File size: 11,192 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""Testing for Spectral Clustering methods"""

import pickle
import re

import numpy as np
import pytest
from scipy.linalg import LinAlgError

from sklearn.cluster import SpectralClustering, spectral_clustering
from sklearn.cluster._spectral import cluster_qr, discretize
from sklearn.datasets import make_blobs
from sklearn.feature_extraction import img_to_graph
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel
from sklearn.neighbors import NearestNeighbors
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import COO_CONTAINERS, CSR_CONTAINERS

try:
    from pyamg import smoothed_aggregation_solver  # noqa

    amg_loaded = True
except ImportError:
    amg_loaded = False

centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
    n_samples=60,
    n_features=2,
    centers=centers,
    cluster_std=0.4,
    shuffle=True,
    random_state=0,
)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("eigen_solver", ("arpack", "lobpcg"))
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering(eigen_solver, assign_labels, csr_container):
    S = np.array(
        [
            [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
            [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
            [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
            [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
            [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
            [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
            [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
        ]
    )

    for mat in (S, csr_container(S)):
        model = SpectralClustering(
            random_state=0,
            n_clusters=2,
            affinity="precomputed",
            eigen_solver=eigen_solver,
            assign_labels=assign_labels,
        ).fit(mat)
        labels = model.labels_
        if labels[0] == 0:
            labels = 1 - labels

        assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1

        model_copy = pickle.loads(pickle.dumps(model))
        assert model_copy.n_clusters == model.n_clusters
        assert model_copy.eigen_solver == model.eigen_solver
        assert_array_equal(model_copy.labels_, model.labels_)


@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering_sparse(assign_labels, coo_container):
    X, y = make_blobs(
        n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )

    S = rbf_kernel(X, gamma=1)
    S = np.maximum(S - 1e-4, 0)
    S = coo_container(S)

    labels = (
        SpectralClustering(
            random_state=0,
            n_clusters=2,
            affinity="precomputed",
            assign_labels=assign_labels,
        )
        .fit(S)
        .labels_
    )
    assert adjusted_rand_score(y, labels) == 1


def test_precomputed_nearest_neighbors_filtering():
    # Test precomputed graph filtering when containing too many neighbors
    X, y = make_blobs(
        n_samples=200, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )

    n_neighbors = 2
    results = []
    for additional_neighbors in [0, 10]:
        nn = NearestNeighbors(n_neighbors=n_neighbors + additional_neighbors).fit(X)
        graph = nn.kneighbors_graph(X, mode="connectivity")
        labels = (
            SpectralClustering(
                random_state=0,
                n_clusters=2,
                affinity="precomputed_nearest_neighbors",
                n_neighbors=n_neighbors,
            )
            .fit(graph)
            .labels_
        )
        results.append(labels)

    assert_array_equal(results[0], results[1])


def test_affinities():
    # Note: in the following, random_state has been selected to have
    # a dataset that yields a stable eigen decomposition both when built
    # on OSX and Linux
    X, y = make_blobs(
        n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )
    # nearest neighbors affinity
    sp = SpectralClustering(n_clusters=2, affinity="nearest_neighbors", random_state=0)
    with pytest.warns(UserWarning, match="not fully connected"):
        sp.fit(X)
    assert adjusted_rand_score(y, sp.labels_) == 1

    sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0)
    labels = sp.fit(X).labels_
    assert adjusted_rand_score(y, labels) == 1

    X = check_random_state(10).rand(10, 5) * 10

    kernels_available = kernel_metrics()
    for kern in kernels_available:
        # Additive chi^2 gives a negative similarity matrix which
        # doesn't make sense for spectral clustering
        if kern != "additive_chi2":
            sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0)
            labels = sp.fit(X).labels_
            assert (X.shape[0],) == labels.shape

    sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0)
    labels = sp.fit(X).labels_
    assert (X.shape[0],) == labels.shape

    def histogram(x, y, **kwargs):
        # Histogram kernel implemented as a callable.
        assert kwargs == {}  # no kernel_params that we didn't ask for
        return np.minimum(x, y).sum()

    sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0)
    labels = sp.fit(X).labels_
    assert (X.shape[0],) == labels.shape


def test_cluster_qr():
    # cluster_qr by itself should not be used for clustering generic data
    # other than the rows of the eigenvectors within spectral clustering,
    # but cluster_qr must still preserve the labels for different dtypes
    # of the generic fixed input even if the labels may be meaningless.
    random_state = np.random.RandomState(seed=8)
    n_samples, n_components = 10, 5
    data = random_state.randn(n_samples, n_components)
    labels_float64 = cluster_qr(data.astype(np.float64))
    # Each sample is assigned a cluster identifier
    assert labels_float64.shape == (n_samples,)
    # All components should be covered by the assignment
    assert np.array_equal(np.unique(labels_float64), np.arange(n_components))
    # Single precision data should yield the same cluster assignments
    labels_float32 = cluster_qr(data.astype(np.float32))
    assert np.array_equal(labels_float64, labels_float32)


def test_cluster_qr_permutation_invariance():
    # cluster_qr must be invariant to sample permutation.
    random_state = np.random.RandomState(seed=8)
    n_samples, n_components = 100, 5
    data = random_state.randn(n_samples, n_components)
    perm = random_state.permutation(n_samples)
    assert np.array_equal(
        cluster_qr(data)[perm],
        cluster_qr(data[perm]),
    )


