File size: 19,400 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
"""
Tests for HDBSCAN clustering algorithm
Based on the DBSCAN test code
"""

import numpy as np
import pytest
from scipy import stats
from scipy.spatial import distance

from sklearn.cluster import HDBSCAN
from sklearn.cluster._hdbscan._tree import (
    CONDENSED_dtype,
    _condense_tree,
    _do_labelling,
)
from sklearn.cluster._hdbscan.hdbscan import _OUTLIER_ENCODING
from sklearn.datasets import make_blobs
from sklearn.metrics import fowlkes_mallows_score
from sklearn.metrics.pairwise import _VALID_METRICS, euclidean_distances
from sklearn.neighbors import BallTree, KDTree
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS

X, y = make_blobs(n_samples=200, random_state=10)
X, y = shuffle(X, y, random_state=7)
X = StandardScaler().fit_transform(X)

ALGORITHMS = [
    "kd_tree",
    "ball_tree",
    "brute",
    "auto",
]

OUTLIER_SET = {-1} | {out["label"] for _, out in _OUTLIER_ENCODING.items()}


def check_label_quality(labels, threshold=0.99):
    n_clusters = len(set(labels) - OUTLIER_SET)
    assert n_clusters == 3
    assert fowlkes_mallows_score(labels, y) > threshold


@pytest.mark.parametrize("outlier_type", _OUTLIER_ENCODING)
def test_outlier_data(outlier_type):
    """
    Tests if np.inf and np.nan data are each treated as special outliers.
    """
    outlier = {
        "infinite": np.inf,
        "missing": np.nan,
    }[outlier_type]
    prob_check = {
        "infinite": lambda x, y: x == y,
        "missing": lambda x, y: np.isnan(x),
    }[outlier_type]
    label = _OUTLIER_ENCODING[outlier_type]["label"]
    prob = _OUTLIER_ENCODING[outlier_type]["prob"]

    X_outlier = X.copy()
    X_outlier[0] = [outlier, 1]
    X_outlier[5] = [outlier, outlier]
    model = HDBSCAN().fit(X_outlier)

    (missing_labels_idx,) = (model.labels_ == label).nonzero()
    assert_array_equal(missing_labels_idx, [0, 5])

    (missing_probs_idx,) = (prob_check(model.probabilities_, prob)).nonzero()
    assert_array_equal(missing_probs_idx, [0, 5])

    clean_indices = list(range(1, 5)) + list(range(6, 200))
    clean_model = HDBSCAN().fit(X_outlier[clean_indices])
    assert_array_equal(clean_model.labels_, model.labels_[clean_indices])


def test_hdbscan_distance_matrix():
    """
    Tests that HDBSCAN works with precomputed distance matrices, and throws the
    appropriate errors when needed.
    """
    D = euclidean_distances(X)
    D_original = D.copy()
    labels = HDBSCAN(metric="precomputed", copy=True).fit_predict(D)

    assert_allclose(D, D_original)
    check_label_quality(labels)

    msg = r"The precomputed distance matrix.*has shape"
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(metric="precomputed", copy=True).fit_predict(X)

    msg = r"The precomputed distance matrix.*values"
    # Ensure the matrix is not symmetric
    D[0, 1] = 10
    D[1, 0] = 1
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(metric="precomputed").fit_predict(D)


@pytest.mark.parametrize("sparse_constructor", [*CSR_CONTAINERS, *CSC_CONTAINERS])
def test_hdbscan_sparse_distance_matrix(sparse_constructor):
    """
    Tests that HDBSCAN works with sparse distance matrices.
    """
    D = distance.squareform(distance.pdist(X))
    D /= np.max(D)

    threshold = stats.scoreatpercentile(D.flatten(), 50)

    D[D >= threshold] = 0.0
    D = sparse_constructor(D)
    D.eliminate_zeros()

    labels = HDBSCAN(metric="precomputed").fit_predict(D)
    check_label_quality(labels)


def test_hdbscan_feature_array():
    """
    Tests that HDBSCAN works with feature array, including an arbitrary
    goodness of fit check. Note that the check is a simple heuristic.
    """
    labels = HDBSCAN().fit_predict(X)

