File size: 54,540 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
import threading
import pickle
import pytest
from copy import deepcopy
import platform
import sys
import math
import numpy as np
from numpy.testing import assert_allclose, assert_equal, suppress_warnings
from scipy.stats.sampling import (
    TransformedDensityRejection,
    DiscreteAliasUrn,
    DiscreteGuideTable,
    NumericalInversePolynomial,
    NumericalInverseHermite,
    RatioUniforms,
    SimpleRatioUniforms,
    UNURANError
)
from pytest import raises as assert_raises
from scipy import stats
from scipy import special
from scipy.stats import chisquare, cramervonmises
from scipy.stats._distr_params import distdiscrete, distcont
from scipy._lib._util import check_random_state


# common test data: this data can be shared between all the tests.


# Normal distribution shared between all the continuous methods
class StandardNormal:
    def pdf(self, x):
        # normalization constant needed for NumericalInverseHermite
        return 1./np.sqrt(2.*np.pi) * np.exp(-0.5 * x*x)

    def dpdf(self, x):
        return 1./np.sqrt(2.*np.pi) * -x * np.exp(-0.5 * x*x)

    def cdf(self, x):
        return special.ndtr(x)


all_methods = [
    ("TransformedDensityRejection", {"dist": StandardNormal()}),
    ("DiscreteAliasUrn", {"dist": [0.02, 0.18, 0.8]}),
    ("DiscreteGuideTable", {"dist": [0.02, 0.18, 0.8]}),
    ("NumericalInversePolynomial", {"dist": StandardNormal()}),
    ("NumericalInverseHermite", {"dist": StandardNormal()}),
    ("SimpleRatioUniforms", {"dist": StandardNormal(), "mode": 0})
]

if (sys.implementation.name == 'pypy'
        and sys.implementation.version < (7, 3, 10)):
    # changed in PyPy for v7.3.10
    floaterr = r"unsupported operand type for float\(\): 'list'"
else:
    floaterr = r"must be real number, not list"
# Make sure an internal error occurs in UNU.RAN when invalid callbacks are
# passed. Moreover, different generators throw different error messages.
# So, in case of an `UNURANError`, we do not validate the error message.
bad_pdfs_common = [
    # Negative PDF
    (lambda x: -x, UNURANError, r"..."),
    # Returning wrong type
    (lambda x: [], TypeError, floaterr),
    # Undefined name inside the function
    (lambda x: foo, NameError, r"name 'foo' is not defined"),  # type: ignore[name-defined]  # noqa: F821, E501
    # Infinite value returned => Overflow error.
    (lambda x: np.inf, UNURANError, r"..."),
    # NaN value => internal error in UNU.RAN
    (lambda x: np.nan, UNURANError, r"..."),
    # signature of PDF wrong
    (lambda: 1.0, TypeError, r"takes 0 positional arguments but 1 was given")
]


# same approach for dpdf
bad_dpdf_common = [
    # Infinite value returned.
    (lambda x: np.inf, UNURANError, r"..."),
    # NaN value => internal error in UNU.RAN
    (lambda x: np.nan, UNURANError, r"..."),
    # Returning wrong type
    (lambda x: [], TypeError, floaterr),
    # Undefined name inside the function
    (lambda x: foo, NameError, r"name 'foo' is not defined"),  # type: ignore[name-defined]  # noqa: F821, E501
    # signature of dPDF wrong
    (lambda: 1.0, TypeError, r"takes 0 positional arguments but 1 was given")
]


# same approach for logpdf
bad_logpdfs_common = [
    # Returning wrong type
    (lambda x: [], TypeError, floaterr),
    # Undefined name inside the function
    (lambda x: foo, NameError, r"name 'foo' is not defined"),  # type: ignore[name-defined]  # noqa: F821, E501
    # Infinite value returned => Overflow error.
    (lambda x: np.inf, UNURANError, r"..."),
    # NaN value => internal error in UNU.RAN
    (lambda x: np.nan, UNURANError, r"..."),
    # signature of logpdf wrong
    (lambda: 1.0, TypeError, r"takes 0 positional arguments but 1 was given")
]


bad_pv_common = [
    ([], r"must contain at least one element"),
    ([[1.0, 0.0]], r"wrong number of dimensions \(expected 1, got 2\)"),
    ([0.2, 0.4, np.nan, 0.8], r"must contain only finite / non-nan values"),
    ([0.2, 0.4, np.inf, 0.8], r"must contain only finite / non-nan values"),
    ([0.0, 0.0], r"must contain at least one non-zero value"),
]


