File size: 34,202 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
"""
Robust location and covariance estimators.

Here are implemented estimators that are resistant to outliers.

"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from numbers import Integral, Real

import numpy as np
from scipy import linalg
from scipy.stats import chi2

from ..base import _fit_context
from ..utils import check_array, check_random_state
from ..utils._param_validation import Interval
from ..utils.extmath import fast_logdet
from ..utils.validation import validate_data
from ._empirical_covariance import EmpiricalCovariance, empirical_covariance


# Minimum Covariance Determinant
#   Implementing of an algorithm by Rousseeuw & Van Driessen described in
#   (A Fast Algorithm for the Minimum Covariance Determinant Estimator,
#   1999, American Statistical Association and the American Society
#   for Quality, TECHNOMETRICS)
# XXX Is this really a public function? It's not listed in the docs or
# exported by sklearn.covariance. Deprecate?
def c_step(
    X,
    n_support,
    remaining_iterations=30,
    initial_estimates=None,
    verbose=False,
    cov_computation_method=empirical_covariance,
    random_state=None,
):
    """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data set in which we look for the n_support observations whose
        scatter matrix has minimum determinant.

    n_support : int
        Number of observations to compute the robust estimates of location
        and covariance from. This parameter must be greater than
        `n_samples / 2`.

    remaining_iterations : int, default=30
        Number of iterations to perform.
        According to [Rouseeuw1999]_, two iterations are sufficient to get
        close to the minimum, and we never need more than 30 to reach
        convergence.

    initial_estimates : tuple of shape (2,), default=None
        Initial estimates of location and shape from which to run the c_step
        procedure:
        - initial_estimates[0]: an initial location estimate
        - initial_estimates[1]: an initial covariance estimate

    verbose : bool, default=False
        Verbose mode.

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return array of shape (n_features, n_features).

    random_state : int, RandomState instance or None, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    location : ndarray of shape (n_features,)
        Robust location estimates.

    covariance : ndarray of shape (n_features, n_features)
        Robust covariance estimates.

    support : ndarray of shape (n_samples,)
        A mask for the `n_support` observations whose scatter matrix has
        minimum determinant.

    References
    ----------
    .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    """
    X = np.asarray(X)
    random_state = check_random_state(random_state)
    return _c_step(
        X,
        n_support,
        remaining_iterations=remaining_iterations,
        initial_estimates=initial_estimates,
        verbose=verbose,
        cov_computation_method=cov_computation_method,
        random_state=random_state,
    )


def _c_step(
    X,
    n_support,
    random_state,
    remaining_iterations=30,
    initial_estimates=None,
    verbose=False,
    cov_computation_method=empirical_covariance,
):
    n_samples, n_features = X.shape
    dist = np.inf

    # Initialisation
    if initial_estimates is None:
        # compute initial robust estimates from a random subset
        support_indices = random_state.permutation(n_samples)[:n_support]
    else:
        # get initial robust estimates from the function parameters
        location = initial_estimates[0]
        covariance = initial_estimates[1]
        # run a special iteration for that case (to get an initial support_indices)
        precision = linalg.pinvh(covariance)
        X_centered = X - location
        dist = (np.dot(X_centered, precision) * X_centered).sum(1)
        # compute new estimates
        support_indices = np.argpartition(dist, n_support - 1)[:n_support]

    X_support = X[support_indices]
    location = X_support.mean(0)
    covariance = cov_computation_method(X_support)

    # Iterative procedure for Minimum Covariance Determinant computation
    det = fast_logdet(covariance)
    # If the data already has singular covariance, calculate the precision,
    # as the loop below will not be entered.
    if np.isinf(det):
        precision = linalg.pinvh(covariance)

    previous_det = np.inf
    while det < previous_det and remaining_iterations > 0 and not np.isinf(det):
        # save old estimates values
        previous_location = location
        previous_covariance = covariance
        previous_det = det
        previous_support_indices = support_indices
        # compute a new support_indices from the full data set mahalanobis distances
        precision = linalg.pinvh(covariance)
        X_centered = X - location
        dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1)
        # compute new estimates
        support_indices = np.argpartition(dist, n_support - 1)[:n_support]
        X_support = X[support_indices]
        location = X_support.mean(axis=0)
        covariance = cov_computation_method(X_support)
        det = fast_logdet(covariance)
        # update remaining iterations for early stopping
        remaining_iterations -= 1