    # Check that clustering is arbitrarily good
    # This is a heuristic to guard against regression
    check_label_quality(labels)


@pytest.mark.parametrize("algo", ALGORITHMS)
@pytest.mark.parametrize("metric", _VALID_METRICS)
def test_hdbscan_algorithms(algo, metric):
    """
    Tests that HDBSCAN works with the expected combinations of algorithms and
    metrics, or raises the expected errors.
    """
    labels = HDBSCAN(algorithm=algo).fit_predict(X)
    check_label_quality(labels)

    # Validation for brute is handled by `pairwise_distances`
    if algo in ("brute", "auto"):
        return

    ALGOS_TREES = {
        "kd_tree": KDTree,
        "ball_tree": BallTree,
    }
    metric_params = {
        "mahalanobis": {"V": np.eye(X.shape[1])},
        "seuclidean": {"V": np.ones(X.shape[1])},
        "minkowski": {"p": 2},
        "wminkowski": {"p": 2, "w": np.ones(X.shape[1])},
    }.get(metric, None)

    hdb = HDBSCAN(
        algorithm=algo,
        metric=metric,
        metric_params=metric_params,
    )

    if metric not in ALGOS_TREES[algo].valid_metrics:
        with pytest.raises(ValueError):
            hdb.fit(X)
    elif metric == "wminkowski":
        with pytest.warns(FutureWarning):
            hdb.fit(X)
    else:
        hdb.fit(X)


def test_dbscan_clustering():
    """
    Tests that HDBSCAN can generate a sufficiently accurate dbscan clustering.
    This test is more of a sanity check than a rigorous evaluation.
    """
    clusterer = HDBSCAN().fit(X)
    labels = clusterer.dbscan_clustering(0.3)

    # We use a looser threshold due to dbscan producing a more constrained
    # clustering representation
    check_label_quality(labels, threshold=0.92)


@pytest.mark.parametrize("cut_distance", (0.1, 0.5, 1))
def test_dbscan_clustering_outlier_data(cut_distance):
    """
    Tests if np.inf and np.nan data are each treated as special outliers.
    """
    missing_label = _OUTLIER_ENCODING["missing"]["label"]
    infinite_label = _OUTLIER_ENCODING["infinite"]["label"]

    X_outlier = X.copy()
    X_outlier[0] = [np.inf, 1]
    X_outlier[2] = [1, np.nan]
    X_outlier[5] = [np.inf, np.nan]
    model = HDBSCAN().fit(X_outlier)
    labels = model.dbscan_clustering(cut_distance=cut_distance)

    missing_labels_idx = np.flatnonzero(labels == missing_label)
    assert_array_equal(missing_labels_idx, [2, 5])

    infinite_labels_idx = np.flatnonzero(labels == infinite_label)
    assert_array_equal(infinite_labels_idx, [0])

    clean_idx = list(set(range(200)) - set(missing_labels_idx + infinite_labels_idx))
    clean_model = HDBSCAN().fit(X_outlier[clean_idx])
    clean_labels = clean_model.dbscan_clustering(cut_distance=cut_distance)
    assert_array_equal(clean_labels, labels[clean_idx])


def test_hdbscan_best_balltree_metric():
    """
    Tests that HDBSCAN using `BallTree` works.
    """
    labels = HDBSCAN(
        metric="seuclidean", metric_params={"V": np.ones(X.shape[1])}
    ).fit_predict(X)
    check_label_quality(labels)


def test_hdbscan_no_clusters():
    """
    Tests that HDBSCAN correctly does not generate a valid cluster when the
    `min_cluster_size` is too large for the data.
    """
    labels = HDBSCAN(min_cluster_size=len(X) - 1).fit_predict(X)
    assert set(labels).issubset(OUTLIER_SET)


def test_hdbscan_min_cluster_size():
    """
    Test that the smallest non-noise cluster has at least `min_cluster_size`
    many points
    """
    for min_cluster_size in range(2, len(X), 1):
        labels = HDBSCAN(min_cluster_size=min_cluster_size).fit_predict(X)
        true_labels = [label for label in labels if label != -1]
        if len(true_labels) != 0:
            assert np.min(np.bincount(true_labels)) >= min_cluster_size


def test_hdbscan_callable_metric():
    """
    Tests that HDBSCAN works when passed a callable metric.
    """
    metric = distance.euclidean
    labels = HDBSCAN(metric=metric).fit_predict(X)
    check_label_quality(labels)