# size of the domains is incorrect
bad_sized_domains = [
    # > 2 elements in the domain
    ((1, 2, 3), ValueError, r"must be a length 2 tuple"),
    # empty domain
    ((), ValueError, r"must be a length 2 tuple")
]

# domain values are incorrect
bad_domains = [
    ((2, 1), UNURANError, r"left >= right"),
    ((1, 1), UNURANError, r"left >= right"),
]

# infinite and nan values present in domain.
inf_nan_domains = [
    # left >= right
    ((10, 10), UNURANError, r"left >= right"),
    ((np.inf, np.inf), UNURANError, r"left >= right"),
    ((-np.inf, -np.inf), UNURANError, r"left >= right"),
    ((np.inf, -np.inf), UNURANError, r"left >= right"),
    # Also include nans in some of the domains.
    ((-np.inf, np.nan), ValueError, r"only non-nan values"),
    ((np.nan, np.inf), ValueError, r"only non-nan values")
]

# `nan` values present in domain. Some distributions don't support
# infinite tails, so don't mix the nan values with infinities.
nan_domains = [
    ((0, np.nan), ValueError, r"only non-nan values"),
    ((np.nan, np.nan), ValueError, r"only non-nan values")
]


# all the methods should throw errors for nan, bad sized, and bad valued
# domains.
@pytest.mark.parametrize("domain, err, msg",
                         bad_domains + bad_sized_domains +
                         nan_domains)  # type: ignore[operator]
@pytest.mark.parametrize("method, kwargs", all_methods)
def test_bad_domain(domain, err, msg, method, kwargs):
    Method = getattr(stats.sampling, method)
    with pytest.raises(err, match=msg):
        Method(**kwargs, domain=domain)


@pytest.mark.parametrize("method, kwargs", all_methods)
def test_random_state(method, kwargs):
    Method = getattr(stats.sampling, method)

    # simple seed that works for any version of NumPy
    seed = 123
    rng1 = Method(**kwargs, random_state=seed)
    rng2 = Method(**kwargs, random_state=seed)
    assert_equal(rng1.rvs(100), rng2.rvs(100))

    # global seed
    np.random.seed(123)
    rng1 = Method(**kwargs)
    rvs1 = rng1.rvs(100)
    np.random.seed(None)
    rng2 = Method(**kwargs, random_state=123)
    rvs2 = rng2.rvs(100)
    assert_equal(rvs1, rvs2)

    # Generator seed for new NumPy
    # when a RandomState is given, it should take the bitgen_t
    # member of the class and create a Generator instance.
    seed1 = np.random.RandomState(np.random.MT19937(123))
    seed2 = np.random.Generator(np.random.MT19937(123))
    rng1 = Method(**kwargs, random_state=seed1)
    rng2 = Method(**kwargs, random_state=seed2)
    assert_equal(rng1.rvs(100), rng2.rvs(100))


def test_set_random_state():
    rng1 = TransformedDensityRejection(StandardNormal(), random_state=123)
    rng2 = TransformedDensityRejection(StandardNormal())
    rng2.set_random_state(123)
    assert_equal(rng1.rvs(100), rng2.rvs(100))
    rng = TransformedDensityRejection(StandardNormal(), random_state=123)
    rvs1 = rng.rvs(100)
    rng.set_random_state(123)
    rvs2 = rng.rvs(100)
    assert_equal(rvs1, rvs2)


def test_threading_behaviour():
    # Test if the API is thread-safe.
    # This verifies if the lock mechanism and the use of `PyErr_Occurred`
    # is correct.
    errors = {"err1": None, "err2": None}

    class Distribution:
        def __init__(self, pdf_msg):
            self.pdf_msg = pdf_msg

        def pdf(self, x):
            if 49.9 < x < 50.0:
                raise ValueError(self.pdf_msg)
            return x

        def dpdf(self, x):
            return 1

    def func1():
        dist = Distribution('foo')
        rng = TransformedDensityRejection(dist, domain=(10, 100),
                                          random_state=12)
        try:
            rng.rvs(100000)
        except ValueError as e:
            errors['err1'] = e.args[0]

    def func2():
        dist = Distribution('bar')
        rng = TransformedDensityRejection(dist, domain=(10, 100),
                                          random_state=2)
        try:
            rng.rvs(100000)
        except ValueError as e:
            errors['err2'] = e.args[0]

    t1 = threading.Thread(target=func1)
    t2 = threading.Thread(target=func2)

    t1.start()
    t2.start()

    t1.join()
    t2.join()

    assert errors['err1'] == 'foo'
    assert errors['err2'] == 'bar'


