File size: 41,713 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
import re
import warnings

import numpy as np
import pytest
import scipy as sp
from numpy.testing import assert_array_equal

from sklearn import config_context, datasets
from sklearn.base import clone
from sklearn.datasets import load_iris, make_classification, make_low_rank_matrix
from sklearn.decomposition import PCA
from sklearn.decomposition._pca import _assess_dimension, _infer_dimension
from sklearn.utils._array_api import (
    _atol_for_type,
    _convert_to_numpy,
    yield_namespace_device_dtype_combinations,
)
from sklearn.utils._array_api import device as array_device
from sklearn.utils._test_common.instance_generator import _get_check_estimator_ids
from sklearn.utils._testing import _array_api_for_tests, assert_allclose
from sklearn.utils.estimator_checks import (
    check_array_api_input_and_values,
)
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS

iris = datasets.load_iris()
PCA_SOLVERS = ["full", "covariance_eigh", "arpack", "randomized", "auto"]

# `SPARSE_M` and `SPARSE_N` could be larger, but be aware:
# * SciPy's generation of random sparse matrix can be costly
# * A (SPARSE_M, SPARSE_N) dense array is allocated to compare against
SPARSE_M, SPARSE_N = 1000, 300  # arbitrary
SPARSE_MAX_COMPONENTS = min(SPARSE_M, SPARSE_N)


def _check_fitted_pca_close(pca1, pca2, rtol=1e-7, atol=1e-12):
    assert_allclose(pca1.components_, pca2.components_, rtol=rtol, atol=atol)
    assert_allclose(
        pca1.explained_variance_, pca2.explained_variance_, rtol=rtol, atol=atol
    )
    assert_allclose(pca1.singular_values_, pca2.singular_values_, rtol=rtol, atol=atol)
    assert_allclose(pca1.mean_, pca2.mean_, rtol=rtol, atol=atol)
    assert_allclose(pca1.noise_variance_, pca2.noise_variance_, rtol=rtol, atol=atol)

    assert pca1.n_components_ == pca2.n_components_
    assert pca1.n_samples_ == pca2.n_samples_
    assert pca1.n_features_in_ == pca2.n_features_in_


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
@pytest.mark.parametrize("n_components", range(1, iris.data.shape[1]))
def test_pca(svd_solver, n_components):
    X = iris.data
    pca = PCA(n_components=n_components, svd_solver=svd_solver)

    # check the shape of fit.transform
    X_r = pca.fit(X).transform(X)
    assert X_r.shape[1] == n_components

    # check the equivalence of fit.transform and fit_transform
    X_r2 = pca.fit_transform(X)
    assert_allclose(X_r, X_r2)
    X_r = pca.transform(X)
    assert_allclose(X_r, X_r2)

    # Test get_covariance and get_precision
    cov = pca.get_covariance()
    precision = pca.get_precision()
    assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)


@pytest.mark.parametrize("density", [0.01, 0.1, 0.30])
@pytest.mark.parametrize("n_components", [1, 2, 10])
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
@pytest.mark.parametrize("svd_solver", ["arpack", "covariance_eigh"])
@pytest.mark.parametrize("scale", [1, 10, 100])
def test_pca_sparse(
    global_random_seed, svd_solver, sparse_container, n_components, density, scale
):
    """Check that the results are the same for sparse and dense input."""

    # Set atol in addition of the default rtol to account for the very wide range of
    # result values (1e-8 to 1e0).
    atol = 1e-12
    transform_atol = 1e-10

    random_state = np.random.default_rng(global_random_seed)
    X = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
            density=density,
        )
    )
    # Scale the data + vary the column means
    scale_vector = random_state.random(X.shape[1]) * scale
    X = X.multiply(scale_vector)

    pca = PCA(
        n_components=n_components,
        svd_solver=svd_solver,
        random_state=global_random_seed,
    )
    pca.fit(X)

    Xd = X.toarray()
    pcad = PCA(
        n_components=n_components,
        svd_solver=svd_solver,
        random_state=global_random_seed,
    )
    pcad.fit(Xd)

    # Fitted attributes equality
    _check_fitted_pca_close(pca, pcad, atol=atol)

    # Test transform
    X2 = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
            density=density,
        )
    )
    X2d = X2.toarray()

    assert_allclose(pca.transform(X2), pca.transform(X2d), atol=transform_atol)
    assert_allclose(pca.transform(X2), pcad.transform(X2d), atol=transform_atol)


@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_pca_sparse_fit_transform(global_random_seed, sparse_container):
    random_state = np.random.default_rng(global_random_seed)
    X = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
            density=0.01,
        )
    )
    X2 = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
            density=0.01,
        )
    )

    pca_fit = PCA(n_components=10, svd_solver="arpack", random_state=global_random_seed)
    pca_fit_transform = PCA(
        n_components=10, svd_solver="arpack", random_state=global_random_seed
    )

    pca_fit.fit(X)
    transformed_X = pca_fit_transform.fit_transform(X)

