File size: 20,142 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
"""Mean shift clustering algorithm.
Mean shift clustering aims to discover *blobs* in a smooth density of
samples. It is a centroid based algorithm, which works by updating candidates
for centroids to be the mean of the points within a given region. These
candidates are then filtered in a post-processing stage to eliminate
near-duplicates to form the final set of centroids.
Seeding is performed using a binning technique for scalability.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from collections import defaultdict
from numbers import Integral, Real
import numpy as np
from .._config import config_context
from ..base import BaseEstimator, ClusterMixin, _fit_context
from ..metrics.pairwise import pairwise_distances_argmin
from ..neighbors import NearestNeighbors
from ..utils import check_array, check_random_state, gen_batches
from ..utils._param_validation import Interval, validate_params
from ..utils.parallel import Parallel, delayed
from ..utils.validation import check_is_fitted, validate_data
@validate_params(
{
"X": ["array-like"],
"quantile": [Interval(Real, 0, 1, closed="both")],
"n_samples": [Interval(Integral, 1, None, closed="left"), None],
"random_state": ["random_state"],
"n_jobs": [Integral, None],
},
prefer_skip_nested_validation=True,
)
def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_jobs=None):
"""Estimate the bandwidth to use with the mean-shift algorithm.
This function takes time at least quadratic in `n_samples`. For large
datasets, it is wise to subsample by setting `n_samples`. Alternatively,
the parameter `bandwidth` can be set to a small value without estimating
it.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input points.
quantile : float, default=0.3
Should be between [0, 1]
0.5 means that the median of all pairwise distances is used.
n_samples : int, default=None
The number of samples to use. If not given, all samples are used.
random_state : int, RandomState instance, default=None
The generator used to randomly select the samples from input points
for bandwidth estimation. Use an int to make the randomness
deterministic.
See :term:`Glossary <random_state>`.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
bandwidth : float
The bandwidth parameter.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import estimate_bandwidth
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> estimate_bandwidth(X, quantile=0.5)
np.float64(1.61...)
"""
X = check_array(X)
random_state = check_random_state(random_state)
if n_samples is not None:
idx = random_state.permutation(X.shape[0])[:n_samples]
X = X[idx]
n_neighbors = int(X.shape[0] * quantile)
if n_neighbors < 1: # cannot fit NearestNeighbors with n_neighbors = 0
n_neighbors = 1
nbrs = NearestNeighbors(n_neighbors=n_neighbors, n_jobs=n_jobs)
nbrs.fit(X)
bandwidth = 0.0
for batch in gen_batches(len(X), 500):
d, _ = nbrs.kneighbors(X[batch, :], return_distance=True)
bandwidth += np.max(d, axis=1).sum()
return bandwidth / X.shape[0]
# separate function for each seed's iterative loop
def _mean_shift_single_seed(my_mean, X, nbrs, max_iter):
# For each seed, climb gradient until convergence or max_iter
bandwidth = nbrs.get_params()["radius"]
stop_thresh = 1e-3 * bandwidth # when mean has converged
completed_iterations = 0
while True:
# Find mean of points within bandwidth
i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0]
points_within = X[i_nbrs]
if len(points_within) == 0:
break # Depending on seeding strategy this condition may occur
my_old_mean = my_mean # save the old mean
my_mean = np.mean(points_within, axis=0)
# If converged or at max_iter, adds the cluster
if (
np.linalg.norm(my_mean - my_old_mean) <= stop_thresh
or completed_iterations == max_iter
):
break
completed_iterations += 1
return tuple(my_mean), len(points_within), completed_iterations
@validate_params(
{"X": ["array-like"]},
prefer_skip_nested_validation=False,
)
def mean_shift(
X,
*,
bandwidth=None,
seeds=None,
bin_seeding=False,
min_bin_freq=1,
cluster_all=True,
max_iter=300,
n_jobs=None,
):
"""Perform mean shift clustering of data using a flat kernel.
Read more in the :ref:`User Guide <mean_shift>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
bandwidth : float, default=None
Kernel bandwidth. If not None, must be in the range [0, +inf).
If None, the bandwidth is determined using a heuristic based on
the median of all pairwise distances. This will take quadratic time in
the number of samples. The sklearn.cluster.estimate_bandwidth function
can be used to do this more efficiently.
seeds : array-like of shape (n_seeds, n_features) or None
Point used as initial kernel locations. If None and bin_seeding=False,
each data point is used as a seed. If None and bin_seeding=True,
see bin_seeding.
bin_seeding : bool, default=False
If true, initial kernel locations are not locations of all
points, but rather the location of the discretized version of
points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed
up the algorithm because fewer seeds will be initialized.
Ignored if seeds argument is not None.
min_bin_freq : int, default=1
To speed up the algorithm, accept only those bins with at least
min_bin_freq points as seeds.
cluster_all : bool, default=True
If true, then all points are clustered, even those orphans that are
not within any kernel. Orphans are assigned to the nearest kernel.
