File size: 50,550 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 |
"""Methods for calibrating predicted probabilities."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from inspect import signature
from math import log
from numbers import Integral, Real
import numpy as np
from scipy.optimize import minimize
from scipy.special import expit
from sklearn.utils import Bunch
from ._loss import HalfBinomialLoss
from .base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
RegressorMixin,
_fit_context,
clone,
)
from .frozen import FrozenEstimator
from .isotonic import IsotonicRegression
from .model_selection import LeaveOneOut, check_cv, cross_val_predict
from .preprocessing import LabelEncoder, label_binarize
from .svm import LinearSVC
from .utils import _safe_indexing, column_or_1d, get_tags, indexable
from .utils._param_validation import (
HasMethods,
Hidden,
Interval,
StrOptions,
validate_params,
)
from .utils._plotting import _BinaryClassifierCurveDisplayMixin, _validate_style_kwargs
from .utils._response import _get_response_values, _process_predict_proba
from .utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_routing_enabled,
process_routing,
)
from .utils.multiclass import check_classification_targets
from .utils.parallel import Parallel, delayed
from .utils.validation import (
_check_method_params,
_check_pos_label_consistency,
_check_response_method,
_check_sample_weight,
_num_samples,
check_consistent_length,
check_is_fitted,
)
class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
"""Probability calibration with isotonic regression or logistic regression.
This class uses cross-validation to both estimate the parameters of a
classifier and subsequently calibrate a classifier. With default
`ensemble=True`, for each cv split it
fits a copy of the base estimator to the training subset, and calibrates it
using the testing subset. For prediction, predicted probabilities are
averaged across these individual calibrated classifiers. When
`ensemble=False`, cross-validation is used to obtain unbiased predictions,
via :func:`~sklearn.model_selection.cross_val_predict`, which are then
used for calibration. For prediction, the base estimator, trained using all
the data, is used. This is the prediction method implemented when
`probabilities=True` for :class:`~sklearn.svm.SVC` and :class:`~sklearn.svm.NuSVC`
estimators (see :ref:`User Guide <scores_probabilities>` for details).
Already fitted classifiers can be calibrated by wrapping the model in a
:class:`~sklearn.frozen.FrozenEstimator`. In this case all provided
data is used for calibration. The user has to take care manually that data
for model fitting and calibration are disjoint.
The calibration is based on the :term:`decision_function` method of the
`estimator` if it exists, else on :term:`predict_proba`.
Read more in the :ref:`User Guide <calibration>`.
In order to learn more on the CalibratedClassifierCV class, see the
following calibration examples:
:ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`,
:ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py`, and
:ref:`sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py`.
Parameters
----------
estimator : estimator instance, default=None
The classifier whose output need to be calibrated to provide more
accurate `predict_proba` outputs. The default classifier is
a :class:`~sklearn.svm.LinearSVC`.
.. versionadded:: 1.2
method : {'sigmoid', 'isotonic'}, default='sigmoid'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method (i.e. a logistic regression model) or
'isotonic' which is a non-parametric approach. It is not advised to
use isotonic calibration with too few calibration samples
``(<<1000)`` since it tends to overfit.
cv : int, cross-validation generator, or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is
neither binary nor multiclass, :class:`~sklearn.model_selection.KFold`
is used.
Refer to the :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
.. versionchanged:: 1.6
`"prefit"` is deprecated. Use :class:`~sklearn.frozen.FrozenEstimator`
instead.
n_jobs : int, default=None
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors.
Base estimator clones are fitted in parallel across cross-validation
iterations. Therefore parallelism happens only when `cv != "prefit"`.
See :term:`Glossary <n_jobs>` for more details.
.. versionadded:: 0.24
ensemble : bool, or "auto", default="auto"
Determines how the calibrator is fitted.
"auto" will use `False` if the `estimator` is a
:class:`~sklearn.frozen.FrozenEstimator`, and `True` otherwise.
If `True`, the `estimator` is fitted using training data, and
calibrated using testing data, for each `cv` fold. The final estimator
is an ensemble of `n_cv` fitted classifier and calibrator pairs, where
`n_cv` is the number of cross-validation folds. The output is the
average predicted probabilities of all pairs.
