File size: 44,901 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
"""Ordering Points To Identify the Clustering Structure (OPTICS)

These routines execute the OPTICS algorithm, and implement various
cluster extraction methods of the ordered list.

Authors: Shane Grigsby <[email protected]>
         Adrin Jalali <[email protected]>
         Erich Schubert <[email protected]>
         Hanmin Qin <[email protected]>
License: BSD 3 clause
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from numbers import Integral, Real

import numpy as np
from scipy.sparse import SparseEfficiencyWarning, issparse

from ..base import BaseEstimator, ClusterMixin, _fit_context
from ..exceptions import DataConversionWarning
from ..metrics import pairwise_distances
from ..metrics.pairwise import _VALID_METRICS, PAIRWISE_BOOLEAN_FUNCTIONS
from ..neighbors import NearestNeighbors
from ..utils import gen_batches
from ..utils._chunking import get_chunk_n_rows
from ..utils._param_validation import (
    HasMethods,
    Interval,
    RealNotInt,
    StrOptions,
    validate_params,
)
from ..utils.validation import check_memory, validate_data


class OPTICS(ClusterMixin, BaseEstimator):
    """Estimate clustering structure from vector array.

    OPTICS (Ordering Points To Identify the Clustering Structure), closely
    related to DBSCAN, finds core sample of high density and expands clusters
    from them [1]_. Unlike DBSCAN, keeps cluster hierarchy for a variable
    neighborhood radius. Better suited for usage on large datasets than the
    current sklearn implementation of DBSCAN.

    Clusters are then extracted using a DBSCAN-like method
    (cluster_method = 'dbscan') or an automatic
    technique proposed in [1]_ (cluster_method = 'xi').

    This implementation deviates from the original OPTICS by first performing
    k-nearest-neighborhood searches on all points to identify core sizes, then
    computing only the distances to unprocessed points when constructing the
    cluster order. Note that we do not employ a heap to manage the expansion
    candidates, so the time complexity will be O(n^2).

    Read more in the :ref:`User Guide <optics>`.

    Parameters
    ----------
    min_samples : int > 1 or float between 0 and 1, default=5
        The number of samples in a neighborhood for a point to be considered as
        a core point. Also, up and down steep regions can't have more than
        ``min_samples`` consecutive non-steep points. Expressed as an absolute
        number or a fraction of the number of samples (rounded to be at least
        2).

    max_eps : float, default=np.inf
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. Default value of ``np.inf`` will
        identify clusters across all scales; reducing ``max_eps`` will result
        in shorter run times.

    metric : str or callable, default='minkowski'
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string. If metric is
        "precomputed", `X` is assumed to be a distance matrix and must be
        square.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        Sparse matrices are only supported by scikit-learn metrics.
        See the documentation for scipy.spatial.distance for details on these
        metrics.

        .. note::
           `'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.

    p : float, default=2
        Parameter for the Minkowski metric from
        :class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    cluster_method : str, default='xi'
        The extraction method used to extract clusters using the calculated
        reachability and ordering. Possible values are "xi" and "dbscan".

    eps : float, default=None
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. By default it assumes the same value
        as ``max_eps``.
        Used only when ``cluster_method='dbscan'``.

    xi : float between 0 and 1, default=0.05
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.
        Used only when ``cluster_method='xi'``.

    predecessor_correction : bool, default=True
        Correct clusters according to the predecessors calculated by OPTICS
        [2]_. This parameter has minimal effect on most datasets.
        Used only when ``cluster_method='xi'``.

    min_cluster_size : int > 1 or float between 0 and 1, default=None
        Minimum number of samples in an OPTICS cluster, expressed as an
        absolute number or a fraction of the number of samples (rounded to be
        at least 2). If ``None``, the value of ``min_samples`` is used instead.
        Used only when ``cluster_method='xi'``.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
        - 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
        - 'brute' will use a brute-force search.
        - 'auto' (default) will attempt to decide the most appropriate
          algorithm based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
        :class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
        construction and query, as well as the memory required to store the
        tree. The optimal value depends on the nature of the problem.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the output of the computation of the tree.
        By default, no caching is done. If a string is given, it is the
        path to the caching directory.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    labels_ : ndarray of shape (n_samples,)
        Cluster labels for each point in the dataset given to fit().
        Noisy samples and points which are not included in a leaf cluster
        of ``cluster_hierarchy_`` are labeled as -1.

