File size: 9,202 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import math

import numpy as np
import pytest
from numpy.testing import suppress_warnings

from scipy.stats import variation
from scipy._lib._util import AxisError
from scipy.conftest import array_api_compatible
from scipy._lib._array_api import is_numpy
from scipy._lib._array_api_no_0d import xp_assert_equal, xp_assert_close
from scipy.stats._axis_nan_policy import (too_small_nd_omit, too_small_nd_not_omit,
                                          SmallSampleWarning)

pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")]
skip_xp_backends = pytest.mark.skip_xp_backends


class TestVariation:
    """
    Test class for scipy.stats.variation
    """

    def test_ddof(self, xp):
        x = xp.arange(9.0)
        xp_assert_close(variation(x, ddof=1), xp.asarray(math.sqrt(60/8)/4))

    @pytest.mark.parametrize('sgn', [1, -1])
    def test_sign(self, sgn, xp):
        x = xp.asarray([1., 2., 3., 4., 5.])
        v = variation(sgn*x)
        expected = xp.asarray(sgn*math.sqrt(2)/3)
        xp_assert_close(v, expected, rtol=1e-10)

    def test_scalar(self, xp):
        # A scalar is treated like a 1-d sequence with length 1.
        xp_assert_equal(variation(4.0), 0.0)

    @pytest.mark.parametrize('nan_policy, expected',
                             [('propagate', np.nan),
                              ('omit', np.sqrt(20/3)/4)])
    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_variation_nan(self, nan_policy, expected, xp):
        x = xp.arange(10.)
        x[9] = xp.nan
        xp_assert_close(variation(x, nan_policy=nan_policy), expected)

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_nan_policy_raise(self, xp):
        x = xp.asarray([1.0, 2.0, xp.nan, 3.0])
        with pytest.raises(ValueError, match='input contains nan'):
            variation(x, nan_policy='raise')

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_bad_nan_policy(self, xp):
        with pytest.raises(ValueError, match='must be one of'):
            variation([1, 2, 3], nan_policy='foobar')

    @skip_xp_backends(np_only=True,
                      reason='`keepdims` only supports NumPy backend')
    def test_keepdims(self, xp):
        x = xp.reshape(xp.arange(10), (2, 5))
        y = variation(x, axis=1, keepdims=True)
        expected = np.array([[np.sqrt(2)/2],
                             [np.sqrt(2)/7]])
        xp_assert_close(y, expected)

    @skip_xp_backends(np_only=True,
                      reason='`keepdims` only supports NumPy backend')
    @pytest.mark.parametrize('axis, expected',
                             [(0, np.empty((1, 0))),
                              (1, np.full((5, 1), fill_value=np.nan))])
    def test_keepdims_size0(self, axis, expected, xp):
        x = xp.zeros((5, 0))
        if axis == 1:
            with pytest.warns(SmallSampleWarning, match=too_small_nd_not_omit):
                y = variation(x, axis=axis, keepdims=True)
        else:
            y = variation(x, axis=axis, keepdims=True)
        xp_assert_equal(y, expected)

    @skip_xp_backends(np_only=True,
                      reason='`keepdims` only supports NumPy backend')
    @pytest.mark.parametrize('incr, expected_fill', [(0, np.inf), (1, np.nan)])
    def test_keepdims_and_ddof_eq_len_plus_incr(self, incr, expected_fill, xp):
        x = xp.asarray([[1, 1, 2, 2], [1, 2, 3, 3]])
        y = variation(x, axis=1, ddof=x.shape[1] + incr, keepdims=True)
        xp_assert_equal(y, xp.full((2, 1), fill_value=expected_fill))

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_propagate_nan(self, xp):
        # Check that the shape of the result is the same for inputs
        # with and without nans, cf gh-5817
        a = xp.reshape(xp.arange(8, dtype=float), (2, -1))
        a[1, 0] = xp.nan
        v = variation(a, axis=1, nan_policy="propagate")
        xp_assert_close(v, [math.sqrt(5/4)/1.5, xp.nan], atol=1e-15)

    @skip_xp_backends(np_only=True, reason='Python list input uses NumPy backend')
    def test_axis_none(self, xp):
        # Check that `variation` computes the result on the flattened
        # input when axis is None.
        y = variation([[0, 1], [2, 3]], axis=None)
        xp_assert_close(y, math.sqrt(5/4)/1.5)

    def test_bad_axis(self, xp):
        # Check that an invalid axis raises np.exceptions.AxisError.
        x = xp.asarray([[1, 2, 3], [4, 5, 6]])
        with pytest.raises((AxisError, IndexError)):
            variation(x, axis=10)

    def test_mean_zero(self, xp):
        # Check that `variation` returns inf for a sequence that is not
        # identically zero but whose mean is zero.
        x = xp.asarray([10., -3., 1., -4., -4.])
        y = variation(x)
        xp_assert_equal(y, xp.asarray(xp.inf))

        x2 = xp.stack([x, -10.*x])
        y2 = variation(x2, axis=1)
        xp_assert_equal(y2, xp.asarray([xp.inf, xp.inf]))