If `False`, `cv` is used to compute unbiased predictions, via
:func:`~sklearn.model_selection.cross_val_predict`, which are then
used for calibration. At prediction time, the classifier used is the
`estimator` trained on all the data.
Note that this method is also internally implemented in
:mod:`sklearn.svm` estimators with the `probabilities=True` parameter.
.. versionadded:: 0.24
.. versionchanged:: 1.6
`"auto"` option is added and is the default.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The class labels.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 1.0
calibrated_classifiers_ : list (len() equal to cv or 1 if `ensemble=False`)
The list of classifier and calibrator pairs.
- When `ensemble=True`, `n_cv` fitted `estimator` and calibrator pairs.
`n_cv` is the number of cross-validation folds.
- When `ensemble=False`, the `estimator`, fitted on all the data, and fitted
calibrator.
.. versionchanged:: 0.24
Single calibrated classifier case when `ensemble=False`.
See Also
--------
calibration_curve : Compute true and predicted probabilities
for a calibration curve.
References
----------
.. [1] Obtaining calibrated probability estimates from decision trees
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
.. [2] Transforming Classifier Scores into Accurate Multiclass
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, J. Platt, (1999)
.. [4] Predicting Good Probabilities with Supervised Learning,
A. Niculescu-Mizil & R. Caruana, ICML 2005
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.calibration import CalibratedClassifierCV
>>> X, y = make_classification(n_samples=100, n_features=2,
... n_redundant=0, random_state=42)
>>> base_clf = GaussianNB()
>>> calibrated_clf = CalibratedClassifierCV(base_clf, cv=3)
>>> calibrated_clf.fit(X, y)
CalibratedClassifierCV(...)
>>> len(calibrated_clf.calibrated_classifiers_)
3
>>> calibrated_clf.predict_proba(X)[:5, :]
array([[0.110..., 0.889...],
[0.072..., 0.927...],
[0.928..., 0.071...],
[0.928..., 0.071...],
[0.071..., 0.928...]])
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_classification(n_samples=100, n_features=2,
... n_redundant=0, random_state=42)
>>> X_train, X_calib, y_train, y_calib = train_test_split(
... X, y, random_state=42
... )
>>> base_clf = GaussianNB()
>>> base_clf.fit(X_train, y_train)
GaussianNB()
>>> from sklearn.frozen import FrozenEstimator
>>> calibrated_clf = CalibratedClassifierCV(FrozenEstimator(base_clf))
>>> calibrated_clf.fit(X_calib, y_calib)
CalibratedClassifierCV(...)
>>> len(calibrated_clf.calibrated_classifiers_)
1
>>> calibrated_clf.predict_proba([[-0.5, 0.5]])
array([[0.936..., 0.063...]])
"""
_parameter_constraints: dict = {
"estimator": [
HasMethods(["fit", "predict_proba"]),
HasMethods(["fit", "decision_function"]),
None,
],
"method": [StrOptions({"isotonic", "sigmoid"})],
"cv": ["cv_object", Hidden(StrOptions({"prefit"}))],
"n_jobs": [Integral, None],
"ensemble": ["boolean", StrOptions({"auto"})],
}
def __init__(
self,
estimator=None,
*,
method="sigmoid",
cv=None,
n_jobs=None,
ensemble="auto",
):
self.estimator = estimator
self.method = method
self.cv = cv
self.n_jobs = n_jobs
self.ensemble = ensemble
def _get_estimator(self):
"""Resolve which estimator to return (default is LinearSVC)"""
if self.estimator is None:
# we want all classifiers that don't expose a random_state
# to be deterministic (and we don't want to expose this one).
estimator = LinearSVC(random_state=0)
if _routing_enabled():
estimator.set_fit_request(sample_weight=True)
else:
estimator = self.estimator
return estimator
@_fit_context(
# CalibratedClassifierCV.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, sample_weight=None, **fit_params):
"""Fit the calibrated model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
**fit_params : dict
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
self : object
Returns an instance of self.