    reachability_ : ndarray of shape (n_samples,)
        Reachability distances per sample, indexed by object order. Use
        ``clust.reachability_[clust.ordering_]`` to access in cluster order.

    ordering_ : ndarray of shape (n_samples,)
        The cluster ordered list of sample indices.

    core_distances_ : ndarray of shape (n_samples,)
        Distance at which each sample becomes a core point, indexed by object
        order. Points which will never be core have a distance of inf. Use
        ``clust.core_distances_[clust.ordering_]`` to access in cluster order.

    predecessor_ : ndarray of shape (n_samples,)
        Point that a sample was reached from, indexed by object order.
        Seed points have a predecessor of -1.

    cluster_hierarchy_ : ndarray of shape (n_clusters, 2)
        The list of clusters in the form of ``[start, end]`` in each row, with
        all indices inclusive. The clusters are ordered according to
        ``(end, -start)`` (ascending) so that larger clusters encompassing
        smaller clusters come after those smaller ones. Since ``labels_`` does
        not reflect the hierarchy, usually
        ``len(cluster_hierarchy_) > np.unique(optics.labels_)``. Please also
        note that these indices are of the ``ordering_``, i.e.
        ``X[ordering_][start:end + 1]`` form a cluster.
        Only available when ``cluster_method='xi'``.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    DBSCAN : A similar clustering for a specified neighborhood radius (eps).
        Our implementation is optimized for runtime.

    References
    ----------
    .. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
       and Jörg Sander. "OPTICS: ordering points to identify the clustering
       structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.

    .. [2] Schubert, Erich, Michael Gertz.
       "Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
       the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.

    Examples
    --------
    >>> from sklearn.cluster import OPTICS
    >>> import numpy as np
    >>> X = np.array([[1, 2], [2, 5], [3, 6],
    ...               [8, 7], [8, 8], [7, 3]])
    >>> clustering = OPTICS(min_samples=2).fit(X)
    >>> clustering.labels_
    array([0, 0, 0, 1, 1, 1])

    For a more detailed example see
    :ref:`sphx_glr_auto_examples_cluster_plot_optics.py`.
    """

    _parameter_constraints: dict = {
        "min_samples": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="both"),
        ],
        "max_eps": [Interval(Real, 0, None, closed="both")],
        "metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
        "p": [Interval(Real, 1, None, closed="left")],
        "metric_params": [dict, None],
        "cluster_method": [StrOptions({"dbscan", "xi"})],
        "eps": [Interval(Real, 0, None, closed="both"), None],
        "xi": [Interval(Real, 0, 1, closed="both")],
        "predecessor_correction": ["boolean"],
        "min_cluster_size": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="right"),
            None,
        ],
        "algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
        "leaf_size": [Interval(Integral, 1, None, closed="left")],
        "memory": [str, HasMethods("cache"), None],
        "n_jobs": [Integral, None],
    }

    def __init__(
        self,
        *,
        min_samples=5,
        max_eps=np.inf,
        metric="minkowski",
        p=2,
        metric_params=None,
        cluster_method="xi",
        eps=None,
        xi=0.05,
        predecessor_correction=True,
        min_cluster_size=None,
        algorithm="auto",
        leaf_size=30,
        memory=None,
        n_jobs=None,
    ):
        self.max_eps = max_eps
        self.min_samples = min_samples
        self.min_cluster_size = min_cluster_size
        self.algorithm = algorithm
        self.metric = metric
        self.metric_params = metric_params
        self.p = p
        self.leaf_size = leaf_size
        self.cluster_method = cluster_method
        self.eps = eps
        self.xi = xi
        self.predecessor_correction = predecessor_correction
        self.memory = memory
        self.n_jobs = n_jobs

    @_fit_context(
        # Optics.metric is not validated yet
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y=None):
        """Perform OPTICS clustering.