@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("n_samples", [50, 100, 150, 500])
def test_discretize(n_samples, coo_container):
    # Test the discretize using a noise assignment matrix
    random_state = np.random.RandomState(seed=8)
    for n_class in range(2, 10):
        # random class labels
        y_true = random_state.randint(0, n_class + 1, n_samples)
        y_true = np.array(y_true, float)
        # noise class assignment matrix
        y_indicator = coo_container(
            (np.ones(n_samples), (np.arange(n_samples), y_true)),
            shape=(n_samples, n_class + 1),
        )
        y_true_noisy = y_indicator.toarray() + 0.1 * random_state.randn(
            n_samples, n_class + 1
        )
        y_pred = discretize(y_true_noisy, random_state=random_state)
        assert adjusted_rand_score(y_true, y_pred) > 0.8


def test_spectral_clustering_with_arpack_amg_solvers():
    # Test that spectral_clustering is the same for arpack and amg solver
    # Based on toy example from plot_segmentation_toy.py

    # a small two coin image
    x, y = np.indices((40, 40))

    center1, center2 = (14, 12), (20, 25)
    radius1, radius2 = 8, 7

    circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1**2
    circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2**2

    circles = circle1 | circle2
    mask = circles.copy()
    img = circles.astype(float)

    graph = img_to_graph(img, mask=mask)
    graph.data = np.exp(-graph.data / graph.data.std())

    labels_arpack = spectral_clustering(
        graph, n_clusters=2, eigen_solver="arpack", random_state=0
    )

    assert len(np.unique(labels_arpack)) == 2

    if amg_loaded:
        labels_amg = spectral_clustering(
            graph, n_clusters=2, eigen_solver="amg", random_state=0
        )
        assert adjusted_rand_score(labels_arpack, labels_amg) == 1
    else:
        with pytest.raises(ValueError):
            spectral_clustering(graph, n_clusters=2, eigen_solver="amg", random_state=0)


def test_n_components():
    # Test that after adding n_components, result is different and
    # n_components = n_clusters by default
    X, y = make_blobs(
        n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )
    sp = SpectralClustering(n_clusters=2, random_state=0)
    labels = sp.fit(X).labels_
    # set n_components = n_cluster and test if result is the same
    labels_same_ncomp = (
        SpectralClustering(n_clusters=2, n_components=2, random_state=0).fit(X).labels_
    )
    # test that n_components=n_clusters by default
    assert_array_equal(labels, labels_same_ncomp)

    # test that n_components affect result
    # n_clusters=8 by default, and set n_components=2
    labels_diff_ncomp = (
        SpectralClustering(n_components=2, random_state=0).fit(X).labels_
    )
    assert not np.array_equal(labels, labels_diff_ncomp)


@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_verbose(assign_labels, capsys):
    # Check verbose mode of KMeans for better coverage.
    X, y = make_blobs(
        n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
    )

    SpectralClustering(n_clusters=2, random_state=42, verbose=1).fit(X)

    captured = capsys.readouterr()

    assert re.search(r"Computing label assignment using", captured.out)

    if assign_labels == "kmeans":
        assert re.search(r"Initialization complete", captured.out)
        assert re.search(r"Iteration [0-9]+, inertia", captured.out)


def test_spectral_clustering_np_matrix_raises():
    """Check that spectral_clustering raises an informative error when passed
    a np.matrix. See #10993"""
    X = np.matrix([[0.0, 2.0], [2.0, 0.0]])

    msg = r"np\.matrix is not supported. Please convert to a numpy array"
    with pytest.raises(TypeError, match=msg):
        spectral_clustering(X)


def test_spectral_clustering_not_infinite_loop(capsys, monkeypatch):
    """Check that discretize raises LinAlgError when svd never converges.

    Non-regression test for #21380
    """

    def new_svd(*args, **kwargs):
        raise LinAlgError()

    monkeypatch.setattr(np.linalg, "svd", new_svd)
    vectors = np.ones((10, 4))

    with pytest.raises(LinAlgError, match="SVD did not converge"):
        discretize(vectors)