"""
check_classification_targets(y)
X, y = indexable(X, y)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
estimator = self._get_estimator()
_ensemble = self.ensemble
if _ensemble == "auto":
_ensemble = not isinstance(estimator, FrozenEstimator)
self.calibrated_classifiers_ = []
if self.cv == "prefit":
# TODO(1.8): Remove this code branch and cv='prefit'
warnings.warn(
"The `cv='prefit'` option is deprecated in 1.6 and will be removed in"
" 1.8. You can use CalibratedClassifierCV(FrozenEstimator(estimator))"
" instead."
)
# `classes_` should be consistent with that of estimator
check_is_fitted(self.estimator, attributes=["classes_"])
self.classes_ = self.estimator.classes_
predictions, _ = _get_response_values(
estimator,
X,
response_method=["decision_function", "predict_proba"],
)
if predictions.ndim == 1:
# Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
predictions = predictions.reshape(-1, 1)
calibrated_classifier = _fit_calibrator(
estimator,
predictions,
y,
self.classes_,
self.method,
sample_weight,
)
self.calibrated_classifiers_.append(calibrated_classifier)
else:
# Set `classes_` using all `y`
label_encoder_ = LabelEncoder().fit(y)
self.classes_ = label_encoder_.classes_
if _routing_enabled():
routed_params = process_routing(
self,
"fit",
sample_weight=sample_weight,
**fit_params,
)
else:
# sample_weight checks
fit_parameters = signature(estimator.fit).parameters
supports_sw = "sample_weight" in fit_parameters
if sample_weight is not None and not supports_sw:
estimator_name = type(estimator).__name__
warnings.warn(
f"Since {estimator_name} does not appear to accept"
" sample_weight, sample weights will only be used for the"
" calibration itself. This can be caused by a limitation of"
" the current scikit-learn API. See the following issue for"
" more details:"
" https://github.com/scikit-learn/scikit-learn/issues/21134."
" Be warned that the result of the calibration is likely to be"
" incorrect."
)
routed_params = Bunch()
routed_params.splitter = Bunch(split={}) # no routing for splitter
routed_params.estimator = Bunch(fit=fit_params)
if sample_weight is not None and supports_sw:
routed_params.estimator.fit["sample_weight"] = sample_weight
# Check that each cross-validation fold can have at least one
# example per class
if isinstance(self.cv, int):
n_folds = self.cv
elif hasattr(self.cv, "n_splits"):
n_folds = self.cv.n_splits
else:
n_folds = None
if n_folds and np.any(np.unique(y, return_counts=True)[1] < n_folds):
raise ValueError(
f"Requesting {n_folds}-fold "
"cross-validation but provided less than "
f"{n_folds} examples for at least one class."
)
if isinstance(self.cv, LeaveOneOut):
raise ValueError(
"LeaveOneOut cross-validation does not allow"
"all classes to be present in test splits. "
"Please use a cross-validation generator that allows "
"all classes to appear in every test and train split."
)
cv = check_cv(self.cv, y, classifier=True)
if _ensemble:
parallel = Parallel(n_jobs=self.n_jobs)
self.calibrated_classifiers_ = parallel(
delayed(_fit_classifier_calibrator_pair)(
clone(estimator),
X,
y,
train=train,
test=test,
method=self.method,
classes=self.classes_,
sample_weight=sample_weight,
fit_params=routed_params.estimator.fit,
)
for train, test in cv.split(X, y, **routed_params.splitter.split)
)
else:
this_estimator = clone(estimator)
method_name = _check_response_method(
this_estimator,
["decision_function", "predict_proba"],
).__name__
predictions = cross_val_predict(
estimator=this_estimator,
X=X,
y=y,
cv=cv,
method=method_name,
n_jobs=self.n_jobs,
params=routed_params.estimator.fit,
)
if len(self.classes_) == 2:
# Ensure shape (n_samples, 1) in the binary case
if method_name == "predict_proba":
# Select the probability column of the postive class
predictions = _process_predict_proba(
y_pred=predictions,
target_type="binary",
classes=self.classes_,
pos_label=self.classes_[1],
)
predictions = predictions.reshape(-1, 1)
this_estimator.fit(X, y, **routed_params.estimator.fit)
# Note: Here we don't pass on fit_params because the supported
# calibrators don't support fit_params anyway
calibrated_classifier = _fit_calibrator(
this_estimator,
predictions,
y,
self.classes_,
self.method,
sample_weight,
)
self.calibrated_classifiers_.append(calibrated_classifier)
first_clf = self.calibrated_classifiers_[0].estimator
if hasattr(first_clf, "n_features_in_"):
self.n_features_in_ = first_clf.n_features_in_
if hasattr(first_clf, "feature_names_in_"):
self.feature_names_in_ = first_clf.feature_names_in_
return self
def predict_proba(self, X):
"""Calibrated probabilities of classification.