    previous_dist = dist
    dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1)
    # Check if best fit already found (det => 0, logdet => -inf)
    if np.isinf(det):
        results = location, covariance, det, support_indices, dist
    # Check convergence
    if np.allclose(det, previous_det):
        # c_step procedure converged
        if verbose:
            print(
                "Optimal couple (location, covariance) found before"
                " ending iterations (%d left)" % (remaining_iterations)
            )
        results = location, covariance, det, support_indices, dist
    elif det > previous_det:
        # determinant has increased (should not happen)
        warnings.warn(
            "Determinant has increased; this should not happen: "
            "log(det) > log(previous_det) (%.15f > %.15f). "
            "You may want to try with a higher value of "
            "support_fraction (current value: %.3f)."
            % (det, previous_det, n_support / n_samples),
            RuntimeWarning,
        )
        results = (
            previous_location,
            previous_covariance,
            previous_det,
            previous_support_indices,
            previous_dist,
        )

    # Check early stopping
    if remaining_iterations == 0:
        if verbose:
            print("Maximum number of iterations reached")
        results = location, covariance, det, support_indices, dist

    location, covariance, det, support_indices, dist = results
    # Convert from list of indices to boolean mask.
    support = np.bincount(support_indices, minlength=n_samples).astype(bool)
    return location, covariance, det, support, dist


def select_candidates(
    X,
    n_support,
    n_trials,
    select=1,
    n_iter=30,
    verbose=False,
    cov_computation_method=empirical_covariance,
    random_state=None,
):
    """Finds the best pure subset of observations to compute MCD from it.

    The purpose of this function is to find the best sets of n_support
    observations with respect to a minimization of their covariance
    matrix determinant. Equivalently, it removes n_samples-n_support
    observations to construct what we call a pure data set (i.e. not
    containing outliers). The list of the observations of the pure
    data set is referred to as the `support`.

    Starting from a random support, the pure data set is found by the
    c_step procedure introduced by Rousseeuw and Van Driessen in
    [RV]_.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data (sub)set in which we look for the n_support purest observations.

    n_support : int
        The number of samples the pure data set must contain.
        This parameter must be in the range `[(n + p + 1)/2] < n_support < n`.

    n_trials : int or tuple of shape (2,)
        Number of different initial sets of observations from which to
        run the algorithm. This parameter should be a strictly positive
        integer.
        Instead of giving a number of trials to perform, one can provide a
        list of initial estimates that will be used to iteratively run
        c_step procedures. In this case:
        - n_trials[0]: array-like, shape (n_trials, n_features)
          is the list of `n_trials` initial location estimates
        - n_trials[1]: array-like, shape (n_trials, n_features, n_features)
          is the list of `n_trials` initial covariances estimates

    select : int, default=1
        Number of best candidates results to return. This parameter must be
        a strictly positive integer.

    n_iter : int, default=30
        Maximum number of iterations for the c_step procedure.
        (2 is enough to be close to the final solution. "Never" exceeds 20).
        This parameter must be a strictly positive integer.

    verbose : bool, default=False
        Control the output verbosity.

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return an array of shape (n_features, n_features).

    random_state : int, RandomState instance or None, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    See Also
    ---------
    c_step

    Returns
    -------
    best_locations : ndarray of shape (select, n_features)
        The `select` location estimates computed from the `select` best
        supports found in the data set (`X`).

    best_covariances : ndarray of shape (select, n_features, n_features)
        The `select` covariance estimates computed from the `select`
        best supports found in the data set (`X`).

    best_supports : ndarray of shape (select, n_samples)
        The `select` best supports found in the data set (`X`).