If false, then orphans are given cluster label -1.
max_iter : int, default=300
Maximum number of iterations, per seed point before the clustering
operation terminates (for that seed point), if has not converged yet.
n_jobs : int, default=None
The number of jobs to use for the computation. The following tasks benefit
from the parallelization:
- The search of nearest neighbors for bandwidth estimation and label
assignments. See the details in the docstring of the
``NearestNeighbors`` class.
- Hill-climbing optimization for all seeds.
See :term:`Glossary <n_jobs>` for more details.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionadded:: 0.17
Parallel Execution using *n_jobs*.
Returns
-------
cluster_centers : ndarray of shape (n_clusters, n_features)
Coordinates of cluster centers.
labels : ndarray of shape (n_samples,)
Cluster labels for each point.
Notes
-----
For a usage example, see
:ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py`.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import mean_shift
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> cluster_centers, labels = mean_shift(X, bandwidth=2)
>>> cluster_centers
array([[3.33..., 6. ],
[1.33..., 0.66...]])
>>> labels
array([1, 1, 1, 0, 0, 0])
"""
model = MeanShift(
bandwidth=bandwidth,
seeds=seeds,
min_bin_freq=min_bin_freq,
bin_seeding=bin_seeding,
cluster_all=cluster_all,
n_jobs=n_jobs,
max_iter=max_iter,
).fit(X)
return model.cluster_centers_, model.labels_
def get_bin_seeds(X, bin_size, min_bin_freq=1):
"""Find seeds for mean_shift.
Finds seeds by first binning data onto a grid whose lines are
spaced bin_size apart, and then choosing those bins with at least
min_bin_freq points.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input points, the same points that will be used in mean_shift.
bin_size : float
Controls the coarseness of the binning. Smaller values lead
to more seeding (which is computationally more expensive). If you're
not sure how to set this, set it to the value of the bandwidth used
in clustering.mean_shift.
min_bin_freq : int, default=1
Only bins with at least min_bin_freq will be selected as seeds.
Raising this value decreases the number of seeds found, which
makes mean_shift computationally cheaper.
Returns
-------
bin_seeds : array-like of shape (n_samples, n_features)
Points used as initial kernel positions in clustering.mean_shift.
"""
if bin_size == 0:
return X
# Bin points
bin_sizes = defaultdict(int)
for point in X:
binned_point = np.round(point / bin_size)
bin_sizes[tuple(binned_point)] += 1
# Select only those bins as seeds which have enough members
bin_seeds = np.array(
[point for point, freq in bin_sizes.items() if freq >= min_bin_freq],
dtype=np.float32,
)
if len(bin_seeds) == len(X):
warnings.warn(
"Binning data failed with provided bin_size=%f, using data points as seeds."
% bin_size
)
return X
bin_seeds = bin_seeds * bin_size
return bin_seeds
class MeanShift(ClusterMixin, BaseEstimator):
"""Mean shift clustering using a flat kernel.
Mean shift clustering aims to discover "blobs" in a smooth density of
samples. It is a centroid-based algorithm, which works by updating
candidates for centroids to be the mean of the points within a given
region. These candidates are then filtered in a post-processing stage to
eliminate near-duplicates to form the final set of centroids.
Seeding is performed using a binning technique for scalability.
For an example of how to use MeanShift clustering, refer to:
:ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py`.
Read more in the :ref:`User Guide <mean_shift>`.
Parameters
----------
bandwidth : float, default=None
Bandwidth used in the flat kernel.
If not given, the bandwidth is estimated using
sklearn.cluster.estimate_bandwidth; see the documentation for that
function for hints on scalability (see also the Notes, below).
seeds : array-like of shape (n_samples, n_features), default=None
Seeds used to initialize kernels. If not set,
the seeds are calculated by clustering.get_bin_seeds
with bandwidth as the grid size and default values for
other parameters.
bin_seeding : bool, default=False
If true, initial kernel locations are not locations of all
points, but rather the location of the discretized version of
points, where points are binned onto a grid whose coarseness
corresponds to the bandwidth. Setting this option to True will speed
up the algorithm because fewer seeds will be initialized.
The default value is False.
Ignored if seeds argument is not None.
min_bin_freq : int, default=1
To speed up the algorithm, accept only those bins with at least
min_bin_freq points as seeds.
cluster_all : bool, default=True
If true, then all points are clustered, even those orphans that are
not within any kernel. Orphans are assigned to the nearest kernel.
If false, then orphans are given cluster label -1.
n_jobs : int, default=None
The number of jobs to use for the computation. The following tasks benefit
from the parallelization:
- The search of nearest neighbors for bandwidth estimation and label
assignments. See the details in the docstring of the
``NearestNeighbors`` class.