This function returns calibrated probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict_proba`.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
The predicted probas.
"""
check_is_fitted(self)
# Compute the arithmetic mean of the predictions of the calibrated
# classifiers
mean_proba = np.zeros((_num_samples(X), len(self.classes_)))
for calibrated_classifier in self.calibrated_classifiers_:
proba = calibrated_classifier.predict_proba(X)
mean_proba += proba
mean_proba /= len(self.calibrated_classifiers_)
return mean_proba
def predict(self, X):
"""Predict the target of new samples.
The predicted class is the class that has the highest probability,
and can thus be different from the prediction of the uncalibrated classifier.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The samples, as accepted by `estimator.predict`.
Returns
-------
C : ndarray of shape (n_samples,)
The predicted class.
"""
check_is_fitted(self)
return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self._get_estimator(),
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
.add(
splitter=self.cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
)
return router
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = get_tags(self._get_estimator()).input_tags.sparse
return tags
def _fit_classifier_calibrator_pair(
estimator,
X,
y,
train,
test,
method,
classes,
sample_weight=None,
fit_params=None,
):
"""Fit a classifier/calibration pair on a given train/test split.
Fit the classifier on the train set, compute its predictions on the test
set and use the predictions as input to fit the calibrator along with the
test labels.
Parameters
----------
estimator : estimator instance
Cloned base estimator.
X : array-like, shape (n_samples, n_features)
Sample data.
y : array-like, shape (n_samples,)
Targets.
train : ndarray, shape (n_train_indices,)
Indices of the training subset.
test : ndarray, shape (n_test_indices,)
Indices of the testing subset.
method : {'sigmoid', 'isotonic'}
Method to use for calibration.
classes : ndarray, shape (n_classes,)
The target classes.
sample_weight : array-like, default=None
Sample weights for `X`.
fit_params : dict, default=None
Parameters to pass to the `fit` method of the underlying
classifier.
Returns
-------
calibrated_classifier : _CalibratedClassifier instance
"""
fit_params_train = _check_method_params(X, params=fit_params, indices=train)
X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train)
X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test)
estimator.fit(X_train, y_train, **fit_params_train)
predictions, _ = _get_response_values(
estimator,
X_test,
response_method=["decision_function", "predict_proba"],
)
if predictions.ndim == 1:
# Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
predictions = predictions.reshape(-1, 1)
sw_test = None if sample_weight is None else _safe_indexing(sample_weight, test)
calibrated_classifier = _fit_calibrator(
estimator, predictions, y_test, classes, method, sample_weight=sw_test
)
return calibrated_classifier
def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None):
"""Fit calibrator(s) and return a `_CalibratedClassifier`
instance.
`n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted.
However, if `n_classes` equals 2, one calibrator is fitted.
Parameters
----------
clf : estimator instance
Fitted classifier.
predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \
when binary.
Raw predictions returned by the un-calibrated base classifier.
y : array-like, shape (n_samples,)
The targets.
classes : ndarray, shape (n_classes,)
All the prediction classes.
method : {'sigmoid', 'isotonic'}
The method to use for calibration.
sample_weight : ndarray, shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
pipeline : _CalibratedClassifier instance
"""
Y = label_binarize(y, classes=classes)
label_encoder = LabelEncoder().fit(classes)
pos_class_indices = label_encoder.transform(clf.classes_)
calibrators = []
for class_idx, this_pred in zip(pos_class_indices, predictions.T):
if method == "isotonic":
calibrator = IsotonicRegression(out_of_bounds="clip")
else: # "sigmoid"
calibrator = _SigmoidCalibration()
calibrator.fit(this_pred, Y[:, class_idx], sample_weight)
calibrators.append(calibrator)
pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes)
return pipeline
class _CalibratedClassifier:
"""Pipeline-like chaining a fitted classifier and its fitted calibrators.