        Extracts an ordered list of points and reachability distances, and
        performs initial clustering using ``max_eps`` distance specified at
        OPTICS object instantiation.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
                (n_samples, n_samples) if metric='precomputed'
            A feature array, or array of distances between samples if
            metric='precomputed'. If a sparse matrix is provided, it will be
            converted into CSR format.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Returns a fitted instance of self.
        """
        dtype = bool if self.metric in PAIRWISE_BOOLEAN_FUNCTIONS else float
        if dtype is bool and X.dtype != bool:
            msg = (
                "Data will be converted to boolean for"
                f" metric {self.metric}, to avoid this warning,"
                " you may convert the data prior to calling fit."
            )
            warnings.warn(msg, DataConversionWarning)

        X = validate_data(self, X, dtype=dtype, accept_sparse="csr")
        if self.metric == "precomputed" and issparse(X):
            X = X.copy()  # copy to avoid in-place modification
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", SparseEfficiencyWarning)
                # Set each diagonal to an explicit value so each point is its
                # own neighbor
                X.setdiag(X.diagonal())
        memory = check_memory(self.memory)

        (
            self.ordering_,
            self.core_distances_,
            self.reachability_,
            self.predecessor_,
        ) = memory.cache(compute_optics_graph)(
            X=X,
            min_samples=self.min_samples,
            algorithm=self.algorithm,
            leaf_size=self.leaf_size,
            metric=self.metric,
            metric_params=self.metric_params,
            p=self.p,
            n_jobs=self.n_jobs,
            max_eps=self.max_eps,
        )

        # Extract clusters from the calculated orders and reachability
        if self.cluster_method == "xi":
            labels_, clusters_ = cluster_optics_xi(
                reachability=self.reachability_,
                predecessor=self.predecessor_,
                ordering=self.ordering_,
                min_samples=self.min_samples,
                min_cluster_size=self.min_cluster_size,
                xi=self.xi,
                predecessor_correction=self.predecessor_correction,
            )
            self.cluster_hierarchy_ = clusters_
        elif self.cluster_method == "dbscan":
            if self.eps is None:
                eps = self.max_eps
            else:
                eps = self.eps

            if eps > self.max_eps:
                raise ValueError(
                    "Specify an epsilon smaller than %s. Got %s." % (self.max_eps, eps)
                )

            labels_ = cluster_optics_dbscan(
                reachability=self.reachability_,
                core_distances=self.core_distances_,
                ordering=self.ordering_,
                eps=eps,
            )

        self.labels_ = labels_
        return self


def _validate_size(size, n_samples, param_name):
    if size > n_samples:
        raise ValueError(
            "%s must be no greater than the number of samples (%d). Got %d"
            % (param_name, n_samples, size)
        )


# OPTICS helper functions
def _compute_core_distances_(X, neighbors, min_samples, working_memory):
    """Compute the k-th nearest neighbor of each sample.

    Equivalent to neighbors.kneighbors(X, self.min_samples)[0][:, -1]
    but with more memory efficiency.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        The data.
    neighbors : NearestNeighbors instance
        The fitted nearest neighbors estimator.
    working_memory : int, default=None
        The sought maximum memory for temporary distance matrix chunks.
        When None (default), the value of
        ``sklearn.get_config()['working_memory']`` is used.

    Returns
    -------
    core_distances : ndarray of shape (n_samples,)
        Distance at which each sample becomes a core point.
        Points which will never be core have a distance of inf.
    """
    n_samples = X.shape[0]
    core_distances = np.empty(n_samples)
    core_distances.fill(np.nan)

    chunk_n_rows = get_chunk_n_rows(
        row_bytes=16 * min_samples, max_n_rows=n_samples, working_memory=working_memory
    )
    slices = gen_batches(n_samples, chunk_n_rows)
    for sl in slices:
        core_distances[sl] = neighbors.kneighbors(X[sl], min_samples)[0][:, -1]
    return core_distances


@validate_params(
    {
        "X": [np.ndarray, "sparse matrix"],
        "min_samples": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="both"),
        ],
        "max_eps": [Interval(Real, 0, None, closed="both")],
        "metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
        "p": [Interval(Real, 0, None, closed="right"), None],
        "metric_params": [dict, None],
        "algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
        "leaf_size": [Interval(Integral, 1, None, closed="left")],
        "n_jobs": [Integral, None],
    },
    prefer_skip_nested_validation=False,  # metric is not validated yet
)
def compute_optics_graph(
    X, *, min_samples, max_eps, metric, p, metric_params, algorithm, leaf_size, n_jobs
):
    """Compute the OPTICS reachability graph.