@pytest.mark.parametrize("tree", ["kd_tree", "ball_tree"])
def test_hdbscan_precomputed_non_brute(tree):
    """
    Tests that HDBSCAN correctly raises an error when passing precomputed data
    while requesting a tree-based algorithm.
    """
    hdb = HDBSCAN(metric="precomputed", algorithm=tree)
    msg = "precomputed is not a valid metric for"
    with pytest.raises(ValueError, match=msg):
        hdb.fit(X)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_hdbscan_sparse(csr_container):
    """
    Tests that HDBSCAN works correctly when passing sparse feature data.
    Evaluates correctness by comparing against the same data passed as a dense
    array.
    """

    dense_labels = HDBSCAN().fit(X).labels_
    check_label_quality(dense_labels)

    _X_sparse = csr_container(X)
    X_sparse = _X_sparse.copy()
    sparse_labels = HDBSCAN().fit(X_sparse).labels_
    assert_array_equal(dense_labels, sparse_labels)

    # Compare that the sparse and dense non-precomputed routines return the same labels
    # where the 0th observation contains the outlier.
    for outlier_val, outlier_type in ((np.inf, "infinite"), (np.nan, "missing")):
        X_dense = X.copy()
        X_dense[0, 0] = outlier_val
        dense_labels = HDBSCAN().fit(X_dense).labels_
        check_label_quality(dense_labels)
        assert dense_labels[0] == _OUTLIER_ENCODING[outlier_type]["label"]

        X_sparse = _X_sparse.copy()
        X_sparse[0, 0] = outlier_val
        sparse_labels = HDBSCAN().fit(X_sparse).labels_
        assert_array_equal(dense_labels, sparse_labels)

    msg = "Sparse data matrices only support algorithm `brute`."
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(metric="euclidean", algorithm="ball_tree").fit(X_sparse)


@pytest.mark.parametrize("algorithm", ALGORITHMS)
def test_hdbscan_centers(algorithm):
    """
    Tests that HDBSCAN centers are calculated and stored properly, and are
    accurate to the data.
    """
    centers = [(0.0, 0.0), (3.0, 3.0)]
    H, _ = make_blobs(n_samples=2000, random_state=0, centers=centers, cluster_std=0.5)
    hdb = HDBSCAN(store_centers="both").fit(H)

    for center, centroid, medoid in zip(centers, hdb.centroids_, hdb.medoids_):
        assert_allclose(center, centroid, rtol=1, atol=0.05)
        assert_allclose(center, medoid, rtol=1, atol=0.05)

    # Ensure that nothing is done for noise
    hdb = HDBSCAN(
        algorithm=algorithm, store_centers="both", min_cluster_size=X.shape[0]
    ).fit(X)
    assert hdb.centroids_.shape[0] == 0
    assert hdb.medoids_.shape[0] == 0


def test_hdbscan_allow_single_cluster_with_epsilon():
    """
    Tests that HDBSCAN single-cluster selection with epsilon works correctly.
    """
    rng = np.random.RandomState(0)
    no_structure = rng.rand(150, 2)
    # without epsilon we should see many noise points as children of root.
    labels = HDBSCAN(
        min_cluster_size=5,
        cluster_selection_epsilon=0.0,
        cluster_selection_method="eom",
        allow_single_cluster=True,
    ).fit_predict(no_structure)
    unique_labels, counts = np.unique(labels, return_counts=True)
    assert len(unique_labels) == 2