Parameters
----------
estimator : estimator instance
Fitted classifier.
calibrators : list of fitted estimator instances
List of fitted calibrators (either 'IsotonicRegression' or
'_SigmoidCalibration'). The number of calibrators equals the number of
classes. However, if there are 2 classes, the list contains only one
fitted calibrator.
classes : array-like of shape (n_classes,)
All the prediction classes.
method : {'sigmoid', 'isotonic'}, default='sigmoid'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method or 'isotonic' which is a
non-parametric approach based on isotonic regression.
"""
def __init__(self, estimator, calibrators, *, classes, method="sigmoid"):
self.estimator = estimator
self.calibrators = calibrators
self.classes = classes
self.method = method
def predict_proba(self, X):
"""Calculate calibrated probabilities.
Calculates classification calibrated probabilities
for each class, in a one-vs-all manner, for `X`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The sample data.
Returns
-------
proba : array, shape (n_samples, n_classes)
The predicted probabilities. Can be exact zeros.
"""
predictions, _ = _get_response_values(
self.estimator,
X,
response_method=["decision_function", "predict_proba"],
)
if predictions.ndim == 1:
# Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
predictions = predictions.reshape(-1, 1)
n_classes = len(self.classes)
label_encoder = LabelEncoder().fit(self.classes)
pos_class_indices = label_encoder.transform(self.estimator.classes_)
proba = np.zeros((_num_samples(X), n_classes))
for class_idx, this_pred, calibrator in zip(
pos_class_indices, predictions.T, self.calibrators
):
if n_classes == 2:
# When binary, `predictions` consists only of predictions for
# clf.classes_[1] but `pos_class_indices` = 0
class_idx += 1
proba[:, class_idx] = calibrator.predict(this_pred)
# Normalize the probabilities
if n_classes == 2:
proba[:, 0] = 1.0 - proba[:, 1]
else:
denominator = np.sum(proba, axis=1)[:, np.newaxis]
# In the edge case where for each class calibrator returns a null
# probability for a given sample, use the uniform distribution
# instead.
uniform_proba = np.full_like(proba, 1 / n_classes)
proba = np.divide(
proba, denominator, out=uniform_proba, where=denominator != 0
)
# Deal with cases where the predicted probability minimally exceeds 1.0
proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0
return proba
# The max_abs_prediction_threshold was approximated using
# logit(np.finfo(np.float64).eps) which is about -36
def _sigmoid_calibration(
predictions, y, sample_weight=None, max_abs_prediction_threshold=30
):
"""Probability Calibration with sigmoid method (Platt 2000)
Parameters
----------
predictions : ndarray of shape (n_samples,)
The decision function or predict proba for the samples.
y : ndarray of shape (n_samples,)
The targets.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
a : float
The slope.
b : float
The intercept.
References
----------
Platt, "Probabilistic Outputs for Support Vector Machines"
"""
predictions = column_or_1d(predictions)
y = column_or_1d(y)
F = predictions # F follows Platt's notations
scale_constant = 1.0
max_prediction = np.max(np.abs(F))
# If the predictions have large values we scale them in order to bring
# them within a suitable range. This has no effect on the final
# (prediction) result because linear models like Logisitic Regression
# without a penalty are invariant to multiplying the features by a
# constant.
if max_prediction >= max_abs_prediction_threshold:
scale_constant = max_prediction
# We rescale the features in a copy: inplace rescaling could confuse
# the caller and make the code harder to reason about.
F = F / scale_constant
# Bayesian priors (see Platt end of section 2.2):
# It corresponds to the number of samples, taking into account the
# `sample_weight`.
mask_negative_samples = y <= 0
if sample_weight is not None:
prior0 = (sample_weight[mask_negative_samples]).sum()
prior1 = (sample_weight[~mask_negative_samples]).sum()
else:
prior0 = float(np.sum(mask_negative_samples))
prior1 = y.shape[0] - prior0
T = np.zeros_like(y, dtype=predictions.dtype)
T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0)
T[y <= 0] = 1.0 / (prior0 + 2.0)
bin_loss = HalfBinomialLoss()
def loss_grad(AB):
# .astype below is needed to ensure y_true and raw_prediction have the
# same dtype. With result = np.float64(0) * np.array([1, 2], dtype=np.float32)
# - in Numpy 2, result.dtype is float64
# - in Numpy<2, result.dtype is float32
raw_prediction = -(AB[0] * F + AB[1]).astype(dtype=predictions.dtype)
l, g = bin_loss.loss_gradient(
y_true=T,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
)
loss = l.sum()
# TODO: Remove casting to np.float64 when minimum supported SciPy is 1.11.2
# With SciPy >= 1.11.2, the LBFGS implementation will cast to float64
# https://github.com/scipy/scipy/pull/18825.
# Here we cast to float64 to support SciPy < 1.11.2
grad = np.asarray([-g @ F, -g.sum()], dtype=np.float64)
return loss, grad
AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))])
opt_result = minimize(
loss_grad,
AB0,
method="L-BFGS-B",
jac=True,
options={
"gtol": 1e-6,
"ftol": 64 * np.finfo(float).eps,
},
)
AB_ = opt_result.x
# The tuned multiplicative parameter is converted back to the original
# input feature scale. The offset parameter does not need rescaling since
# we did not rescale the outcome variable.
return AB_[0] / scale_constant, AB_[1]
class _SigmoidCalibration(RegressorMixin, BaseEstimator):
"""Sigmoid regression model.
Attributes
----------
a_ : float
The slope.
b_ : float
The intercept.
"""
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Returns an instance of self.
"""
X = column_or_1d(X)
y = column_or_1d(y)
X, y = indexable(X, y)
self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
return self
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,)
Data to predict from.
Returns
-------
T_ : ndarray of shape (n_samples,)
The predicted data.
"""
T = column_or_1d(T)
return expit(-(self.a_ * T + self.b_))
@validate_params(
{
"y_true": ["array-like"],
"y_prob": ["array-like"],
"pos_label": [Real, str, "boolean", None],
"n_bins": [Interval(Integral, 1, None, closed="left")],
"strategy": [StrOptions({"uniform", "quantile"})],
},
prefer_skip_nested_validation=True,
)
def calibration_curve(
y_true,
y_prob,
*,
pos_label=None,
n_bins=5,
strategy="uniform",
):
"""Compute true and predicted probabilities for a calibration curve.
The method assumes the inputs come from a binary classifier, and
discretize the [0, 1] interval into bins.
Calibration curves may also be referred to as reliability diagrams.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
y_true : array-like of shape (n_samples,)
True targets.
y_prob : array-like of shape (n_samples,)
Probabilities of the positive class.
pos_label : int, float, bool or str, default=None
The label of the positive class.
.. versionadded:: 1.1
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval. A bigger number
requires more data. Bins with no samples (i.e. without
corresponding values in `y_prob`) will not be returned, thus the
returned arrays may have less than `n_bins` values.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
uniform
The bins have identical widths.
quantile
The bins have the same number of samples and depend on `y_prob`.
Returns
-------
prob_true : ndarray of shape (n_bins,) or smaller
The proportion of samples whose class is the positive class, in each
bin (fraction of positives).
prob_pred : ndarray of shape (n_bins,) or smaller
The mean predicted probability in each bin.
References
----------
Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
Probabilities With Supervised Learning, in Proceedings of the 22nd
International Conference on Machine Learning (ICML).
See section 4 (Qualitative Analysis of Predictions).
Examples
--------
>>> import numpy as np
>>> from sklearn.calibration import calibration_curve
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1])
>>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.])
