.parametrize(
"n_samples, n_features, n_components, expected_solver",
[
# case: n_samples < 10 * n_features and max(X.shape) <= 500 => 'full'
(10, 50, 5, "full"),
# case: n_samples > 10 * n_features and n_features < 500 => 'covariance_eigh'
(1000, 50, 50, "covariance_eigh"),
# case: n_components >= .8 * min(X.shape) => 'full'
(1000, 500, 400, "full"),
# n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
(1000, 500, 10, "randomized"),
# case: n_components in (0,1) => 'full'
(1000, 500, 0.5, "full"),
],
)
def test_pca_svd_solver_auto(n_samples, n_features, n_components, expected_solver):
data = np.random.RandomState(0).uniform(size=(n_samples, n_features))
pca_auto = PCA(n_components=n_components, random_state=0)
pca_test = PCA(
n_components=n_components, svd_solver=expected_solver, random_state=0
)
pca_auto.fit(data)
assert pca_auto._fit_svd_solver == expected_solver
pca_test.fit(data)
assert_allclose(pca_auto.components_, pca_test.components_)
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_deterministic_output(svd_solver):
rng = np.random.RandomState(0)
X = rng.rand(10, 10)
transformed_X = np.zeros((20, 2))
for i in range(20):
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
transformed_X[i, :] = pca.fit_transform(X)[0]
assert_allclose(transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_dtype_preservation(svd_solver, global_random_seed):
check_pca_float_dtype_preservation(svd_solver, global_random_seed)
check_pca_int_dtype_upcast_to_double(svd_solver)
def check_pca_float_dtype_preservation(svd_solver, seed):
# Ensure that PCA does not upscale the dtype when input is float32
X = np.random.RandomState(seed).rand(1000, 4)
X_float64 = X.astype(np.float64, copy=False)
X_float32 = X.astype(np.float32)
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
X_float64
)
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
X_float32
)
assert pca_64.components_.dtype == np.float64
assert pca_32.components_.dtype == np.float32
assert pca_64.transform(X_float64).dtype == np.float64
assert pca_32.transform(X_float32).dtype == np.float32
# The atol and rtol are set such that the test passes for all random seeds
# on all supported platforms on our CI and conda-forge with the default
# random seed.
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-3, atol=1e-3)
def check_pca_int_dtype_upcast_to_double(svd_solver):
# Ensure that all int types will be upcast to float64
X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
X_i64 = X_i64.astype(np.int64, copy=False)
X_i32 = X_i64.astype(np.int32, copy=False)
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i64)
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i32)
assert pca_64.components_.dtype == np.float64
assert pca_32.components_.dtype == np.float64
assert pca_64.transform(X_i64).dtype == np.float64
assert pca_32.transform(X_i32).dtype == np.float64
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)
def test_pca_n_components_mostly_explained_variance_ratio():
# when n_components is the second highest cumulative sum of the
# explained_variance_ratio_, then n_components_ should equal the
# number of features in the dataset #15669
X, y = load_iris(return_X_y=True)
pca1 = PCA().fit(X, y)
n_components = pca1.explained_variance_ratio_.cumsum()[-2]
pca2 = PCA(n_components=n_components).fit(X, y)
assert pca2.n_components_ == X.shape[1]
def test_assess_dimension_bad_rank():
# Test error when tested rank not in [1, n_features - 1]
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
n_samples = 10
for rank in (0, 5):
with pytest.raises(ValueError, match=r"should be in \[1, n_features - 1\]"):
_assess_dimension(spectrum, rank, n_samples)
def test_small_eigenvalues_mle():
# Test rank associated with tiny eigenvalues are given a log-likelihood of
# -inf. The inferred rank will be 1
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf
for rank in (2, 3):
assert _assess_dimension(spectrum, rank, 10) == -np.inf
assert _infer_dimension(spectrum, 10) == 1
def test_mle_redundant_data():
# Test 'mle' with pathological X: only one relevant feature should give a
# rank of 1
X, _ = datasets.make_classification(
n_features=20,
n_informative=1,
n_repeated=18,
n_redundant=1,
n_clusters_per_class=1,
random_state=42,
)
pca = PCA(n_components="mle").fit(X)
assert pca.n_components_ == 1