@pytest.mark.parametrize("method, kwargs", all_methods)
def test_pickle(method, kwargs):
    Method = getattr(stats.sampling, method)
    rng1 = Method(**kwargs, random_state=123)
    obj = pickle.dumps(rng1)
    rng2 = pickle.loads(obj)
    assert_equal(rng1.rvs(100), rng2.rvs(100))


@pytest.mark.parametrize("size", [None, 0, (0, ), 1, (10, 3), (2, 3, 4, 5),
                                  (0, 0), (0, 1)])
def test_rvs_size(size):
    # As the `rvs` method is present in the base class and shared between
    # all the classes, we can just test with one of the methods.
    rng = TransformedDensityRejection(StandardNormal())
    if size is None:
        assert np.isscalar(rng.rvs(size))
    else:
        if np.isscalar(size):
            size = (size, )
        assert rng.rvs(size).shape == size


def test_with_scipy_distribution():
    # test if the setup works with SciPy's rv_frozen distributions
    dist = stats.norm()
    urng = np.random.default_rng(0)
    rng = NumericalInverseHermite(dist, random_state=urng)
    u = np.linspace(0, 1, num=100)
    check_cont_samples(rng, dist, dist.stats())
    assert_allclose(dist.ppf(u), rng.ppf(u))
    # test if it works with `loc` and `scale`
    dist = stats.norm(loc=10., scale=5.)
    rng = NumericalInverseHermite(dist, random_state=urng)
    check_cont_samples(rng, dist, dist.stats())
    assert_allclose(dist.ppf(u), rng.ppf(u))
    # check for discrete distributions
    dist = stats.binom(10, 0.2)
    rng = DiscreteAliasUrn(dist, random_state=urng)
    domain = dist.support()
    pv = dist.pmf(np.arange(domain[0], domain[1]+1))
    check_discr_samples(rng, pv, dist.stats())


def check_cont_samples(rng, dist, mv_ex, rtol=1e-7, atol=1e-1):
    rvs = rng.rvs(100000)
    mv = rvs.mean(), rvs.var()
    # test the moments only if the variance is finite
    if np.isfinite(mv_ex[1]):
        assert_allclose(mv, mv_ex, rtol=rtol, atol=atol)
    # Cramer Von Mises test for goodness-of-fit
    rvs = rng.rvs(500)
    dist.cdf = np.vectorize(dist.cdf)
    pval = cramervonmises(rvs, dist.cdf).pvalue
    assert pval > 0.1


def check_discr_samples(rng, pv, mv_ex, rtol=1e-3, atol=1e-1):
    rvs = rng.rvs(100000)
    # test if the first few moments match
    mv = rvs.mean(), rvs.var()
    assert_allclose(mv, mv_ex, rtol=rtol, atol=atol)
    # normalize
    pv = pv / pv.sum()
    # chi-squared test for goodness-of-fit
    obs_freqs = np.zeros_like(pv)
    _, freqs = np.unique(rvs, return_counts=True)
    freqs = freqs / freqs.sum()
    obs_freqs[:freqs.size] = freqs
    pval = chisquare(obs_freqs, pv).pvalue
    assert pval > 0.1


def test_warning_center_not_in_domain():
    # UNURAN will warn if the center provided or the one computed w/o the
    # domain is outside of the domain
    msg = "102 : center moved into domain of distribution"
    with pytest.warns(RuntimeWarning, match=msg):
        NumericalInversePolynomial(StandardNormal(), center=0, domain=(3, 5))
    with pytest.warns(RuntimeWarning, match=msg):
        NumericalInversePolynomial(StandardNormal(), domain=(3, 5))