    _check_fitted_pca_close(pca_fit, pca_fit_transform)
    assert_allclose(transformed_X, pca_fit_transform.transform(X))
    assert_allclose(transformed_X, pca_fit.transform(X))
    assert_allclose(pca_fit.transform(X2), pca_fit_transform.transform(X2))


@pytest.mark.parametrize("svd_solver", ["randomized", "full"])
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_sparse_pca_solver_error(global_random_seed, svd_solver, sparse_container):
    random_state = np.random.RandomState(global_random_seed)
    X = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
        )
    )
    pca = PCA(n_components=30, svd_solver=svd_solver)
    error_msg_pattern = (
        'PCA only support sparse inputs with the "arpack" and "covariance_eigh"'
        f' solvers, while "{svd_solver}" was passed'
    )
    with pytest.raises(TypeError, match=error_msg_pattern):
        pca.fit(X)


@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_sparse_pca_auto_arpack_singluar_values_consistency(
    global_random_seed, sparse_container
):
    """Check that "auto" and "arpack" solvers are equivalent for sparse inputs."""
    random_state = np.random.RandomState(global_random_seed)
    X = sparse_container(
        sp.sparse.random(
            SPARSE_M,
            SPARSE_N,
            random_state=random_state,
        )
    )
    pca_arpack = PCA(n_components=10, svd_solver="arpack").fit(X)
    pca_auto = PCA(n_components=10, svd_solver="auto").fit(X)
    assert_allclose(pca_arpack.singular_values_, pca_auto.singular_values_, rtol=5e-3)


def test_no_empty_slice_warning():
    # test if we avoid numpy warnings for computing over empty arrays
    n_components = 10
    n_features = n_components + 2  # anything > n_comps triggered it in 0.16
    X = np.random.uniform(-1, 1, size=(n_components, n_features))
    pca = PCA(n_components=n_components)
    with warnings.catch_warnings():
        warnings.simplefilter("error", RuntimeWarning)
        pca.fit(X)


@pytest.mark.parametrize("copy", [True, False])
@pytest.mark.parametrize("solver", PCA_SOLVERS)
def test_whitening(solver, copy):
    # Check that PCA output has unit-variance
    rng = np.random.RandomState(0)
    n_samples = 100
    n_features = 80
    n_components = 30
    rank = 50

    # some low rank data with correlated features
    X = np.dot(
        rng.randn(n_samples, rank),
        np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features)),
    )
    # the component-wise variance of the first 50 features is 3 times the
    # mean component-wise variance of the remaining 30 features
    X[:, :50] *= 3

    assert X.shape == (n_samples, n_features)

    # the component-wise variance is thus highly varying:
    assert X.std(axis=0).std() > 43.8

    # whiten the data while projecting to the lower dim subspace
    X_ = X.copy()  # make sure we keep an original across iterations.
    pca = PCA(
        n_components=n_components,
        whiten=True,
        copy=copy,
        svd_solver=solver,
        random_state=0,
        iterated_power=7,
    )
    # test fit_transform
    X_whitened = pca.fit_transform(X_.copy())
    assert X_whitened.shape == (n_samples, n_components)
    X_whitened2 = pca.transform(X_)
    assert_allclose(X_whitened, X_whitened2, rtol=5e-4)

    assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
    assert_allclose(X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12)

    X_ = X.copy()
    pca = PCA(
        n_components=n_components, whiten=False, copy=copy, svd_solver=solver
    ).fit(X_.copy())
    X_unwhitened = pca.transform(X_)
    assert X_unwhitened.shape == (n_samples, n_components)

    # in that case the output components still have varying variances
    assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
    # we always center, so no test for non-centering.


@pytest.mark.parametrize(
    "other_svd_solver", sorted(list(set(PCA_SOLVERS) - {"full", "auto"}))
)
@pytest.mark.parametrize("data_shape", ["tall", "wide"])
@pytest.mark.parametrize("rank_deficient", [False, True])
@pytest.mark.parametrize("whiten", [False, True])
def test_pca_solver_equivalence(
    other_svd_solver,
    data_shape,
    rank_deficient,
    whiten,
    global_random_seed,
    global_dtype,
):
    if data_shape == "tall":
        n_samples, n_features = 100, 30
    else:
        n_samples, n_features = 30, 100
    n_samples_test = 10

    if rank_deficient:
        rng = np.random.default_rng(global_random_seed)
        rank = min(n_samples, n_features) // 2
        X = rng.standard_normal(
            size=(n_samples + n_samples_test, rank)
        ) @ rng.standard_normal(size=(rank, n_features))
    else:
        X = make_low_rank_matrix(
            n_samples=n_samples + n_samples_test,
            n_features=n_features,
            tail_strength=0.5,
            random_state=global_random_seed,
        )
        # With a non-zero tail strength, the data is actually full-rank.
        rank = min(n_samples, n_features)