def test_fit_mle_too_few_samples():
# Tests that an error is raised when the number of samples is smaller
# than the number of features during an mle fit
X, _ = datasets.make_classification(n_samples=20, n_features=21, random_state=42)
pca = PCA(n_components="mle", svd_solver="full")
with pytest.raises(
ValueError,
match="n_components='mle' is only supported if n_samples >= n_features",
):
pca.fit(X)
def test_mle_simple_case():
# non-regression test for issue
# https://github.com/scikit-learn/scikit-learn/issues/16730
n_samples, n_dim = 1000, 10
X = np.random.RandomState(0).randn(n_samples, n_dim)
X[:, -1] = np.mean(X[:, :-1], axis=-1) # true X dim is ndim - 1
pca_skl = PCA("mle", svd_solver="full")
pca_skl.fit(X)
assert pca_skl.n_components_ == n_dim - 1
def test_assess_dimesion_rank_one():
# Make sure assess_dimension works properly on a matrix of rank 1
n_samples, n_features = 9, 6
X = np.ones((n_samples, n_features)) # rank 1 matrix
_, s, _ = np.linalg.svd(X, full_matrices=True)
# except for rank 1, all eigenvalues are 0 resp. close to 0 (FP)
assert_allclose(s[1:], np.zeros(n_features - 1), atol=1e-12)
assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
for rank in range(2, n_features):
assert _assess_dimension(s, rank, n_samples) == -np.inf
def test_pca_randomized_svd_n_oversamples():
"""Check that exposing and setting `n_oversamples` will provide accurate results
even when `X` as a large number of features.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20589
"""
rng = np.random.RandomState(0)
n_features = 100
X = rng.randn(1_000, n_features)
# The default value of `n_oversamples` will lead to inaccurate results
# We force it to the number of features.
pca_randomized = PCA(
n_components=1,
svd_solver="randomized",
n_oversamples=n_features,
random_state=0,
).fit(X)
pca_full = PCA(n_components=1, svd_solver="full").fit(X)
pca_arpack = PCA(n_components=1, svd_solver="arpack", random_state=0).fit(X)
assert_allclose(np.abs(pca_full.components_), np.abs(pca_arpack.components_))
assert_allclose(np.abs(pca_randomized.components_), np.abs(pca_arpack.components_))
def test_feature_names_out():
"""Check feature names out for PCA."""
pca = PCA(n_components=2).fit(iris.data)
names = pca.get_feature_names_out()
assert_array_equal([f"pca{i}" for i in range(2)], names)
@pytest.mark.parametrize("copy", [True, False])
def test_variance_correctness(copy):
"""Check the accuracy of PCA's internal variance calculation"""
rng = np.random.RandomState(0)
X = rng.randn(1000, 200)
pca = PCA().fit(X)
pca_var = pca.explained_variance_ / pca.explained_variance_ratio_
true_var = np.var(X, ddof=1, axis=0).sum()
np.testing.assert_allclose(pca_var, true_var)
def check_array_api_get_precision(name, estimator, array_namespace, device, dtype_name):
xp = _array_api_for_tests(array_namespace, device)
iris_np = iris.data.astype(dtype_name)
iris_xp = xp.asarray(iris_np, device=device)
estimator.fit(iris_np)
precision_np = estimator.get_precision()
covariance_np = estimator.get_covariance()
rtol = 2e-4 if iris_np.dtype == "float32" else 2e-7
with config_context(array_api_dispatch=True):
estimator_xp = clone(estimator).fit(iris_xp)
precision_xp = estimator_xp.get_precision()
assert precision_xp.shape == (4, 4)
assert precision_xp.dtype == iris_xp.dtype
assert_allclose(
_convert_to_numpy(precision_xp, xp=xp),
precision_np,
rtol=rtol,
atol=_atol_for_type(dtype_name),
)
covariance_xp = estimator_xp.get_covariance()
assert covariance_xp.shape == (4, 4)
assert covariance_xp.dtype == iris_xp.dtype
assert_allclose(
_convert_to_numpy(covariance_xp, xp=xp),
covariance_np,
rtol=rtol,
atol=_atol_for_type(dtype_name),
)
@pytest.mark.parametrize(
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
)
@pytest.mark.parametrize(
"check",
[check_array_api_input_and_values, check_array_api_get_precision],
ids=_get_check_estimator_ids,
)
@pytest.mark.parametrize(
"estimator",
[
PCA(n_components=2, svd_solver="full"),
PCA(n_components=2, svd_solver="full", whiten=True),
PCA(n_components=0.1, svd_solver="full", whiten=True),
PCA(n_components=2, svd_solver="covariance_eigh"),
PCA(n_components=2, svd_solver="covariance_eigh", whiten=True),
PCA(
n_components=2,
svd_solver="randomized",
power_iteration_normalizer="QR",
random_state=0, # how to use global_random_seed here?