    Read more in the :ref:`User Guide <optics>`.

    Parameters
    ----------
    X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
            (n_samples, n_samples) if metric='precomputed'
        A feature array, or array of distances between samples if
        metric='precomputed'.

    min_samples : int > 1 or float between 0 and 1
        The number of samples in a neighborhood for a point to be considered
        as a core point. Expressed as an absolute number or a fraction of the
        number of samples (rounded to be at least 2).

    max_eps : float, default=np.inf
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. Default value of ``np.inf`` will
        identify clusters across all scales; reducing ``max_eps`` will result
        in shorter run times.

    metric : str or callable, default='minkowski'
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string. If metric is
        "precomputed", X is assumed to be a distance matrix and must be square.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

        .. note::
           `'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.

    p : float, default=2
        Parameter for the Minkowski metric from
        :class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
        - 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to `fit` method. (default)

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
        :class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
        construction and query, as well as the memory required to store the
        tree. The optimal value depends on the nature of the problem.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    ordering_ : array of shape (n_samples,)
        The cluster ordered list of sample indices.

    core_distances_ : array of shape (n_samples,)
        Distance at which each sample becomes a core point, indexed by object
        order. Points which will never be core have a distance of inf. Use
        ``clust.core_distances_[clust.ordering_]`` to access in cluster order.

    reachability_ : array of shape (n_samples,)
        Reachability distances per sample, indexed by object order. Use
        ``clust.reachability_[clust.ordering_]`` to access in cluster order.

    predecessor_ : array of shape (n_samples,)
        Point that a sample was reached from, indexed by object order.
        Seed points have a predecessor of -1.

    References
    ----------
    .. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
       and Jörg Sander. "OPTICS: ordering points to identify the clustering
       structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cluster import compute_optics_graph
    >>> X = np.array([[1, 2], [2, 5], [3, 6],
    ...               [8, 7], [8, 8], [7, 3]])
    >>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
    ...     X,
    ...     min_samples=2,
    ...     max_eps=np.inf,
    ...     metric="minkowski",
    ...     p=2,
    ...     metric_params=None,
    ...     algorithm="auto",
    ...     leaf_size=30,
    ...     n_jobs=None,
    ... )
    >>> ordering
    array([0, 1, 2, 5, 3, 4])
    >>> core_distances
    array([3.16..., 1.41..., 1.41..., 1.        , 1.        ,
           4.12...])
    >>> reachability
    array([       inf, 3.16..., 1.41..., 4.12..., 1.        ,
           5.        ])
    >>> predecessor
    array([-1,  0,  1,  5,  3,  2])
    """
    n_samples = X.shape[0]
    _validate_size(min_samples, n_samples, "min_samples")
    if min_samples <= 1:
        min_samples = max(2, int(min_samples * n_samples))

    # Start all points as 'unprocessed' ##
    reachability_ = np.empty(n_samples)
    reachability_.fill(np.inf)
    predecessor_ = np.empty(n_samples, dtype=int)
    predecessor_.fill(-1)

    nbrs = NearestNeighbors(
        n_neighbors=min_samples,
        algorithm=algorithm,
        leaf_size=leaf_size,
        metric=metric,
        metric_params=metric_params,
        p=p,
        n_jobs=n_jobs,
    )

    nbrs.fit(X)
    # Here we first do a kNN query for each point, this differs from
    # the original OPTICS that only used epsilon range queries.
    # TODO: handle working_memory somehow?
    core_distances_ = _compute_core_distances_(
        X=X, neighbors=nbrs, min_samples=min_samples, working_memory=None
    )
    # OPTICS puts an upper limit on these, use inf for undefined.
    core_distances_[core_distances_ > max_eps] = np.inf
    np.around(
        core_distances_,
        decimals=np.finfo(core_distances_.dtype).precision,
        out=core_distances_,
    )