    X = X.astype(global_dtype, copy=False)
    X_train, X_test = X[:n_samples], X[n_samples:]

    if global_dtype == np.float32:
        tols = dict(atol=3e-2, rtol=1e-5)
        variance_threshold = 1e-5
    else:
        tols = dict(atol=1e-10, rtol=1e-12)
        variance_threshold = 1e-12

    extra_other_kwargs = {}
    if other_svd_solver == "randomized":
        # Only check for a truncated result with a large number of iterations
        # to make sure that we can recover precise results.
        n_components = 10
        extra_other_kwargs = {"iterated_power": 50}
    elif other_svd_solver == "arpack":
        # Test all components except the last one which cannot be estimated by
        # arpack.
        n_components = np.minimum(n_samples, n_features) - 1
    else:
        # Test all components to high precision.
        n_components = None

    pca_full = PCA(n_components=n_components, svd_solver="full", whiten=whiten)
    pca_other = PCA(
        n_components=n_components,
        svd_solver=other_svd_solver,
        whiten=whiten,
        random_state=global_random_seed,
        **extra_other_kwargs,
    )
    X_trans_full_train = pca_full.fit_transform(X_train)
    assert np.isfinite(X_trans_full_train).all()
    assert X_trans_full_train.dtype == global_dtype
    X_trans_other_train = pca_other.fit_transform(X_train)
    assert np.isfinite(X_trans_other_train).all()
    assert X_trans_other_train.dtype == global_dtype

    assert (pca_full.explained_variance_ >= 0).all()
    assert_allclose(pca_full.explained_variance_, pca_other.explained_variance_, **tols)
    assert_allclose(
        pca_full.explained_variance_ratio_,
        pca_other.explained_variance_ratio_,
        **tols,
    )
    reference_components = pca_full.components_
    assert np.isfinite(reference_components).all()
    other_components = pca_other.components_
    assert np.isfinite(other_components).all()

    # For some choice of n_components and data distribution, some components
    # might be pure noise, let's ignore them in the comparison:
    stable = pca_full.explained_variance_ > variance_threshold
    assert stable.sum() > 1
    assert_allclose(reference_components[stable], other_components[stable], **tols)

    # As a result the output of fit_transform should be the same:
    assert_allclose(
        X_trans_other_train[:, stable], X_trans_full_train[:, stable], **tols
    )

    # And similarly for the output of transform on new data (except for the
    # last component that can be underdetermined):
    X_trans_full_test = pca_full.transform(X_test)
    assert np.isfinite(X_trans_full_test).all()
    assert X_trans_full_test.dtype == global_dtype
    X_trans_other_test = pca_other.transform(X_test)
    assert np.isfinite(X_trans_other_test).all()
    assert X_trans_other_test.dtype == global_dtype
    assert_allclose(X_trans_other_test[:, stable], X_trans_full_test[:, stable], **tols)

    # Check that inverse transform reconstructions for both solvers are
    # compatible.
    X_recons_full_test = pca_full.inverse_transform(X_trans_full_test)
    assert np.isfinite(X_recons_full_test).all()
    assert X_recons_full_test.dtype == global_dtype
    X_recons_other_test = pca_other.inverse_transform(X_trans_other_test)
    assert np.isfinite(X_recons_other_test).all()
    assert X_recons_other_test.dtype == global_dtype

    if pca_full.components_.shape[0] == pca_full.components_.shape[1]:
        # In this case, the models should have learned the same invertible
        # transform. They should therefore both be able to reconstruct the test
        # data.
        assert_allclose(X_recons_full_test, X_test, **tols)
        assert_allclose(X_recons_other_test, X_test, **tols)
    elif pca_full.components_.shape[0] < rank:
        # In the absence of noisy components, both models should be able to
        # reconstruct the same low-rank approximation of the original data.
        assert pca_full.explained_variance_.min() > variance_threshold
        assert_allclose(X_recons_full_test, X_recons_other_test, **tols)
    else:
        # When n_features > n_samples and n_components is larger than the rank
        # of the training set, the output of the `inverse_transform` function
        # is ill-defined. We can only check that we reach the same fixed point
        # after another round of transform:
        assert_allclose(
            pca_full.transform(X_recons_full_test)[:, stable],
            pca_other.transform(X_recons_other_test)[:, stable],
            **tols,
        )