@pytest.mark.parametrize('method', ["SimpleRatioUniforms",
                                    "NumericalInversePolynomial",
                                    "TransformedDensityRejection"])
def test_error_mode_not_in_domain(method):
    # UNURAN raises an error if the mode is not in the domain
    # the behavior is different compared to the case that center is not in the
    # domain. mode is supposed to be the exact value, center can be an
    # approximate value
    Method = getattr(stats.sampling, method)
    msg = "17 : mode not in domain"
    with pytest.raises(UNURANError, match=msg):
        Method(StandardNormal(), mode=0, domain=(3, 5))


@pytest.mark.parametrize('method', ["NumericalInverseHermite",
                                    "NumericalInversePolynomial"])
class TestQRVS:
    def test_input_validation(self, method):
        match = "`qmc_engine` must be an instance of..."
        with pytest.raises(ValueError, match=match):
            Method = getattr(stats.sampling, method)
            gen = Method(StandardNormal())
            gen.qrvs(qmc_engine=0)

        # issues with QMCEngines and old NumPy
        Method = getattr(stats.sampling, method)
        gen = Method(StandardNormal())

        match = "`d` must be consistent with dimension of `qmc_engine`."
        with pytest.raises(ValueError, match=match):
            gen.qrvs(d=3, qmc_engine=stats.qmc.Halton(2))

    qrngs = [None, stats.qmc.Sobol(1, seed=0), stats.qmc.Halton(3, seed=0)]
    # `size=None` should not add anything to the shape, `size=1` should
    sizes = [(None, tuple()), (1, (1,)), (4, (4,)),
             ((4,), (4,)), ((2, 4), (2, 4))]  # type: ignore
    # Neither `d=None` nor `d=1` should add anything to the shape
    ds = [(None, tuple()), (1, tuple()), (3, (3,))]

    @pytest.mark.parametrize('qrng', qrngs)
    @pytest.mark.parametrize('size_in, size_out', sizes)
    @pytest.mark.parametrize('d_in, d_out', ds)
    def test_QRVS_shape_consistency(self, qrng, size_in, size_out,
                                    d_in, d_out, method):
        w32 = sys.platform == "win32" and platform.architecture()[0] == "32bit"
        if w32 and method == "NumericalInversePolynomial":
            pytest.xfail("NumericalInversePolynomial.qrvs fails for Win "
                         "32-bit")

        dist = StandardNormal()
        Method = getattr(stats.sampling, method)
        gen = Method(dist)

        # If d and qrng.d are inconsistent, an error is raised
        if d_in is not None and qrng is not None and qrng.d != d_in:
            match = "`d` must be consistent with dimension of `qmc_engine`."
            with pytest.raises(ValueError, match=match):
                gen.qrvs(size_in, d=d_in, qmc_engine=qrng)
            return

        # Sometimes d is really determined by qrng
        if d_in is None and qrng is not None and qrng.d != 1:
            d_out = (qrng.d,)

        shape_expected = size_out + d_out

        qrng2 = deepcopy(qrng)
        qrvs = gen.qrvs(size=size_in, d=d_in, qmc_engine=qrng)
        if size_in is not None:
            assert qrvs.shape == shape_expected

        if qrng2 is not None:
            uniform = qrng2.random(np.prod(size_in) or 1)
            qrvs2 = stats.norm.ppf(uniform).reshape(shape_expected)
            assert_allclose(qrvs, qrvs2, atol=1e-12)

    def test_QRVS_size_tuple(self, method):
        # QMCEngine samples are always of shape (n, d). When `size` is a tuple,
        # we set `n = prod(size)` in the call to qmc_engine.random, transform
        # the sample, and reshape it to the final dimensions. When we reshape,
        # we need to be careful, because the _columns_ of the sample returned
        # by a QMCEngine are "independent"-ish, but the elements within the
        # columns are not. We need to make sure that this doesn't get mixed up
        # by reshaping: qrvs[..., i] should remain "independent"-ish of
        # qrvs[..., i+1], but the elements within qrvs[..., i] should be
        # transformed from the same low-discrepancy sequence.