    # Main OPTICS loop. Not parallelizable. The order that entries are
    # written to the 'ordering_' list is important!
    # Note that this implementation is O(n^2) theoretically, but
    # supposedly with very low constant factors.
    processed = np.zeros(X.shape[0], dtype=bool)
    ordering = np.zeros(X.shape[0], dtype=int)
    for ordering_idx in range(X.shape[0]):
        # Choose next based on smallest reachability distance
        # (And prefer smaller ids on ties, possibly np.inf!)
        index = np.where(processed == 0)[0]
        point = index[np.argmin(reachability_[index])]

        processed[point] = True
        ordering[ordering_idx] = point
        if core_distances_[point] != np.inf:
            _set_reach_dist(
                core_distances_=core_distances_,
                reachability_=reachability_,
                predecessor_=predecessor_,
                point_index=point,
                processed=processed,
                X=X,
                nbrs=nbrs,
                metric=metric,
                metric_params=metric_params,
                p=p,
                max_eps=max_eps,
            )
    if np.all(np.isinf(reachability_)):
        warnings.warn(
            (
                "All reachability values are inf. Set a larger"
                " max_eps or all data will be considered outliers."
            ),
            UserWarning,
        )
    return ordering, core_distances_, reachability_, predecessor_


def _set_reach_dist(
    core_distances_,
    reachability_,
    predecessor_,
    point_index,
    processed,
    X,
    nbrs,
    metric,
    metric_params,
    p,
    max_eps,
):
    P = X[point_index : point_index + 1]
    # Assume that radius_neighbors is faster without distances
    # and we don't need all distances, nevertheless, this means
    # we may be doing some work twice.
    indices = nbrs.radius_neighbors(P, radius=max_eps, return_distance=False)[0]

    # Getting indices of neighbors that have not been processed
    unproc = np.compress(~np.take(processed, indices), indices)
    # Neighbors of current point are already processed.
    if not unproc.size:
        return

    # Only compute distances to unprocessed neighbors:
    if metric == "precomputed":
        dists = X[[point_index], unproc]
        if isinstance(dists, np.matrix):
            dists = np.asarray(dists)
        dists = dists.ravel()
    else:
        _params = dict() if metric_params is None else metric_params.copy()
        if metric == "minkowski" and "p" not in _params:
            # the same logic as neighbors, p is ignored if explicitly set
            # in the dict params
            _params["p"] = p
        dists = pairwise_distances(P, X[unproc], metric, n_jobs=None, **_params).ravel()

    rdists = np.maximum(dists, core_distances_[point_index])
    np.around(rdists, decimals=np.finfo(rdists.dtype).precision, out=rdists)
    improved = np.where(rdists < np.take(reachability_, unproc))
    reachability_[unproc[improved]] = rdists[improved]
    predecessor_[unproc[improved]] = point_index


@validate_params(
    {
        "reachability": [np.ndarray],
        "core_distances": [np.ndarray],
        "ordering": [np.ndarray],
        "eps": [Interval(Real, 0, None, closed="both")],
    },
    prefer_skip_nested_validation=True,
)
def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
    """Perform DBSCAN extraction for an arbitrary epsilon.

    Extracting the clusters runs in linear time. Note that this results in
    ``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
    similar settings and ``eps``, only if ``eps`` is close to ``max_eps``.

    Parameters
    ----------
    reachability : ndarray of shape (n_samples,)
        Reachability distances calculated by OPTICS (``reachability_``).

    core_distances : ndarray of shape (n_samples,)
        Distances at which points become core (``core_distances_``).

    ordering : ndarray of shape (n_samples,)
        OPTICS ordered point indices (``ordering_``).

    eps : float
        DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
        will be close to DBSCAN algorithm if ``eps`` and ``max_eps`` are close
        to one another.

    Returns
    -------
    labels_ : array of shape (n_samples,)
        The estimated labels.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph
    >>> X = np.array([[1, 2], [2, 5], [3, 6],
    ...               [8, 7], [8, 8], [7, 3]])
    >>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
    ...     X,
    ...     min_samples=2,
    ...     max_eps=np.inf,
    ...     metric="minkowski",
    ...     p=2,
    ...     metric_params=None,
    ...     algorithm="auto",
    ...     leaf_size=30,
    ...     n_jobs=None,
    ... )
    >>> eps = 4.5
    >>> labels = cluster_optics_dbscan(
    ...     reachability=reachability,
    ...     core_distances=core_distances,
    ...     ordering=ordering,
    ...     eps=eps,
    ... )
    >>> labels
    array([0, 0, 0, 1, 1, 1])
    """
    n_samples = len(core_distances)
    labels = np.zeros(n_samples, dtype=int)

    far_reach = reachability > eps
    near_core = core_distances <= eps
    labels[ordering] = np.cumsum(far_reach[ordering] & near_core[ordering]) - 1
    labels[far_reach & ~near_core] = -1
    return labels