    # Arbitrary heuristic. Would prefer something more precise.
    assert counts[unique_labels == -1] > 30

    # for this random seed an epsilon of 0.18 will produce exactly 2 noise
    # points at that cut in single linkage.
    labels = HDBSCAN(
        min_cluster_size=5,
        cluster_selection_epsilon=0.18,
        cluster_selection_method="eom",
        allow_single_cluster=True,
        algorithm="kd_tree",
    ).fit_predict(no_structure)
    unique_labels, counts = np.unique(labels, return_counts=True)
    assert len(unique_labels) == 2
    assert counts[unique_labels == -1] == 2


def test_hdbscan_better_than_dbscan():
    """
    Validate that HDBSCAN can properly cluster this difficult synthetic
    dataset. Note that DBSCAN fails on this (see HDBSCAN plotting
    example)
    """
    centers = [[-0.85, -0.85], [-0.85, 0.85], [3, 3], [3, -3]]
    X, y = make_blobs(
        n_samples=750,
        centers=centers,
        cluster_std=[0.2, 0.35, 1.35, 1.35],
        random_state=0,
    )
    labels = HDBSCAN().fit(X).labels_

    n_clusters = len(set(labels)) - int(-1 in labels)
    assert n_clusters == 4
    fowlkes_mallows_score(labels, y) > 0.99


@pytest.mark.parametrize(
    "kwargs, X",
    [
        ({"metric": "precomputed"}, np.array([[1, np.inf], [np.inf, 1]])),
        ({"metric": "precomputed"}, [[1, 2], [2, 1]]),
        ({}, [[1, 2], [3, 4]]),
    ],
)
def test_hdbscan_usable_inputs(X, kwargs):
    """
    Tests that HDBSCAN works correctly for array-likes and precomputed inputs
    with non-finite points.
    """
    HDBSCAN(min_samples=1, **kwargs).fit(X)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_hdbscan_sparse_distances_too_few_nonzero(csr_container):
    """
    Tests that HDBSCAN raises the correct error when there are too few
    non-zero distances.
    """
    X = csr_container(np.zeros((10, 10)))

    msg = "There exists points with fewer than"
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(metric="precomputed").fit(X)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_hdbscan_sparse_distances_disconnected_graph(csr_container):
    """
    Tests that HDBSCAN raises the correct error when the distance matrix
    has multiple connected components.
    """
    # Create symmetric sparse matrix with 2 connected components
    X = np.zeros((20, 20))
    X[:5, :5] = 1
    X[5:, 15:] = 1
    X = X + X.T
    X = csr_container(X)
    msg = "HDBSCAN cannot be perfomed on a disconnected graph"
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(metric="precomputed").fit(X)


def test_hdbscan_tree_invalid_metric():
    """
    Tests that HDBSCAN correctly raises an error for invalid metric choices.
    """
    metric_callable = lambda x: x
    msg = (
        ".* is not a valid metric for a .*-based algorithm\\. Please select a different"
        " metric\\."
    )

    # Callables are not supported for either
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(algorithm="kd_tree", metric=metric_callable).fit(X)
    with pytest.raises(ValueError, match=msg):
        HDBSCAN(algorithm="ball_tree", metric=metric_callable).fit(X)

    # The set of valid metrics for KDTree at the time of writing this test is a
    # strict subset of those supported in BallTree
    metrics_not_kd = list(set(BallTree.valid_metrics) - set(KDTree.valid_metrics))
    if len(metrics_not_kd) > 0:
        with pytest.raises(ValueError, match=msg):
            HDBSCAN(algorithm="kd_tree", metric=metrics_not_kd[0]).fit(X)


def test_hdbscan_too_many_min_samples():
    """
    Tests that HDBSCAN correctly raises an error when setting `min_samples`
    larger than the number of samples.
    """
    hdb = HDBSCAN(min_samples=len(X) + 1)
    msg = r"min_samples (.*) must be at most"
    with pytest.raises(ValueError, match=msg):
        hdb.fit(X)


def test_hdbscan_precomputed_dense_nan():
    """
    Tests that HDBSCAN correctly raises an error when providing precomputed
    distances with `np.nan` values.
    """
    X_nan = X.copy()
    X_nan[0, 0] = np.nan
    msg = "np.nan values found in precomputed-dense"
    hdb = HDBSCAN(metric="precomputed")
    with pytest.raises(ValueError, match=msg):
        hdb.fit(X_nan)