        dist = StandardNormal()
        Method = getattr(stats.sampling, method)
        gen = Method(dist)

        size = (3, 4)
        d = 5
        qrng = stats.qmc.Halton(d, seed=0)
        qrng2 = stats.qmc.Halton(d, seed=0)

        uniform = qrng2.random(np.prod(size))

        qrvs = gen.qrvs(size=size, d=d, qmc_engine=qrng)
        qrvs2 = stats.norm.ppf(uniform)

        for i in range(d):
            sample = qrvs[..., i]
            sample2 = qrvs2[:, i].reshape(size)
            assert_allclose(sample, sample2, atol=1e-12)


class TestTransformedDensityRejection:
    # Simple Custom Distribution
    class dist0:
        def pdf(self, x):
            return 3/4 * (1-x*x)

        def dpdf(self, x):
            return 3/4 * (-2*x)

        def cdf(self, x):
            return 3/4 * (x - x**3/3 + 2/3)

        def support(self):
            return -1, 1

    # Standard Normal Distribution
    class dist1:
        def pdf(self, x):
            return stats.norm._pdf(x / 0.1)

        def dpdf(self, x):
            return -x / 0.01 * stats.norm._pdf(x / 0.1)

        def cdf(self, x):
            return stats.norm._cdf(x / 0.1)

    # pdf with piecewise linear function as transformed density
    # with T = -1/sqrt with shift. Taken from UNU.RAN test suite
    # (from file t_tdr_ps.c)
    class dist2:
        def __init__(self, shift):
            self.shift = shift

        def pdf(self, x):
            x -= self.shift
            y = 1. / (abs(x) + 1.)
            return 0.5 * y * y

        def dpdf(self, x):
            x -= self.shift
            y = 1. / (abs(x) + 1.)
            y = y * y * y
            return y if (x < 0.) else -y

        def cdf(self, x):
            x -= self.shift
            if x <= 0.:
                return 0.5 / (1. - x)
            else:
                return 1. - 0.5 / (1. + x)

    dists = [dist0(), dist1(), dist2(0.), dist2(10000.)]

    # exact mean and variance of the distributions in the list dists
    mv0 = [0., 4./15.]
    mv1 = [0., 0.01]
    mv2 = [0., np.inf]
    mv3 = [10000., np.inf]
    mvs = [mv0, mv1, mv2, mv3]

    @pytest.mark.parametrize("dist, mv_ex",
                             zip(dists, mvs))
    def test_basic(self, dist, mv_ex):
        with suppress_warnings() as sup:
            # filter the warnings thrown by UNU.RAN
            sup.filter(RuntimeWarning)
            rng = TransformedDensityRejection(dist, random_state=42)
        check_cont_samples(rng, dist, mv_ex)

    # PDF 0 everywhere => bad construction points
    bad_pdfs = [(lambda x: 0, UNURANError, r"50 : bad construction points.")]
    bad_pdfs += bad_pdfs_common  # type: ignore[arg-type]

    @pytest.mark.parametrize("pdf, err, msg", bad_pdfs)
    def test_bad_pdf(self, pdf, err, msg):
        class dist:
            pass
        dist.pdf = pdf
        dist.dpdf = lambda x: 1  # an arbitrary dPDF
        with pytest.raises(err, match=msg):
            TransformedDensityRejection(dist)

    @pytest.mark.parametrize("dpdf, err, msg", bad_dpdf_common)
    def test_bad_dpdf(self, dpdf, err, msg):
        class dist:
            pass
        dist.pdf = lambda x: x
        dist.dpdf = dpdf
        with pytest.raises(err, match=msg):
            TransformedDensityRejection(dist, domain=(1, 10))

    # test domains with inf + nan in them. need to write a custom test for
    # this because not all methods support infinite tails.
    @pytest.mark.parametrize("domain, err, msg", inf_nan_domains)
    def test_inf_nan_domains(self, domain, err, msg):
        with pytest.raises(err, match=msg):
            TransformedDensityRejection(StandardNormal(), domain=domain)

    @pytest.mark.parametrize("construction_points", [-1, 0, 0.1])
    def test_bad_construction_points_scalar(self, construction_points):
        with pytest.raises(ValueError, match=r"`construction_points` must be "
                                             r"a positive integer."):
            TransformedDensityRejection(
                StandardNormal(), construction_points=construction_points
            )

    def test_bad_construction_points_array(self):
        # empty array
        construction_points = []
        with pytest.raises(ValueError, match=r"`construction_points` must "
                                             r"either be a "
                                             r"scalar or a non-empty array."):
            TransformedDensityRejection(
                StandardNormal(), construction_points=construction_points
            )