    @pytest.mark.parametrize('x', [[0.]*5, [1, 2, np.inf, 9]])
    def test_return_nan(self, x, xp):
        x = xp.asarray(x)
        # Test some cases where `variation` returns nan.
        y = variation(x)
        xp_assert_equal(y, xp.asarray(xp.nan, dtype=x.dtype))

    @pytest.mark.parametrize('axis, expected',
                             [(0, []), (1, [np.nan]*3), (None, np.nan)])
    def test_2d_size_zero_with_axis(self, axis, expected, xp):
        x = xp.empty((3, 0))
        with suppress_warnings() as sup:
            # torch
            sup.filter(UserWarning, "std*")
            if axis != 0:
                if is_numpy(xp):
                    with pytest.warns(SmallSampleWarning, match="See documentation..."):
                        y = variation(x, axis=axis)
                else:
                    y = variation(x, axis=axis)
            else:
                y = variation(x, axis=axis)
        xp_assert_equal(y, xp.asarray(expected))

    def test_neg_inf(self, xp):
        # Edge case that produces -inf: ddof equals the number of non-nan
        # values, the values are not constant, and the mean is negative.
        x1 = xp.asarray([-3., -5.])
        xp_assert_equal(variation(x1, ddof=2), xp.asarray(-xp.inf))

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_neg_inf_nan(self, xp):
        x2 = xp.asarray([[xp.nan, 1, -10, xp.nan],
                         [-20, -3, xp.nan, xp.nan]])
        xp_assert_equal(variation(x2, axis=1, ddof=2, nan_policy='omit'),
                        [-xp.inf, -xp.inf])

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    @pytest.mark.parametrize("nan_policy", ['propagate', 'omit'])
    def test_combined_edge_cases(self, nan_policy, xp):
        x = xp.array([[0, 10, xp.nan, 1],
                      [0, -5, xp.nan, 2],
                      [0, -5, xp.nan, 3]])
        if nan_policy == 'omit':
            with pytest.warns(SmallSampleWarning, match=too_small_nd_omit):
                y = variation(x, axis=0, nan_policy=nan_policy)
        else:
            y = variation(x, axis=0, nan_policy=nan_policy)
        xp_assert_close(y, [xp.nan, xp.inf, xp.nan, math.sqrt(2/3)/2])

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    @pytest.mark.parametrize(
        'ddof, expected',
        [(0, [np.sqrt(1/6), np.sqrt(5/8), np.inf, 0, np.nan, 0.0, np.nan]),
         (1, [0.5, np.sqrt(5/6), np.inf, 0, np.nan, 0, np.nan]),
         (2, [np.sqrt(0.5), np.sqrt(5/4), np.inf, np.nan, np.nan, 0, np.nan])]
    )
    def test_more_nan_policy_omit_tests(self, ddof, expected, xp):
        # The slightly strange formatting in the follow array is my attempt to
        # maintain a clean tabular arrangement of the data while satisfying
        # the demands of pycodestyle.  Currently, E201 and E241 are not
        # disabled by the `noqa` annotation.
        nan = xp.nan
        x = xp.asarray([[1.0, 2.0, nan, 3.0],
                        [0.0, 4.0, 3.0, 1.0],
                        [nan, -.5, 0.5, nan],
                        [nan, 9.0, 9.0, nan],
                        [nan, nan, nan, nan],
                        [3.0, 3.0, 3.0, 3.0],
                        [0.0, 0.0, 0.0, 0.0]])
        with pytest.warns(SmallSampleWarning, match=too_small_nd_omit):
            v = variation(x, axis=1, ddof=ddof, nan_policy='omit')
        xp_assert_close(v, expected)

    @skip_xp_backends(np_only=True,
                      reason='`nan_policy` only supports NumPy backend')
    def test_variation_ddof(self, xp):
        # test variation with delta degrees of freedom
        # regression test for gh-13341
        a = xp.asarray([1., 2., 3., 4., 5.])
        nan_a = xp.asarray([1, 2, 3, xp.nan, 4, 5, xp.nan])
        y = variation(a, ddof=1)
        nan_y = variation(nan_a, nan_policy="omit", ddof=1)
        xp_assert_close(y, math.sqrt(5/2)/3)
        assert y == nan_y