    References
    ----------
    .. [RV] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    """
    random_state = check_random_state(random_state)

    if isinstance(n_trials, Integral):
        run_from_estimates = False
    elif isinstance(n_trials, tuple):
        run_from_estimates = True
        estimates_list = n_trials
        n_trials = estimates_list[0].shape[0]
    else:
        raise TypeError(
            "Invalid 'n_trials' parameter, expected tuple or  integer, got %s (%s)"
            % (n_trials, type(n_trials))
        )

    # compute `n_trials` location and shape estimates candidates in the subset
    all_estimates = []
    if not run_from_estimates:
        # perform `n_trials` computations from random initial supports
        for j in range(n_trials):
            all_estimates.append(
                _c_step(
                    X,
                    n_support,
                    remaining_iterations=n_iter,
                    verbose=verbose,
                    cov_computation_method=cov_computation_method,
                    random_state=random_state,
                )
            )
    else:
        # perform computations from every given initial estimates
        for j in range(n_trials):
            initial_estimates = (estimates_list[0][j], estimates_list[1][j])
            all_estimates.append(
                _c_step(
                    X,
                    n_support,
                    remaining_iterations=n_iter,
                    initial_estimates=initial_estimates,
                    verbose=verbose,
                    cov_computation_method=cov_computation_method,
                    random_state=random_state,
                )
            )
    all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = zip(
        *all_estimates
    )
    # find the `n_best` best results among the `n_trials` ones
    index_best = np.argsort(all_dets_sub)[:select]
    best_locations = np.asarray(all_locs_sub)[index_best]
    best_covariances = np.asarray(all_covs_sub)[index_best]
    best_supports = np.asarray(all_supports_sub)[index_best]
    best_ds = np.asarray(all_ds_sub)[index_best]

    return best_locations, best_covariances, best_supports, best_ds


def fast_mcd(
    X,
    support_fraction=None,
    cov_computation_method=empirical_covariance,
    random_state=None,
):
    """Estimate the Minimum Covariance Determinant matrix.

    Read more in the :ref:`User Guide <robust_covariance>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        The data matrix, with p features and n samples.

    support_fraction : float, default=None
        The proportion of points to be included in the support of the raw
        MCD estimate. Default is `None`, which implies that the minimum
        value of `support_fraction` will be used within the algorithm:
        `(n_samples + n_features + 1) / 2 * n_samples`. This parameter must be
        in the range (0, 1).

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return an array of shape (n_features, n_features).

    random_state : int, RandomState instance or None, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    location : ndarray of shape (n_features,)
        Robust location of the data.

    covariance : ndarray of shape (n_features, n_features)
        Robust covariance of the features.

    support : ndarray of shape (n_samples,), dtype=bool
        A mask of the observations that have been used to compute
        the robust location and covariance estimates of the data set.

    Notes
    -----
    The FastMCD algorithm has been introduced by Rousseuw and Van Driessen
    in "A Fast Algorithm for the Minimum Covariance Determinant Estimator,
    1999, American Statistical Association and the American Society
    for Quality, TECHNOMETRICS".
    The principle is to compute robust estimates and random subsets before
    pooling them into a larger subsets, and finally into the full data set.
    Depending on the size of the initial sample, we have one, two or three
    such computation levels.

    Note that only raw estimates are returned. If one is interested in
    the correction and reweighting steps described in [RouseeuwVan]_,
    see the MinCovDet object.

    References
    ----------

    .. [RouseeuwVan] A Fast Algorithm for the Minimum Covariance
        Determinant Estimator, 1999, American Statistical Association
        and the American Society for Quality, TECHNOMETRICS

    .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun,
        Asymptotics For The Minimum Covariance Determinant Estimator,
        The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400
    """
    random_state = check_random_state(random_state)

    X = check_array(X, ensure_min_samples=2, estimator="fast_mcd")
    n_samples, n_features = X.shape

    # minimum breakdown value
    if support_fraction is None:
        n_support = int(np.ceil(0.5 * (n_samples + n_features + 1)))
    else:
        n_support = int(support_fraction * n_samples)