@validate_params(
    {
        "reachability": [np.ndarray],
        "predecessor": [np.ndarray],
        "ordering": [np.ndarray],
        "min_samples": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="both"),
        ],
        "min_cluster_size": [
            Interval(Integral, 2, None, closed="left"),
            Interval(RealNotInt, 0, 1, closed="both"),
            None,
        ],
        "xi": [Interval(Real, 0, 1, closed="both")],
        "predecessor_correction": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def cluster_optics_xi(
    *,
    reachability,
    predecessor,
    ordering,
    min_samples,
    min_cluster_size=None,
    xi=0.05,
    predecessor_correction=True,
):
    """Automatically extract clusters according to the Xi-steep method.

    Parameters
    ----------
    reachability : ndarray of shape (n_samples,)
        Reachability distances calculated by OPTICS (`reachability_`).

    predecessor : ndarray of shape (n_samples,)
        Predecessors calculated by OPTICS.

    ordering : ndarray of shape (n_samples,)
        OPTICS ordered point indices (`ordering_`).

    min_samples : int > 1 or float between 0 and 1
        The same as the min_samples given to OPTICS. Up and down steep regions
        can't have more then ``min_samples`` consecutive non-steep points.
        Expressed as an absolute number or a fraction of the number of samples
        (rounded to be at least 2).

    min_cluster_size : int > 1 or float between 0 and 1, default=None
        Minimum number of samples in an OPTICS cluster, expressed as an
        absolute number or a fraction of the number of samples (rounded to be
        at least 2). If ``None``, the value of ``min_samples`` is used instead.

    xi : float between 0 and 1, default=0.05
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.

    predecessor_correction : bool, default=True
        Correct clusters based on the calculated predecessors.

    Returns
    -------
    labels : ndarray of shape (n_samples,)
        The labels assigned to samples. Points which are not included
        in any cluster are labeled as -1.

    clusters : ndarray of shape (n_clusters, 2)
        The list of clusters in the form of ``[start, end]`` in each row, with
        all indices inclusive. The clusters are ordered according to ``(end,
        -start)`` (ascending) so that larger clusters encompassing smaller
        clusters come after such nested smaller clusters. Since ``labels`` does
        not reflect the hierarchy, usually ``len(clusters) >
        np.unique(labels)``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cluster import cluster_optics_xi, compute_optics_graph
    >>> X = np.array([[1, 2], [2, 5], [3, 6],
    ...               [8, 7], [8, 8], [7, 3]])
    >>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
    ...     X,
    ...     min_samples=2,
    ...     max_eps=np.inf,
    ...     metric="minkowski",
    ...     p=2,
    ...     metric_params=None,
    ...     algorithm="auto",
    ...     leaf_size=30,
    ...     n_jobs=None
    ... )
    >>> min_samples = 2
    >>> labels, clusters = cluster_optics_xi(
    ...     reachability=reachability,
    ...     predecessor=predecessor,
    ...     ordering=ordering,
    ...     min_samples=min_samples,
    ... )
    >>> labels
    array([0, 0, 0, 1, 1, 1])
    >>> clusters
    array([[0, 2],
           [3, 5],
           [0, 5]])
    """
    n_samples = len(reachability)
    _validate_size(min_samples, n_samples, "min_samples")
    if min_samples <= 1:
        min_samples = max(2, int(min_samples * n_samples))
    if min_cluster_size is None:
        min_cluster_size = min_samples
    _validate_size(min_cluster_size, n_samples, "min_cluster_size")
    if min_cluster_size <= 1:
        min_cluster_size = max(2, int(min_cluster_size * n_samples))

    clusters = _xi_cluster(
        reachability[ordering],
        predecessor[ordering],
        ordering,
        xi,
        min_samples,
        min_cluster_size,
        predecessor_correction,
    )
    labels = _extract_xi_labels(ordering, clusters)
    return labels, clusters


def _extend_region(steep_point, xward_point, start, min_samples):
    """Extend the area until it's maximal.