@pytest.mark.parametrize(
    "X",
    [
        np.random.RandomState(0).randn(100, 80),
        datasets.make_classification(100, 80, n_informative=78, random_state=0)[0],
        np.random.RandomState(0).randn(10, 100),
    ],
    ids=["random-tall", "correlated-tall", "random-wide"],
)
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_explained_variance_empirical(X, svd_solver):
    pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
    X_pca = pca.fit_transform(X)
    assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))

    expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
    expected_result = sorted(expected_result, reverse=True)[:2]
    assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_pca_singular_values_consistency(svd_solver):
    rng = np.random.RandomState(0)
    n_samples, n_features = 100, 80
    X = rng.randn(n_samples, n_features)

    pca_full = PCA(n_components=2, svd_solver="full", random_state=rng)
    pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)

    pca_full.fit(X)
    pca_other.fit(X)

    assert_allclose(pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_singular_values(svd_solver):
    rng = np.random.RandomState(0)
    n_samples, n_features = 100, 80
    X = rng.randn(n_samples, n_features)

    pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
    X_trans = pca.fit_transform(X)

    # compare to the Frobenius norm
    assert_allclose(
        np.sum(pca.singular_values_**2), np.linalg.norm(X_trans, "fro") ** 2
    )
    # Compare to the 2-norms of the score vectors
    assert_allclose(pca.singular_values_, np.sqrt(np.sum(X_trans**2, axis=0)))

    # set the singular values and see what er get back
    n_samples, n_features = 100, 110
    X = rng.randn(n_samples, n_features)

    pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
    X_trans = pca.fit_transform(X)
    X_trans /= np.sqrt(np.sum(X_trans**2, axis=0))
    X_trans[:, 0] *= 3.142
    X_trans[:, 1] *= 2.718
    X_hat = np.dot(X_trans, pca.components_)
    pca.fit(X_hat)
    assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection(svd_solver):
    # Test that the projection of data is correct
    rng = np.random.RandomState(0)
    n, p = 100, 3
    X = rng.randn(n, p) * 0.1
    X[:10] += np.array([3, 4, 5])
    Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])

    Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
    Yt /= np.sqrt((Yt**2).sum())

    assert_allclose(np.abs(Yt[0][0]), 1.0, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection_list(svd_solver):
    # Test that the projection of data is correct
    X = [[1.0, 0.0], [0.0, 1.0]]
    pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
    X_trans = pca.fit_transform(X)
    assert X_trans.shape, (2, 1)
    assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
    assert_allclose(X_trans.std(), 0.71, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", ["full", "arpack", "randomized"])
@pytest.mark.parametrize("whiten", [False, True])
def test_pca_inverse(svd_solver, whiten):
    # Test that the projection of data can be inverted
    rng = np.random.RandomState(0)
    n, p = 50, 3
    X = rng.randn(n, p)  # spherical data
    X[:, 1] *= 0.00001  # make middle component relatively small
    X += [5, 4, 3]  # make a large mean

    # same check that we can find the original data from the transformed
    # signal (since the data is almost of rank n_components)
    pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
    Y = pca.transform(X)
    Y_inverse = pca.inverse_transform(Y)
    assert_allclose(X, Y_inverse, rtol=5e-6)


@pytest.mark.parametrize(
    "data", [np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
)
@pytest.mark.parametrize(
    "svd_solver, n_components, err_msg",
    [
        ("arpack", 0, r"must be between 1 and min\(n_samples, n_features\)"),
        ("randomized", 0, r"must be between 1 and min\(n_samples, n_features\)"),
        ("arpack", 2, r"must be strictly less than min"),
        (
            "auto",
            3,
            (
                r"n_components=3 must be between 0 and min\(n_samples, "
                r"n_features\)=2 with svd_solver='full'"
            ),
        ),
    ],
)
def test_pca_validation(svd_solver, data, n_components, err_msg):
    # Ensures that solver-specific extreme inputs for the n_components
    # parameter raise errors
    smallest_d = 2  # The smallest dimension
    pca_fitted = PCA(n_components, svd_solver=svd_solver)

    with pytest.raises(ValueError, match=err_msg):
        pca_fitted.fit(data)

    # Additional case for arpack
    if svd_solver == "arpack":
        n_components = smallest_d

        err_msg = (
            "n_components={}L? must be strictly less than "
            r"min\(n_samples, n_features\)={}L? with "
            "svd_solver='arpack'".format(n_components, smallest_d)
        )
        with pytest.raises(ValueError, match=err_msg):
            PCA(n_components, svd_solver=svd_solver).fit(data)


@pytest.mark.parametrize(
    "solver, n_components_",
    [
        ("full", min(iris.data.shape)),
        ("arpack", min(iris.data.shape) - 1),
        ("randomized", min(iris.data.shape)),
    ],
)
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
def test_n_components_none(data, solver, n_components_):
    pca = PCA(svd_solver=solver)
    pca.fit(data)
    assert pca.n_components_ == n_components_