    # 1-dimensional case quick computation
    # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust
    #  Regression and Outlier Detection, John Wiley & Sons, chapter 4)
    if n_features == 1:
        if n_support < n_samples:
            # find the sample shortest halves
            X_sorted = np.sort(np.ravel(X))
            diff = X_sorted[n_support:] - X_sorted[: (n_samples - n_support)]
            halves_start = np.where(diff == np.min(diff))[0]
            # take the middle points' mean to get the robust location estimate
            location = (
                0.5
                * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean()
            )
            support = np.zeros(n_samples, dtype=bool)
            X_centered = X - location
            support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True
            covariance = np.asarray([[np.var(X[support])]])
            location = np.array([location])
            # get precision matrix in an optimized way
            precision = linalg.pinvh(covariance)
            dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
        else:
            support = np.ones(n_samples, dtype=bool)
            covariance = np.asarray([[np.var(X)]])
            location = np.asarray([np.mean(X)])
            X_centered = X - location
            # get precision matrix in an optimized way
            precision = linalg.pinvh(covariance)
            dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
    # Starting FastMCD algorithm for p-dimensional case
    if (n_samples > 500) and (n_features > 1):
        # 1. Find candidate supports on subsets
        # a. split the set in subsets of size ~ 300
        n_subsets = n_samples // 300
        n_samples_subsets = n_samples // n_subsets
        samples_shuffle = random_state.permutation(n_samples)
        h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples))))
        # b. perform a total of 500 trials
        n_trials_tot = 500
        # c. select 10 best (location, covariance) for each subset
        n_best_sub = 10
        n_trials = max(10, n_trials_tot // n_subsets)
        n_best_tot = n_subsets * n_best_sub
        all_best_locations = np.zeros((n_best_tot, n_features))
        try:
            all_best_covariances = np.zeros((n_best_tot, n_features, n_features))
        except MemoryError:
            # The above is too big. Let's try with something much small
            # (and less optimal)
            n_best_tot = 10
            all_best_covariances = np.zeros((n_best_tot, n_features, n_features))
            n_best_sub = 2
        for i in range(n_subsets):
            low_bound = i * n_samples_subsets
            high_bound = low_bound + n_samples_subsets
            current_subset = X[samples_shuffle[low_bound:high_bound]]
            best_locations_sub, best_covariances_sub, _, _ = select_candidates(
                current_subset,
                h_subset,
                n_trials,
                select=n_best_sub,
                n_iter=2,
                cov_computation_method=cov_computation_method,
                random_state=random_state,
            )
            subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub)
            all_best_locations[subset_slice] = best_locations_sub
            all_best_covariances[subset_slice] = best_covariances_sub
        # 2. Pool the candidate supports into a merged set
        # (possibly the full dataset)
        n_samples_merged = min(1500, n_samples)
        h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples))))
        if n_samples > 1500:
            n_best_merged = 10
        else:
            n_best_merged = 1
        # find the best couples (location, covariance) on the merged set
        selection = random_state.permutation(n_samples)[:n_samples_merged]
        locations_merged, covariances_merged, supports_merged, d = select_candidates(
            X[selection],
            h_merged,
            n_trials=(all_best_locations, all_best_covariances),
            select=n_best_merged,
            cov_computation_method=cov_computation_method,
            random_state=random_state,
        )
        # 3. Finally get the overall best (locations, covariance) couple
        if n_samples < 1500:
            # directly get the best couple (location, covariance)
            location = locations_merged[0]
            covariance = covariances_merged[0]
            support = np.zeros(n_samples, dtype=bool)
            dist = np.zeros(n_samples)
            support[selection] = supports_merged[0]
            dist[selection] = d[0]
        else:
            # select the best couple on the full dataset
            locations_full, covariances_full, supports_full, d = select_candidates(
                X,
                n_support,
                n_trials=(locations_merged, covariances_merged),
                select=1,
                cov_computation_method=cov_computation_method,
                random_state=random_state,
            )
            location = locations_full[0]
            covariance = covariances_full[0]
            support = supports_full[0]
            dist = d[0]
    elif n_features > 1:
        # 1. Find the 10 best couples (location, covariance)
        # considering two iterations
        n_trials = 30
        n_best = 10
        locations_best, covariances_best, _, _ = select_candidates(
            X,
            n_support,
            n_trials=n_trials,
            select=n_best,
            n_iter=2,
            cov_computation_method=cov_computation_method,
            random_state=random_state,
        )
        # 2. Select the best couple on the full dataset amongst the 10
        locations_full, covariances_full, supports_full, d = select_candidates(
            X,
            n_support,
            n_trials=(locations_best, covariances_best),
            select=1,
            cov_computation_method=cov_computation_method,
            random_state=random_state,
        )
        location = locations_full[0]
        covariance = covariances_full[0]
        support = supports_full[0]
        dist = d[0]