>>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3)
>>> prob_true
array([0. , 0.5, 1. ])
>>> prob_pred
array([0.2 , 0.525, 0.85 ])
"""
y_true = column_or_1d(y_true)
y_prob = column_or_1d(y_prob)
check_consistent_length(y_true, y_prob)
pos_label = _check_pos_label_consistency(pos_label, y_true)
if y_prob.min() < 0 or y_prob.max() > 1:
raise ValueError("y_prob has values outside [0, 1].")
labels = np.unique(y_true)
if len(labels) > 2:
raise ValueError(
f"Only binary classification is supported. Provided labels {labels}."
)
y_true = y_true == pos_label
if strategy == "quantile": # Determine bin edges by distribution of data
quantiles = np.linspace(0, 1, n_bins + 1)
bins = np.percentile(y_prob, quantiles * 100)
elif strategy == "uniform":
bins = np.linspace(0.0, 1.0, n_bins + 1)
else:
raise ValueError(
"Invalid entry to 'strategy' input. Strategy "
"must be either 'quantile' or 'uniform'."
)
binids = np.searchsorted(bins[1:-1], y_prob)
bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
bin_total = np.bincount(binids, minlength=len(bins))
nonzero = bin_total != 0
prob_true = bin_true[nonzero] / bin_total[nonzero]
prob_pred = bin_sums[nonzero] / bin_total[nonzero]
return prob_true, prob_pred
class CalibrationDisplay(_BinaryClassifierCurveDisplayMixin):
"""Calibration curve (also known as reliability diagram) visualization.
It is recommended to use
:func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or
:func:`~sklearn.calibration.CalibrationDisplay.from_predictions`
to create a `CalibrationDisplay`. All parameters are stored as attributes.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
For an example on how to use the visualization, see
:ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py`.
.. versionadded:: 1.0
Parameters
----------
prob_true : ndarray of shape (n_bins,)
The proportion of samples whose class is the positive class (fraction
of positives), in each bin.
prob_pred : ndarray of shape (n_bins,)
The mean predicted probability in each bin.
y_prob : ndarray of shape (n_samples,)
Probability estimates for the positive class, for each sample.
estimator_name : str, default=None
Name of estimator. If None, the estimator name is not shown.
pos_label : int, float, bool or str, default=None
The positive class when computing the calibration curve.
By default, `pos_label` is set to `estimators.classes_[1]` when using
`from_estimator` and set to 1 when using `from_predictions`.
.. versionadded:: 1.1
Attributes
----------
line_ : matplotlib Artist
Calibration curve.
ax_ : matplotlib Axes
Axes with calibration curve.
figure_ : matplotlib Figure
Figure containing the curve.
See Also
--------
calibration_curve : Compute true and predicted probabilities for a
calibration curve.
CalibrationDisplay.from_predictions : Plot calibration curve using true
and predicted labels.
CalibrationDisplay.from_estimator : Plot calibration curve using an
estimator and data.
Examples
--------
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import calibration_curve, CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10)
>>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob)
>>> disp.plot()
<...>
"""
def __init__(
self, prob_true, prob_pred, y_prob, *, estimator_name=None, pos_label=None
):
self.prob_true = prob_true
self.prob_pred = prob_pred
self.y_prob = y_prob
self.estimator_name = estimator_name
self.pos_label = pos_label
def plot(self, *, ax=None, name=None, ref_line=True, **kwargs):
"""Plot visualization.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Parameters
----------
ax : Matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
name : str, default=None
Name for labeling curve. If `None`, use `estimator_name` if
not `None`, otherwise no labeling is shown.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`
Object that stores computed values.
"""
self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)
info_pos_label = (
f"(Positive class: {self.pos_label})" if self.pos_label is not None else ""
)
default_line_kwargs = {"marker": "s", "linestyle": "-"}
if name is not None:
default_line_kwargs["label"] = name
line_kwargs = _validate_style_kwargs(default_line_kwargs, kwargs)
ref_line_label = "Perfectly calibrated"
existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1]
if ref_line and not existing_ref_line:
self.ax_.plot([0, 1], [0, 1], "k:", label=ref_line_label)
self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0]
# We always have to show the legend for at least the reference line
self.ax_.legend(loc="lower right")
xlabel = f"Mean predicted probability {info_pos_label}"
ylabel = f"Fraction of positives {info_pos_label}"
self.ax_.set(xlabel=xlabel, ylabel=ylabel)
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
n_bins=5,
strategy="uniform",
pos_label=None,
name=None,
ref_line=True,
ax=None,
**kwargs,
):
"""Plot calibration curve using a binary classifier and data.