@pytest.mark.parametrize("svd_solver", ["auto", "full"])
def test_n_components_mle(svd_solver):
    # Ensure that n_components == 'mle' doesn't raise error for auto/full
    rng = np.random.RandomState(0)
    n_samples, n_features = 600, 10
    X = rng.randn(n_samples, n_features)
    pca = PCA(n_components="mle", svd_solver=svd_solver)
    pca.fit(X)
    assert pca.n_components_ == 1


@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_n_components_mle_error(svd_solver):
    # Ensure that n_components == 'mle' will raise an error for unsupported
    # solvers
    rng = np.random.RandomState(0)
    n_samples, n_features = 600, 10
    X = rng.randn(n_samples, n_features)
    pca = PCA(n_components="mle", svd_solver=svd_solver)
    err_msg = "n_components='mle' cannot be a string with svd_solver='{}'".format(
        svd_solver
    )
    with pytest.raises(ValueError, match=err_msg):
        pca.fit(X)


def test_pca_dim():
    # Check automated dimensionality setting
    rng = np.random.RandomState(0)
    n, p = 100, 5
    X = rng.randn(n, p) * 0.1
    X[:10] += np.array([3, 4, 5, 1, 2])
    pca = PCA(n_components="mle", svd_solver="full").fit(X)
    assert pca.n_components == "mle"
    assert pca.n_components_ == 1


def test_infer_dim_1():
    # TODO: explain what this is testing
    # Or at least use explicit variable names...
    n, p = 1000, 5
    rng = np.random.RandomState(0)
    X = (
        rng.randn(n, p) * 0.1
        + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2])
        + np.array([1, 0, 7, 4, 6])
    )
    pca = PCA(n_components=p, svd_solver="full")
    pca.fit(X)
    spect = pca.explained_variance_
    ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
    assert ll[1] > ll.max() - 0.01 * n


def test_infer_dim_2():
    # TODO: explain what this is testing
    # Or at least use explicit variable names...
    n, p = 1000, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1
    X[:10] += np.array([3, 4, 5, 1, 2])
    X[10:20] += np.array([6, 0, 7, 2, -1])
    pca = PCA(n_components=p, svd_solver="full")
    pca.fit(X)
    spect = pca.explained_variance_
    assert _infer_dimension(spect, n) > 1


def test_infer_dim_3():
    n, p = 100, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1
    X[:10] += np.array([3, 4, 5, 1, 2])
    X[10:20] += np.array([6, 0, 7, 2, -1])
    X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
    pca = PCA(n_components=p, svd_solver="full")
    pca.fit(X)
    spect = pca.explained_variance_
    assert _infer_dimension(spect, n) > 2


@pytest.mark.parametrize(
    "X, n_components, n_components_validated",
    [
        (iris.data, 0.95, 2),  # row > col
        (iris.data, 0.01, 1),  # row > col
        (np.random.RandomState(0).rand(5, 20), 0.5, 2),
    ],  # row < col
)
def test_infer_dim_by_explained_variance(X, n_components, n_components_validated):
    pca = PCA(n_components=n_components, svd_solver="full")
    pca.fit(X)
    assert pca.n_components == pytest.approx(n_components)
    assert pca.n_components_ == n_components_validated


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_score(svd_solver):
    # Test that probabilistic PCA scoring yields a reasonable score
    n, p = 1000, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
    pca = PCA(n_components=2, svd_solver=svd_solver)
    pca.fit(X)

    ll1 = pca.score(X)
    h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1**2) * p
    assert_allclose(ll1 / h, 1, rtol=5e-2)

    ll2 = pca.score(rng.randn(n, p) * 0.2 + np.array([3, 4, 5]))
    assert ll1 > ll2

    pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
    pca.fit(X)
    ll2 = pca.score(X)
    assert ll1 > ll2


def test_pca_score3():
    # Check that probabilistic PCA selects the right model
    n, p = 200, 3
    rng = np.random.RandomState(0)
    Xl = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
    Xt = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
    ll = np.zeros(p)
    for k in range(p):
        pca = PCA(n_components=k, svd_solver="full")
        pca.fit(Xl)
        ll[k] = pca.score(Xt)

    assert ll.argmax() == 1


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_sanity_noise_variance(svd_solver):
    # Sanity check for the noise_variance_. For more details see
    # https://github.com/scikit-learn/scikit-learn/issues/7568
    # https://github.com/scikit-learn/scikit-learn/issues/8541
    # https://github.com/scikit-learn/scikit-learn/issues/8544
    X, _ = datasets.load_digits(return_X_y=True)
    pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
    pca.fit(X)
    assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)


@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_pca_score_consistency_solvers(svd_solver):
    # Check the consistency of score between solvers
    X, _ = datasets.load_digits(return_X_y=True)
    pca_full = PCA(n_components=30, svd_solver="full", random_state=0)
    pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
    pca_full.fit(X)
    pca_other.fit(X)
    assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)