@pytest.mark.parametrize("allow_single_cluster", [True, False])
@pytest.mark.parametrize("epsilon", [0, 0.1])
def test_labelling_distinct(global_random_seed, allow_single_cluster, epsilon):
    """
    Tests that the `_do_labelling` helper function correctly assigns labels.
    """
    n_samples = 48
    X, y = make_blobs(
        n_samples,
        random_state=global_random_seed,
        # Ensure the clusters are distinct with no overlap
        centers=[
            [0, 0],
            [10, 0],
            [0, 10],
        ],
    )

    est = HDBSCAN().fit(X)
    condensed_tree = _condense_tree(
        est._single_linkage_tree_, min_cluster_size=est.min_cluster_size
    )
    clusters = {n_samples + 2, n_samples + 3, n_samples + 4}
    cluster_label_map = {n_samples + 2: 0, n_samples + 3: 1, n_samples + 4: 2}
    labels = _do_labelling(
        condensed_tree=condensed_tree,
        clusters=clusters,
        cluster_label_map=cluster_label_map,
        allow_single_cluster=allow_single_cluster,
        cluster_selection_epsilon=epsilon,
    )

    first_with_label = {_y: np.where(y == _y)[0][0] for _y in list(set(y))}
    y_to_labels = {_y: labels[first_with_label[_y]] for _y in list(set(y))}
    aligned_target = np.vectorize(y_to_labels.get)(y)
    assert_array_equal(labels, aligned_target)


def test_labelling_thresholding():
    """
    Tests that the `_do_labelling` helper function correctly thresholds the
    incoming lambda values given various `cluster_selection_epsilon` values.
    """
    n_samples = 5
    MAX_LAMBDA = 1.5
    condensed_tree = np.array(
        [
            (5, 2, MAX_LAMBDA, 1),
            (5, 1, 0.1, 1),
            (5, 0, MAX_LAMBDA, 1),
            (5, 3, 0.2, 1),
            (5, 4, 0.3, 1),
        ],
        dtype=CONDENSED_dtype,
    )
    labels = _do_labelling(
        condensed_tree=condensed_tree,
        clusters={n_samples},
        cluster_label_map={n_samples: 0, n_samples + 1: 1},
        allow_single_cluster=True,
        cluster_selection_epsilon=1,
    )
    num_noise = condensed_tree["value"] < 1
    assert sum(num_noise) == sum(labels == -1)

    labels = _do_labelling(
        condensed_tree=condensed_tree,
        clusters={n_samples},
        cluster_label_map={n_samples: 0, n_samples + 1: 1},
        allow_single_cluster=True,
        cluster_selection_epsilon=0,
    )
    # The threshold should be calculated per-sample based on the largest
    # lambda of any simbling node. In this case, all points are siblings
    # and the largest value is exactly MAX_LAMBDA.
    num_noise = condensed_tree["value"] < MAX_LAMBDA
    assert sum(num_noise) == sum(labels == -1)


@pytest.mark.parametrize("store_centers", ["centroid", "medoid"])
def test_hdbscan_error_precomputed_and_store_centers(store_centers):
    """Check that we raise an error if the centers are requested together with
    a precomputed input matrix.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/27893
    """
    rng = np.random.RandomState(0)
    X = rng.random((100, 2))
    X_dist = euclidean_distances(X)
    err_msg = "Cannot store centers when using a precomputed distance matrix."
    with pytest.raises(ValueError, match=err_msg):
        HDBSCAN(metric="precomputed", store_centers=store_centers).fit(X_dist)


@pytest.mark.parametrize("valid_algo", ["auto", "brute"])
def test_hdbscan_cosine_metric_valid_algorithm(valid_algo):
    """Test that HDBSCAN works with the "cosine" metric when the algorithm is set
    to "brute" or "auto".

    Non-regression test for issue #28631
    """
    HDBSCAN(metric="cosine", algorithm=valid_algo).fit_predict(X)


@pytest.mark.parametrize("invalid_algo", ["kd_tree", "ball_tree"])
def test_hdbscan_cosine_metric_invalid_algorithm(invalid_algo):
    """Test that HDBSCAN raises an informative error is raised when an unsupported
    algorithm is used with the "cosine" metric.
    """
    hdbscan = HDBSCAN(metric="cosine", algorithm=invalid_algo)
    with pytest.raises(ValueError, match="cosine is not a valid metric"):
        hdbscan.fit_predict(X)