        # construction_points not monotonically increasing
        construction_points = [1, 1, 1, 1, 1, 1]
        with pytest.warns(RuntimeWarning, match=r"33 : starting points not "
                                                r"strictly monotonically "
                                                r"increasing"):
            TransformedDensityRejection(
                StandardNormal(), construction_points=construction_points
            )

        # construction_points containing nans
        construction_points = [np.nan, np.nan, np.nan]
        with pytest.raises(UNURANError, match=r"50 : bad construction "
                                              r"points."):
            TransformedDensityRejection(
                StandardNormal(), construction_points=construction_points
            )

        # construction_points out of domain
        construction_points = [-10, 10]
        with pytest.warns(RuntimeWarning, match=r"50 : starting point out of "
                                                r"domain"):
            TransformedDensityRejection(
                StandardNormal(), domain=(-3, 3),
                construction_points=construction_points
            )

    @pytest.mark.parametrize("c", [-1., np.nan, np.inf, 0.1, 1.])
    def test_bad_c(self, c):
        msg = r"`c` must either be -0.5 or 0."
        with pytest.raises(ValueError, match=msg):
            TransformedDensityRejection(StandardNormal(), c=-1.)

    u = [np.linspace(0, 1, num=1000), [], [[]], [np.nan],
         [-np.inf, np.nan, np.inf], 0,
         [[np.nan, 0.5, 0.1], [0.2, 0.4, np.inf], [-2, 3, 4]]]

    @pytest.mark.parametrize("u", u)
    def test_ppf_hat(self, u):
        # Increase the `max_squeeze_hat_ratio` so the ppf_hat is more
        # accurate.
        rng = TransformedDensityRejection(StandardNormal(),
                                          max_squeeze_hat_ratio=0.9999)
        # Older versions of NumPy throw RuntimeWarnings for comparisons
        # with nan.
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in greater")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "greater_equal")
            sup.filter(RuntimeWarning, "invalid value encountered in less")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "less_equal")
            res = rng.ppf_hat(u)
            expected = stats.norm.ppf(u)
        assert_allclose(res, expected, rtol=1e-3, atol=1e-5)
        assert res.shape == expected.shape

    def test_bad_dist(self):
        # Empty distribution
        class dist:
            ...

        msg = r"`pdf` required but not found."
        with pytest.raises(ValueError, match=msg):
            TransformedDensityRejection(dist)

        # dPDF not present in dist
        class dist:
            pdf = lambda x: 1-x*x  # noqa: E731

        msg = r"`dpdf` required but not found."
        with pytest.raises(ValueError, match=msg):
            TransformedDensityRejection(dist)


class TestDiscreteAliasUrn:
    # DAU fails on these probably because of large domains and small
    # computation errors in PMF. Mean/SD match but chi-squared test fails.
    basic_fail_dists = {
        'nchypergeom_fisher',  # numerical errors on tails
        'nchypergeom_wallenius',  # numerical errors on tails
        'randint'  # fails on 32-bit ubuntu
    }

    @pytest.mark.parametrize("distname, params", distdiscrete)
    def test_basic(self, distname, params):
        if distname in self.basic_fail_dists:
            msg = ("DAU fails on these probably because of large domains "
                   "and small computation errors in PMF.")
            pytest.skip(msg)
        if not isinstance(distname, str):
            dist = distname
        else:
            dist = getattr(stats, distname)
        dist = dist(*params)
        domain = dist.support()
        if not np.isfinite(domain[1] - domain[0]):
            # DAU only works with finite domain. So, skip the distributions
            # with infinite tails.
            pytest.skip("DAU only works with a finite domain.")
        k = np.arange(domain[0], domain[1]+1)
        pv = dist.pmf(k)
        mv_ex = dist.stats('mv')
        rng = DiscreteAliasUrn(dist, random_state=42)
        check_discr_samples(rng, pv, mv_ex)