    It's the same function for both upward and downward reagions, depending on
    the given input parameters. Assuming:

        - steep_{upward/downward}: bool array indicating whether a point is a
          steep {upward/downward};
        - upward/downward: bool array indicating whether a point is
          upward/downward;

    To extend an upward reagion, ``steep_point=steep_upward`` and
    ``xward_point=downward`` are expected, and to extend a downward region,
    ``steep_point=steep_downward`` and ``xward_point=upward``.

    Parameters
    ----------
    steep_point : ndarray of shape (n_samples,), dtype=bool
        True if the point is steep downward (upward).

    xward_point : ndarray of shape (n_samples,), dtype=bool
        True if the point is an upward (respectively downward) point.

    start : int
        The start of the xward region.

    min_samples : int
       The same as the min_samples given to OPTICS. Up and down steep
       regions can't have more then ``min_samples`` consecutive non-steep
       points.

    Returns
    -------
    index : int
        The current index iterating over all the samples, i.e. where we are up
        to in our search.

    end : int
        The end of the region, which can be behind the index. The region
        includes the ``end`` index.
    """
    n_samples = len(steep_point)
    non_xward_points = 0
    index = start
    end = start
    # find a maximal area
    while index < n_samples:
        if steep_point[index]:
            non_xward_points = 0
            end = index
        elif not xward_point[index]:
            # it's not a steep point, but still goes up.
            non_xward_points += 1
            # region should include no more than min_samples consecutive
            # non steep xward points.
            if non_xward_points > min_samples:
                break
        else:
            return end
        index += 1
    return end


def _update_filter_sdas(sdas, mib, xi_complement, reachability_plot):
    """Update steep down areas (SDAs) using the new maximum in between (mib)
    value, and the given complement of xi, i.e. ``1 - xi``.
    """
    if np.isinf(mib):
        return []
    res = [
        sda for sda in sdas if mib <= reachability_plot[sda["start"]] * xi_complement
    ]
    for sda in res:
        sda["mib"] = max(sda["mib"], mib)
    return res


def _correct_predecessor(reachability_plot, predecessor_plot, ordering, s, e):
    """Correct for predecessors.

    Applies Algorithm 2 of [1]_.

    Input parameters are ordered by the computer OPTICS ordering.

    .. [1] Schubert, Erich, Michael Gertz.
       "Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
       the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
    """
    while s < e:
        if reachability_plot[s] > reachability_plot[e]:
            return s, e
        p_e = predecessor_plot[e]
        for i in range(s, e):
            if p_e == ordering[i]:
                return s, e
        e -= 1
    return None, None


def _xi_cluster(
    reachability_plot,
    predecessor_plot,
    ordering,
    xi,
    min_samples,
    min_cluster_size,
    predecessor_correction,
):
    """Automatically extract clusters according to the Xi-steep method.

    This is rouphly an implementation of Figure 19 of the OPTICS paper.

    Parameters
    ----------
    reachability_plot : array-like of shape (n_samples,)
        The reachability plot, i.e. reachability ordered according to
        the calculated ordering, all computed by OPTICS.

    predecessor_plot : array-like of shape (n_samples,)
        Predecessors ordered according to the calculated ordering.

    xi : float, between 0 and 1
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.

    min_samples : int > 1
        The same as the min_samples given to OPTICS. Up and down steep regions
        can't have more then ``min_samples`` consecutive non-steep points.

    min_cluster_size : int > 1
        Minimum number of samples in an OPTICS cluster.

    predecessor_correction : bool
        Correct clusters based on the calculated predecessors.