# arpack raises ValueError for n_components == min(n_samples,  n_features)
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
def test_pca_zero_noise_variance_edge_cases(svd_solver):
    # ensure that noise_variance_ is 0 in edge cases
    # when n_components == min(n_samples, n_features)
    n, p = 100, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])

    pca = PCA(n_components=p, svd_solver=svd_solver)
    pca.fit(X)
    assert pca.noise_variance_ == 0
    # Non-regression test for gh-12489
    # ensure no divide-by-zero error for n_components == n_features < n_samples
    pca.score(X)

    pca.fit(X.T)
    assert pca.noise_variance_ == 0
    # Non-regression test for gh-12489
    # ensure no divide-by-zero error for n_components == n_samples < n_features
    pca.score(X.T)


@pytest.mark.parametrize(
    "n_samples, n_features, n_components, expected_solver",
    [
        # case: n_samples < 10 * n_features and max(X.shape) <= 500 => 'full'
        (10, 50, 5, "full"),
        # case: n_samples > 10 * n_features and n_features < 500 => 'covariance_eigh'
        (1000, 50, 50, "covariance_eigh"),
        # case: n_components >= .8 * min(X.shape) => 'full'
        (1000, 500, 400, "full"),
        # n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
        (1000, 500, 10, "randomized"),
        # case: n_components in (0,1) => 'full'
        (1000, 500, 0.5, "full"),
    ],
)
def test_pca_svd_solver_auto(n_samples, n_features, n_components, expected_solver):
    data = np.random.RandomState(0).uniform(size=(n_samples, n_features))
    pca_auto = PCA(n_components=n_components, random_state=0)
    pca_test = PCA(
        n_components=n_components, svd_solver=expected_solver, random_state=0
    )
    pca_auto.fit(data)
    assert pca_auto._fit_svd_solver == expected_solver
    pca_test.fit(data)
    assert_allclose(pca_auto.components_, pca_test.components_)


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_deterministic_output(svd_solver):
    rng = np.random.RandomState(0)
    X = rng.rand(10, 10)

    transformed_X = np.zeros((20, 2))
    for i in range(20):
        pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
        transformed_X[i, :] = pca.fit_transform(X)[0]
    assert_allclose(transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_dtype_preservation(svd_solver, global_random_seed):
    check_pca_float_dtype_preservation(svd_solver, global_random_seed)
    check_pca_int_dtype_upcast_to_double(svd_solver)


def check_pca_float_dtype_preservation(svd_solver, seed):
    # Ensure that PCA does not upscale the dtype when input is float32
    X = np.random.RandomState(seed).rand(1000, 4)
    X_float64 = X.astype(np.float64, copy=False)
    X_float32 = X.astype(np.float32)

    pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
        X_float64
    )
    pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
        X_float32
    )

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float32
    assert pca_64.transform(X_float64).dtype == np.float64
    assert pca_32.transform(X_float32).dtype == np.float32

    # The atol and rtol are set such that the test passes for all random seeds
    # on all supported platforms on our CI and conda-forge with the default
    # random seed.
    assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-3, atol=1e-3)


def check_pca_int_dtype_upcast_to_double(svd_solver):
    # Ensure that all int types will be upcast to float64
    X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
    X_i64 = X_i64.astype(np.int64, copy=False)
    X_i32 = X_i64.astype(np.int32, copy=False)

    pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i64)
    pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i32)

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float64
    assert pca_64.transform(X_i64).dtype == np.float64
    assert pca_32.transform(X_i32).dtype == np.float64

    assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)


def test_pca_n_components_mostly_explained_variance_ratio():
    # when n_components is the second highest cumulative sum of the
    # explained_variance_ratio_, then n_components_ should equal the
    # number of features in the dataset #15669
    X, y = load_iris(return_X_y=True)
    pca1 = PCA().fit(X, y)

    n_components = pca1.explained_variance_ratio_.cumsum()[-2]
    pca2 = PCA(n_components=n_components).fit(X, y)
    assert pca2.n_components_ == X.shape[1]


def test_assess_dimension_bad_rank():
    # Test error when tested rank not in [1, n_features - 1]
    spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
    n_samples = 10
    for rank in (0, 5):
        with pytest.raises(ValueError, match=r"should be in \[1, n_features - 1\]"):
            _assess_dimension(spectrum, rank, n_samples)


def test_small_eigenvalues_mle():
    # Test rank associated with tiny eigenvalues are given a log-likelihood of
    # -inf. The inferred rank will be 1
    spectrum = np.array([1, 1e-30, 1e-30, 1e-30])

    assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf

    for rank in (2, 3):
        assert _assess_dimension(spectrum, rank, 10) == -np.inf