),
],
ids=_get_check_estimator_ids,
)
def test_pca_array_api_compliance(
estimator, check, array_namespace, device, dtype_name
):
name = estimator.__class__.__name__
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
@pytest.mark.parametrize(
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
)
@pytest.mark.parametrize(
"check",
[check_array_api_get_precision],
ids=_get_check_estimator_ids,
)
@pytest.mark.parametrize(
"estimator",
[
# PCA with mle cannot use check_array_api_input_and_values because of
# rounding errors in the noisy (low variance) components. Even checking
# the shape of the `components_` is problematic because the number of
# components depends on trimming threshold of the mle algorithm which
# can depend on device-specific rounding errors.
PCA(n_components="mle", svd_solver="full"),
],
ids=_get_check_estimator_ids,
)
def test_pca_mle_array_api_compliance(
estimator, check, array_namespace, device, dtype_name
):
name = estimator.__class__.__name__
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
# Simpler variant of the generic check_array_api_input checker tailored for
# the specific case of PCA with mle-trimmed components.
xp = _array_api_for_tests(array_namespace, device)
X, y = make_classification(random_state=42)
X = X.astype(dtype_name, copy=False)
atol = _atol_for_type(X.dtype)
est = clone(estimator)
X_xp = xp.asarray(X, device=device)
y_xp = xp.asarray(y, device=device)
est.fit(X, y)
components_np = est.components_
explained_variance_np = est.explained_variance_
est_xp = clone(est)
with config_context(array_api_dispatch=True):
est_xp.fit(X_xp, y_xp)
components_xp = est_xp.components_
assert array_device(components_xp) == array_device(X_xp)
components_xp_np = _convert_to_numpy(components_xp, xp=xp)
explained_variance_xp = est_xp.explained_variance_
assert array_device(explained_variance_xp) == array_device(X_xp)
explained_variance_xp_np = _convert_to_numpy(explained_variance_xp, xp=xp)
assert components_xp_np.dtype == components_np.dtype
assert components_xp_np.shape[1] == components_np.shape[1]
assert explained_variance_xp_np.dtype == explained_variance_np.dtype
# Check that the explained variance values match for the
# common components:
min_components = min(components_xp_np.shape[0], components_np.shape[0])
assert_allclose(
explained_variance_xp_np[:min_components],
explained_variance_np[:min_components],
atol=atol,
)
# If the number of components differ, check that the explained variance of
# the trimmed components is very small.
if components_xp_np.shape[0] != components_np.shape[0]:
reference_variance = explained_variance_np[-1]
extra_variance_np = explained_variance_np[min_components:]
extra_variance_xp_np = explained_variance_xp_np[min_components:]
assert all(np.abs(extra_variance_np - reference_variance) < atol)
assert all(np.abs(extra_variance_xp_np - reference_variance) < atol)
def test_array_api_error_and_warnings_on_unsupported_params():
pytest.importorskip("array_api_compat")
xp = pytest.importorskip("array_api_strict")
iris_xp = xp.asarray(iris.data)
pca = PCA(n_components=2, svd_solver="arpack", random_state=0)
expected_msg = re.escape(
"PCA with svd_solver='arpack' is not supported for Array API inputs."
)
with pytest.raises(ValueError, match=expected_msg):
with config_context(array_api_dispatch=True):
pca.fit(iris_xp)
pca.set_params(svd_solver="randomized", power_iteration_normalizer="LU")
expected_msg = re.escape(
"Array API does not support LU factorization. Set"
" `power_iteration_normalizer='QR'` instead."
)
with pytest.raises(ValueError, match=expected_msg):
with config_context(array_api_dispatch=True):
pca.fit(iris_xp)
pca.set_params(svd_solver="randomized", power_iteration_normalizer="auto")
expected_msg = re.escape(
"Array API does not support LU factorization, falling back to QR instead. Set"
" `power_iteration_normalizer='QR'` explicitly to silence this warning."
)
with pytest.warns(UserWarning, match=expected_msg):
with config_context(array_api_dispatch=True):
pca.fit(iris_xp)
|