    Returns
    -------
    clusters : ndarray of shape (n_clusters, 2)
        The list of clusters in the form of [start, end] in each row, with all
        indices inclusive. The clusters are ordered in a way that larger
        clusters encompassing smaller clusters come after those smaller
        clusters.
    """

    # Our implementation adds an inf to the end of reachability plot
    # this helps to find potential clusters at the end of the
    # reachability plot even if there's no upward region at the end of it.
    reachability_plot = np.hstack((reachability_plot, np.inf))

    xi_complement = 1 - xi
    sdas = []  # steep down areas, introduced in section 4.3.2 of the paper
    clusters = []
    index = 0
    mib = 0.0  # maximum in between, section 4.3.2

    # Our implementation corrects a mistake in the original
    # paper, i.e., in Definition 9 steep downward point,
    # r(p) * (1 - x1) <= r(p + 1) should be
    # r(p) * (1 - x1) >= r(p + 1)
    with np.errstate(invalid="ignore"):
        ratio = reachability_plot[:-1] / reachability_plot[1:]
        steep_upward = ratio <= xi_complement
        steep_downward = ratio >= 1 / xi_complement
        downward = ratio > 1
        upward = ratio < 1

    # the following loop is almost exactly as Figure 19 of the paper.
    # it jumps over the areas which are not either steep down or up areas
    for steep_index in iter(np.flatnonzero(steep_upward | steep_downward)):
        # just continue if steep_index has been a part of a discovered xward
        # area.
        if steep_index < index:
            continue

        mib = max(mib, np.max(reachability_plot[index : steep_index + 1]))

        # steep downward areas
        if steep_downward[steep_index]:
            sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
            D_start = steep_index
            D_end = _extend_region(steep_downward, upward, D_start, min_samples)
            D = {"start": D_start, "end": D_end, "mib": 0.0}
            sdas.append(D)
            index = D_end + 1
            mib = reachability_plot[index]

        # steep upward areas
        else:
            sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
            U_start = steep_index
            U_end = _extend_region(steep_upward, downward, U_start, min_samples)
            index = U_end + 1
            mib = reachability_plot[index]

            U_clusters = []
            for D in sdas:
                c_start = D["start"]
                c_end = U_end

                # line (**), sc2*
                if reachability_plot[c_end + 1] * xi_complement < D["mib"]:
                    continue

                # Definition 11: criterion 4
                D_max = reachability_plot[D["start"]]
                if D_max * xi_complement >= reachability_plot[c_end + 1]:
                    # Find the first index from the left side which is almost
                    # at the same level as the end of the detected cluster.
                    while (
                        reachability_plot[c_start + 1] > reachability_plot[c_end + 1]
                        and c_start < D["end"]
                    ):
                        c_start += 1
                elif reachability_plot[c_end + 1] * xi_complement >= D_max:
                    # Find the first index from the right side which is almost
                    # at the same level as the beginning of the detected
                    # cluster.
                    # Our implementation corrects a mistake in the original
                    # paper, i.e., in Definition 11 4c, r(x) < r(sD) should be
                    # r(x) > r(sD).
                    while reachability_plot[c_end - 1] > D_max and c_end > U_start:
                        c_end -= 1

                # predecessor correction
                if predecessor_correction:
                    c_start, c_end = _correct_predecessor(
                        reachability_plot, predecessor_plot, ordering, c_start, c_end
                    )
                if c_start is None:
                    continue

                # Definition 11: criterion 3.a
                if c_end - c_start + 1 < min_cluster_size:
                    continue

                # Definition 11: criterion 1
                if c_start > D["end"]:
                    continue

                # Definition 11: criterion 2
                if c_end < U_start:
                    continue

                U_clusters.append((c_start, c_end))

            # add smaller clusters first.
            U_clusters.reverse()
            clusters.extend(U_clusters)

    return np.array(clusters)


def _extract_xi_labels(ordering, clusters):
    """Extracts the labels from the clusters returned by `_xi_cluster`.
    We rely on the fact that clusters are stored
    with the smaller clusters coming before the larger ones.

    Parameters
    ----------
    ordering : array-like of shape (n_samples,)
        The ordering of points calculated by OPTICS

    clusters : array-like of shape (n_clusters, 2)
        List of clusters i.e. (start, end) tuples,
        as returned by `_xi_cluster`.

    Returns
    -------
    labels : ndarray of shape (n_samples,)
    """

    labels = np.full(len(ordering), -1, dtype=int)
    label = 0
    for c in clusters:
        if not np.any(labels[c[0] : (c[1] + 1)] != -1):
            labels[c[0] : (c[1] + 1)] = label
            label += 1
    labels[ordering] = labels.copy()
    return labels