    assert _infer_dimension(spectrum, 10) == 1


def test_mle_redundant_data():
    # Test 'mle' with pathological X: only one relevant feature should give a
    # rank of 1
    X, _ = datasets.make_classification(
        n_features=20,
        n_informative=1,
        n_repeated=18,
        n_redundant=1,
        n_clusters_per_class=1,
        random_state=42,
    )
    pca = PCA(n_components="mle").fit(X)
    assert pca.n_components_ == 1


def test_fit_mle_too_few_samples():
    # Tests that an error is raised when the number of samples is smaller
    # than the number of features during an mle fit
    X, _ = datasets.make_classification(n_samples=20, n_features=21, random_state=42)

    pca = PCA(n_components="mle", svd_solver="full")
    with pytest.raises(
        ValueError,
        match="n_components='mle' is only supported if n_samples >= n_features",
    ):
        pca.fit(X)


def test_mle_simple_case():
    # non-regression test for issue
    # https://github.com/scikit-learn/scikit-learn/issues/16730
    n_samples, n_dim = 1000, 10
    X = np.random.RandomState(0).randn(n_samples, n_dim)
    X[:, -1] = np.mean(X[:, :-1], axis=-1)  # true X dim is ndim - 1
    pca_skl = PCA("mle", svd_solver="full")
    pca_skl.fit(X)
    assert pca_skl.n_components_ == n_dim - 1


def test_assess_dimesion_rank_one():
    # Make sure assess_dimension works properly on a matrix of rank 1
    n_samples, n_features = 9, 6
    X = np.ones((n_samples, n_features))  # rank 1 matrix
    _, s, _ = np.linalg.svd(X, full_matrices=True)
    # except for rank 1, all eigenvalues are 0 resp. close to 0 (FP)
    assert_allclose(s[1:], np.zeros(n_features - 1), atol=1e-12)

    assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
    for rank in range(2, n_features):
        assert _assess_dimension(s, rank, n_samples) == -np.inf


def test_pca_randomized_svd_n_oversamples():
    """Check that exposing and setting `n_oversamples` will provide accurate results
    even when `X` as a large number of features.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/20589
    """
    rng = np.random.RandomState(0)
    n_features = 100
    X = rng.randn(1_000, n_features)

    # The default value of `n_oversamples` will lead to inaccurate results
    # We force it to the number of features.
    pca_randomized = PCA(
        n_components=1,
        svd_solver="randomized",
        n_oversamples=n_features,
        random_state=0,
    ).fit(X)
    pca_full = PCA(n_components=1, svd_solver="full").fit(X)
    pca_arpack = PCA(n_components=1, svd_solver="arpack", random_state=0).fit(X)

    assert_allclose(np.abs(pca_full.components_), np.abs(pca_arpack.components_))
    assert_allclose(np.abs(pca_randomized.components_), np.abs(pca_arpack.components_))


def test_feature_names_out():
    """Check feature names out for PCA."""
    pca = PCA(n_components=2).fit(iris.data)

    names = pca.get_feature_names_out()
    assert_array_equal([f"pca{i}" for i in range(2)], names)


@pytest.mark.parametrize("copy", [True, False])
def test_variance_correctness(copy):
    """Check the accuracy of PCA's internal variance calculation"""
    rng = np.random.RandomState(0)
    X = rng.randn(1000, 200)
    pca = PCA().fit(X)
    pca_var = pca.explained_variance_ / pca.explained_variance_ratio_
    true_var = np.var(X, ddof=1, axis=0).sum()
    np.testing.assert_allclose(pca_var, true_var)


def check_array_api_get_precision(name, estimator, array_namespace, device, dtype_name):
    xp = _array_api_for_tests(array_namespace, device)
    iris_np = iris.data.astype(dtype_name)
    iris_xp = xp.asarray(iris_np, device=device)

    estimator.fit(iris_np)
    precision_np = estimator.get_precision()
    covariance_np = estimator.get_covariance()

    rtol = 2e-4 if iris_np.dtype == "float32" else 2e-7
    with config_context(array_api_dispatch=True):
        estimator_xp = clone(estimator).fit(iris_xp)
        precision_xp = estimator_xp.get_precision()
        assert precision_xp.shape == (4, 4)
        assert precision_xp.dtype == iris_xp.dtype

        assert_allclose(
            _convert_to_numpy(precision_xp, xp=xp),
            precision_np,
            rtol=rtol,
            atol=_atol_for_type(dtype_name),
        )
        covariance_xp = estimator_xp.get_covariance()
        assert covariance_xp.shape == (4, 4)
        assert covariance_xp.dtype == iris_xp.dtype

        assert_allclose(
            _convert_to_numpy(covariance_xp, xp=xp),
            covariance_np,
            rtol=rtol,
            atol=_atol_for_type(dtype_name),
        )