    return location, covariance, support, dist


class MinCovDet(EmpiricalCovariance):
    """Minimum Covariance Determinant (MCD): robust estimator of covariance.

    The Minimum Covariance Determinant covariance estimator is to be applied
    on Gaussian-distributed data, but could still be relevant on data
    drawn from a unimodal, symmetric distribution. It is not meant to be used
    with multi-modal data (the algorithm used to fit a MinCovDet object is
    likely to fail in such a case).
    One should consider projection pursuit methods to deal with multi-modal
    datasets.

    Read more in the :ref:`User Guide <robust_covariance>`.

    Parameters
    ----------
    store_precision : bool, default=True
        Specify if the estimated precision is stored.

    assume_centered : bool, default=False
        If True, the support of the robust location and the covariance
        estimates is computed, and a covariance estimate is recomputed from
        it, without centering the data.
        Useful to work with data whose mean is significantly equal to
        zero but is not exactly zero.
        If False, the robust location and covariance are directly computed
        with the FastMCD algorithm without additional treatment.

    support_fraction : float, default=None
        The proportion of points to be included in the support of the raw
        MCD estimate. Default is None, which implies that the minimum
        value of support_fraction will be used within the algorithm:
        `(n_samples + n_features + 1) / 2 * n_samples`. The parameter must be
        in the range (0, 1].

    random_state : int, RandomState instance or None, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    raw_location_ : ndarray of shape (n_features,)
        The raw robust estimated location before correction and re-weighting.

    raw_covariance_ : ndarray of shape (n_features, n_features)
        The raw robust estimated covariance before correction and re-weighting.

    raw_support_ : ndarray of shape (n_samples,)
        A mask of the observations that have been used to compute
        the raw robust estimates of location and shape, before correction
        and re-weighting.

    location_ : ndarray of shape (n_features,)
        Estimated robust location.

    covariance_ : ndarray of shape (n_features, n_features)
        Estimated robust covariance matrix.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.
        (stored only if store_precision is True)

    support_ : ndarray of shape (n_samples,)
        A mask of the observations that have been used to compute
        the robust estimates of location and shape.

    dist_ : ndarray of shape (n_samples,)
        Mahalanobis distances of the training set (on which :meth:`fit` is
        called) observations.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    EllipticEnvelope : An object for detecting outliers in
        a Gaussian distributed dataset.
    EmpiricalCovariance : Maximum likelihood covariance estimator.
    GraphicalLasso : Sparse inverse covariance estimation
        with an l1-penalized estimator.
    GraphicalLassoCV : Sparse inverse covariance with cross-validated
        choice of the l1 penalty.
    LedoitWolf : LedoitWolf Estimator.
    OAS : Oracle Approximating Shrinkage Estimator.
    ShrunkCovariance : Covariance estimator with shrinkage.

    References
    ----------

    .. [Rouseeuw1984] P. J. Rousseeuw. Least median of squares regression.
        J. Am Stat Ass, 79:871, 1984.
    .. [Rousseeuw] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    .. [ButlerDavies] R. W. Butler, P. L. Davies and M. Jhun,
        Asymptotics For The Minimum Covariance Determinant Estimator,
        The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import MinCovDet
    >>> from sklearn.datasets import make_gaussian_quantiles
    >>> real_cov = np.array([[.8, .3],
    ...                      [.3, .4]])
    >>> rng = np.random.RandomState(0)
    >>> X = rng.multivariate_normal(mean=[0, 0],
    ...                                   cov=real_cov,
    ...                                   size=500)
    >>> cov = MinCovDet(random_state=0).fit(X)
    >>> cov.covariance_
    array([[0.7411..., 0.2535...],
           [0.2535..., 0.3053...]])
    >>> cov.location_
    array([0.0813... , 0.0427...])
    """