- Hill-climbing optimization for all seeds.
See :term:`Glossary <n_jobs>` for more details.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
max_iter : int, default=300
Maximum number of iterations, per seed point before the clustering
operation terminates (for that seed point), if has not converged yet.
.. versionadded:: 0.22
Attributes
----------
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Coordinates of cluster centers.
labels_ : ndarray of shape (n_samples,)
Labels of each point.
n_iter_ : int
Maximum number of iterations performed on each seed.
.. versionadded:: 0.22
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
KMeans : K-Means clustering.
Notes
-----
Scalability:
Because this implementation uses a flat kernel and
a Ball Tree to look up members of each kernel, the complexity will tend
towards O(T*n*log(n)) in lower dimensions, with n the number of samples
and T the number of points. In higher dimensions the complexity will
tend towards O(T*n^2).
Scalability can be boosted by using fewer seeds, for example by using
a higher value of min_bin_freq in the get_bin_seeds function.
Note that the estimate_bandwidth function is much less scalable than the
mean shift algorithm and will be the bottleneck if it is used.
References
----------
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
feature space analysis". IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2002. pp. 603-619.
Examples
--------
>>> from sklearn.cluster import MeanShift
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = MeanShift(bandwidth=2).fit(X)
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
>>> clustering.predict([[0, 0], [5, 5]])
array([1, 0])
>>> clustering
MeanShift(bandwidth=2)
"""
_parameter_constraints: dict = {
"bandwidth": [Interval(Real, 0, None, closed="neither"), None],
"seeds": ["array-like", None],
"bin_seeding": ["boolean"],
"min_bin_freq": [Interval(Integral, 1, None, closed="left")],
"cluster_all": ["boolean"],
"n_jobs": [Integral, None],
"max_iter": [Interval(Integral, 0, None, closed="left")],
}
def __init__(
self,
*,
bandwidth=None,
seeds=None,
bin_seeding=False,
min_bin_freq=1,
cluster_all=True,
n_jobs=None,
max_iter=300,
):
self.bandwidth = bandwidth
self.seeds = seeds
self.bin_seeding = bin_seeding
self.cluster_all = cluster_all
self.min_bin_freq = min_bin_freq
self.n_jobs = n_jobs
self.max_iter = max_iter
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Perform clustering.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Samples to cluster.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted instance.
"""
X = validate_data(self, X)
bandwidth = self.bandwidth
if bandwidth is None:
bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)
seeds = self.seeds
if seeds is None:
if self.bin_seeding:
seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)
else:
seeds = X
n_samples, n_features = X.shape
center_intensity_dict = {}
# We use n_jobs=1 because this will be used in nested calls under
# parallel calls to _mean_shift_single_seed so there is no need for
# for further parallelism.
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)
# execute iterations on all seeds in parallel
all_res = Parallel(n_jobs=self.n_jobs)(
delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter)
for seed in seeds
)
# copy results in a dictionary
for i in range(len(seeds)):
if all_res[i][1]: # i.e. len(points_within) > 0
center_intensity_dict[all_res[i][0]] = all_res[i][1]
self.n_iter_ = max([x[2] for x in all_res])
if not center_intensity_dict:
# nothing near seeds
raise ValueError(
"No point was within bandwidth=%f of any seed. Try a different seeding"
" strategy or increase the bandwidth."
% bandwidth
)
# POST PROCESSING: remove near duplicate points
# If the distance between two kernels is less than the bandwidth,
# then we have to remove one because it is a duplicate. Remove the
# one with fewer points.
sorted_by_intensity = sorted(
center_intensity_dict.items(),
key=lambda tup: (tup[1], tup[0]),
reverse=True,
)
sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])
unique = np.ones(len(sorted_centers), dtype=bool)
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit(
sorted_centers
)
for i, center in enumerate(sorted_centers):
if unique[i]:
neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[
0
]
unique[neighbor_idxs] = 0
unique[i] = 1 # leave the current point as unique
cluster_centers = sorted_centers[unique]
# ASSIGN LABELS: a point belongs to the cluster that it is closest to
nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers)
labels = np.zeros(n_samples, dtype=int)
distances, idxs = nbrs.kneighbors(X)
if self.cluster_all:
labels = idxs.flatten()
else:
labels.fill(-1)
bool_selector = distances.flatten() <= bandwidth
labels[bool_selector] = idxs.flatten()[bool_selector]
self.cluster_centers_, self.labels_ = cluster_centers, labels
return self
def predict(self, X):
"""Predict the closest cluster each sample in X belongs to.
Parameters
----------
X : array-like of shape (n_samples, n_features)
New data to predict.
Returns
-------
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
"""
check_is_fitted(self)
X = validate_data(self, X, reset=False)
with config_context(assume_finite=True):
return pairwise_distances_argmin(X, self.cluster_centers_)
|