@pytest.mark.parametrize(
    "array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
)
@pytest.mark.parametrize(
    "check",
    [check_array_api_input_and_values, check_array_api_get_precision],
    ids=_get_check_estimator_ids,
)
@pytest.mark.parametrize(
    "estimator",
    [
        PCA(n_components=2, svd_solver="full"),
        PCA(n_components=2, svd_solver="full", whiten=True),
        PCA(n_components=0.1, svd_solver="full", whiten=True),
        PCA(n_components=2, svd_solver="covariance_eigh"),
        PCA(n_components=2, svd_solver="covariance_eigh", whiten=True),
        PCA(
            n_components=2,
            svd_solver="randomized",
            power_iteration_normalizer="QR",
            random_state=0,  # how to use global_random_seed here?
        ),
    ],
    ids=_get_check_estimator_ids,
)
def test_pca_array_api_compliance(
    estimator, check, array_namespace, device, dtype_name
):
    name = estimator.__class__.__name__
    check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)


@pytest.mark.parametrize(
    "array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
)
@pytest.mark.parametrize(
    "check",
    [check_array_api_get_precision],
    ids=_get_check_estimator_ids,
)
@pytest.mark.parametrize(
    "estimator",
    [
        # PCA with mle cannot use check_array_api_input_and_values because of
        # rounding errors in the noisy (low variance) components. Even checking
        # the shape of the `components_` is problematic because the number of
        # components depends on trimming threshold of the mle algorithm which
        # can depend on device-specific rounding errors.
        PCA(n_components="mle", svd_solver="full"),
    ],
    ids=_get_check_estimator_ids,
)
def test_pca_mle_array_api_compliance(
    estimator, check, array_namespace, device, dtype_name
):
    name = estimator.__class__.__name__
    check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)

    # Simpler variant of the generic check_array_api_input checker tailored for
    # the specific case of PCA with mle-trimmed components.
    xp = _array_api_for_tests(array_namespace, device)

    X, y = make_classification(random_state=42)
    X = X.astype(dtype_name, copy=False)
    atol = _atol_for_type(X.dtype)

    est = clone(estimator)

    X_xp = xp.asarray(X, device=device)
    y_xp = xp.asarray(y, device=device)

    est.fit(X, y)

    components_np = est.components_
    explained_variance_np = est.explained_variance_

    est_xp = clone(est)
    with config_context(array_api_dispatch=True):
        est_xp.fit(X_xp, y_xp)
        components_xp = est_xp.components_
        assert array_device(components_xp) == array_device(X_xp)
        components_xp_np = _convert_to_numpy(components_xp, xp=xp)

        explained_variance_xp = est_xp.explained_variance_
        assert array_device(explained_variance_xp) == array_device(X_xp)
        explained_variance_xp_np = _convert_to_numpy(explained_variance_xp, xp=xp)

    assert components_xp_np.dtype == components_np.dtype
    assert components_xp_np.shape[1] == components_np.shape[1]
    assert explained_variance_xp_np.dtype == explained_variance_np.dtype

    # Check that the explained variance values match for the
    # common components:
    min_components = min(components_xp_np.shape[0], components_np.shape[0])
    assert_allclose(
        explained_variance_xp_np[:min_components],
        explained_variance_np[:min_components],
        atol=atol,
    )

    # If the number of components differ, check that the explained variance of
    # the trimmed components is very small.
    if components_xp_np.shape[0] != components_np.shape[0]:
        reference_variance = explained_variance_np[-1]
        extra_variance_np = explained_variance_np[min_components:]
        extra_variance_xp_np = explained_variance_xp_np[min_components:]
        assert all(np.abs(extra_variance_np - reference_variance) < atol)
        assert all(np.abs(extra_variance_xp_np - reference_variance) < atol)


def test_array_api_error_and_warnings_on_unsupported_params():
    pytest.importorskip("array_api_compat")
    xp = pytest.importorskip("array_api_strict")
    iris_xp = xp.asarray(iris.data)

    pca = PCA(n_components=2, svd_solver="arpack", random_state=0)
    expected_msg = re.escape(
        "PCA with svd_solver='arpack' is not supported for Array API inputs."
    )
    with pytest.raises(ValueError, match=expected_msg):
        with config_context(array_api_dispatch=True):
            pca.fit(iris_xp)

    pca.set_params(svd_solver="randomized", power_iteration_normalizer="LU")
    expected_msg = re.escape(
        "Array API does not support LU factorization. Set"
        " `power_iteration_normalizer='QR'` instead."
    )
    with pytest.raises(ValueError, match=expected_msg):
        with config_context(array_api_dispatch=True):
            pca.fit(iris_xp)

    pca.set_params(svd_solver="randomized", power_iteration_normalizer="auto")
    expected_msg = re.escape(
        "Array API does not support LU factorization, falling back to QR instead. Set"
        " `power_iteration_normalizer='QR'` explicitly to silence this warning."
    )
    with pytest.warns(UserWarning, match=expected_msg):
        with config_context(array_api_dispatch=True):
            pca.fit(iris_xp)