    _parameter_constraints: dict = {
        **EmpiricalCovariance._parameter_constraints,
        "support_fraction": [Interval(Real, 0, 1, closed="right"), None],
        "random_state": ["random_state"],
    }
    _nonrobust_covariance = staticmethod(empirical_covariance)

    def __init__(
        self,
        *,
        store_precision=True,
        assume_centered=False,
        support_fraction=None,
        random_state=None,
    ):
        self.store_precision = store_precision
        self.assume_centered = assume_centered
        self.support_fraction = support_fraction
        self.random_state = random_state

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Fit a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        X = validate_data(self, X, ensure_min_samples=2, estimator="MinCovDet")
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn(
                "The covariance matrix associated to your dataset is not full rank"
            )
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X,
            support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state,
        )
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(
                X[raw_support], assume_centered=True
            )
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self

    def correct_covariance(self, data):
        """Apply a correction to raw Minimum Covariance Determinant estimates.

        Correction using the empirical correction factor suggested
        by Rousseeuw and Van Driessen in [RVD]_.

        Parameters
        ----------
        data : array-like of shape (n_samples, n_features)
            The data matrix, with p features and n samples.
            The data set must be the one which was used to compute
            the raw estimates.

        Returns
        -------
        covariance_corrected : ndarray of shape (n_features, n_features)
            Corrected robust covariance estimate.

        References
        ----------

        .. [RVD] A Fast Algorithm for the Minimum Covariance
            Determinant Estimator, 1999, American Statistical Association
            and the American Society for Quality, TECHNOMETRICS
        """

        # Check that the covariance of the support data is not equal to 0.
        # Otherwise self.dist_ = 0 and thus correction = 0.
        n_samples = len(self.dist_)
        n_support = np.sum(self.support_)
        if n_support < n_samples and np.allclose(self.raw_covariance_, 0):
            raise ValueError(
                "The covariance matrix of the support data "
                "is equal to 0, try to increase support_fraction"
            )
        correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5)
        covariance_corrected = self.raw_covariance_ * correction
        self.dist_ /= correction
        return covariance_corrected

    def reweight_covariance(self, data):
        """Re-weight raw Minimum Covariance Determinant estimates.

        Re-weight observations using Rousseeuw's method (equivalent to
        deleting outlying observations from the data set before
        computing location and covariance estimates) described
        in [RVDriessen]_.

        Parameters
        ----------
        data : array-like of shape (n_samples, n_features)
            The data matrix, with p features and n samples.
            The data set must be the one which was used to compute
            the raw estimates.

        Returns
        -------
        location_reweighted : ndarray of shape (n_features,)
            Re-weighted robust location estimate.

        covariance_reweighted : ndarray of shape (n_features, n_features)
            Re-weighted robust covariance estimate.

        support_reweighted : ndarray of shape (n_samples,), dtype=bool
            A mask of the observations that have been used to compute
            the re-weighted robust location and covariance estimates.

        References
        ----------

        .. [RVDriessen] A Fast Algorithm for the Minimum Covariance
            Determinant Estimator, 1999, American Statistical Association
            and the American Society for Quality, TECHNOMETRICS
        """
        n_samples, n_features = data.shape
        mask = self.dist_ < chi2(n_features).isf(0.025)
        if self.assume_centered:
            location_reweighted = np.zeros(n_features)
        else:
            location_reweighted = data[mask].mean(0)
        covariance_reweighted = self._nonrobust_covariance(
            data[mask], assume_centered=self.assume_centered
        )
        support_reweighted = np.zeros(n_samples, dtype=bool)
        support_reweighted[mask] = True
        self._set_covariance(covariance_reweighted)
        self.location_ = location_reweighted
        self.support_ = support_reweighted
        X_centered = data - self.location_
        self.dist_ = np.sum(np.dot(X_centered, self.get_precision()) * X_centered, 1)
        return location_reweighted, covariance_reweighted, support_reweighted