A calibration curve, also known as a reliability diagram, uses inputs
from a binary classifier and plots the average predicted probability
for each bin against the fraction of positive classes, on the
y-axis.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
.. versionadded:: 1.0
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a classifier. The classifier must
have a :term:`predict_proba` method.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
y : array-like of shape (n_samples,)
Binary target values.
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval into when
calculating the calibration curve. A bigger number requires more
data.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
- `'uniform'`: The bins have identical widths.
- `'quantile'`: The bins have the same number of samples and depend
on predicted probabilities.
pos_label : int, float, bool or str, default=None
The positive class when computing the calibration curve.
By default, `estimators.classes_[1]` is considered as the
positive class.
.. versionadded:: 1.1
name : str, default=None
Name for labeling curve. If `None`, the name of the estimator is
used.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`.
Object that stores computed values.
See Also
--------
CalibrationDisplay.from_predictions : Plot calibration curve using true
and predicted labels.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test)
>>> plt.show()
"""
y_prob, pos_label, name = cls._validate_and_get_response_values(
estimator,
X,
y,
response_method="predict_proba",
pos_label=pos_label,
name=name,
)
return cls.from_predictions(
y,
y_prob,
n_bins=n_bins,
strategy=strategy,
pos_label=pos_label,
name=name,
ref_line=ref_line,
ax=ax,
**kwargs,
)
@classmethod
def from_predictions(
cls,
y_true,
y_prob,
*,
n_bins=5,
strategy="uniform",
pos_label=None,
name=None,
ref_line=True,
ax=None,
**kwargs,
):
"""Plot calibration curve using true labels and predicted probabilities.
Calibration curve, also known as reliability diagram, uses inputs
from a binary classifier and plots the average predicted probability
for each bin against the fraction of positive classes, on the
y-axis.
Extra keyword arguments will be passed to
:func:`matplotlib.pyplot.plot`.
Read more about calibration in the :ref:`User Guide <calibration>` and
more about the scikit-learn visualization API in :ref:`visualizations`.
.. versionadded:: 1.0
Parameters
----------
y_true : array-like of shape (n_samples,)
True labels.
y_prob : array-like of shape (n_samples,)
The predicted probabilities of the positive class.
n_bins : int, default=5
Number of bins to discretize the [0, 1] interval into when
calculating the calibration curve. A bigger number requires more
data.
strategy : {'uniform', 'quantile'}, default='uniform'
Strategy used to define the widths of the bins.
- `'uniform'`: The bins have identical widths.
- `'quantile'`: The bins have the same number of samples and depend
on predicted probabilities.
pos_label : int, float, bool or str, default=None
The positive class when computing the calibration curve.
By default `pos_label` is set to 1.
.. versionadded:: 1.1
name : str, default=None
Name for labeling curve.
ref_line : bool, default=True
If `True`, plots a reference line representing a perfectly
calibrated classifier.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
**kwargs : dict
Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
display : :class:`~sklearn.calibration.CalibrationDisplay`.
Object that stores computed values.
See Also
--------
CalibrationDisplay.from_estimator : Plot calibration curve using an
estimator and data.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.calibration import CalibrationDisplay
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = LogisticRegression(random_state=0)
>>> clf.fit(X_train, y_train)
LogisticRegression(random_state=0)
>>> y_prob = clf.predict_proba(X_test)[:, 1]
>>> disp = CalibrationDisplay.from_predictions(y_test, y_prob)
>>> plt.show()
"""
pos_label_validated, name = cls._validate_from_predictions_params(
y_true, y_prob, sample_weight=None, pos_label=pos_label, name=name
)
prob_true, prob_pred = calibration_curve(
y_true, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label
)
disp = cls(
prob_true=prob_true,
prob_pred=prob_pred,
y_prob=y_prob,
estimator_name=name,
pos_label=pos_label_validated,
)
return disp.plot(ax=ax, ref_line=ref_line, **kwargs)
|