    # Can't use bad_pmf_common here as we evaluate PMF early on to avoid
    # unhelpful errors from UNU.RAN.
    bad_pmf = [
        # inf returned
        (lambda x: np.inf, ValueError,
         r"must contain only finite / non-nan values"),
        # nan returned
        (lambda x: np.nan, ValueError,
         r"must contain only finite / non-nan values"),
        # all zeros
        (lambda x: 0.0, ValueError,
         r"must contain at least one non-zero value"),
        # Undefined name inside the function
        (lambda x: foo, NameError,  # type: ignore[name-defined]  # noqa: F821
         r"name 'foo' is not defined"),
        # Returning wrong type.
        (lambda x: [], ValueError,
         r"setting an array element with a sequence."),
        # probabilities < 0
        (lambda x: -x, UNURANError,
         r"50 : probability < 0"),
        # signature of PMF wrong
        (lambda: 1.0, TypeError,
         r"takes 0 positional arguments but 1 was given")
    ]

    @pytest.mark.parametrize("pmf, err, msg", bad_pmf)
    def test_bad_pmf(self, pmf, err, msg):
        class dist:
            pass
        dist.pmf = pmf
        with pytest.raises(err, match=msg):
            DiscreteAliasUrn(dist, domain=(1, 10))

    @pytest.mark.parametrize("pv", [[0.18, 0.02, 0.8],
                                    [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]])
    def test_sampling_with_pv(self, pv):
        pv = np.asarray(pv, dtype=np.float64)
        rng = DiscreteAliasUrn(pv, random_state=123)
        rng.rvs(100_000)
        pv = pv / pv.sum()
        variates = np.arange(0, len(pv))
        # test if the first few moments match
        m_expected = np.average(variates, weights=pv)
        v_expected = np.average((variates - m_expected) ** 2, weights=pv)
        mv_expected = m_expected, v_expected
        check_discr_samples(rng, pv, mv_expected)

    @pytest.mark.parametrize("pv, msg", bad_pv_common)
    def test_bad_pv(self, pv, msg):
        with pytest.raises(ValueError, match=msg):
            DiscreteAliasUrn(pv)

    # DAU doesn't support infinite tails. So, it should throw an error when
    # inf is present in the domain.
    inf_domain = [(-np.inf, np.inf), (np.inf, np.inf), (-np.inf, -np.inf),
                  (0, np.inf), (-np.inf, 0)]

    @pytest.mark.parametrize("domain", inf_domain)
    def test_inf_domain(self, domain):
        with pytest.raises(ValueError, match=r"must be finite"):
            DiscreteAliasUrn(stats.binom(10, 0.2), domain=domain)

    def test_bad_urn_factor(self):
        with pytest.warns(RuntimeWarning, match=r"relative urn size < 1."):
            DiscreteAliasUrn([0.5, 0.5], urn_factor=-1)

    def test_bad_args(self):
        msg = (r"`domain` must be provided when the "
               r"probability vector is not available.")

        class dist:
            def pmf(self, x):
                return x

        with pytest.raises(ValueError, match=msg):
            DiscreteAliasUrn(dist)

    def test_gh19359(self):
        pv = special.softmax(np.ones((1533,)))
        rng = DiscreteAliasUrn(pv, random_state=42)
        # check the correctness
        check_discr_samples(rng, pv, (1532 / 2, (1532**2 - 1) / 12),
                            rtol=5e-3)


class TestNumericalInversePolynomial:
    # Simple Custom Distribution
    class dist0:
        def pdf(self, x):
            return 3/4 * (1-x*x)

        def cdf(self, x):
            return 3/4 * (x - x**3/3 + 2/3)

        def support(self):
            return -1, 1

    # Standard Normal Distribution
    class dist1:
        def pdf(self, x):
            return stats.norm._pdf(x / 0.1)

        def cdf(self, x):
            return stats.norm._cdf(x / 0.1)

    # Sin 2 distribution
    #          /  0.05 + 0.45*(1 +sin(2 Pi x))  if |x| <= 1
    #  f(x) = <
    #          \  0        otherwise
    # Taken from UNU.RAN test suite (from file t_pinv.c)
    class dist2:
        def pdf(self, x):
            return 0.05 + 0.45 * (1 + np.sin(2*np.pi*x))

        def cdf(self, x):
            return (0.05*(x + 1) +
                    0.9*(1. + 2.*np.pi*(1 + x) - np.cos(2.*np.pi*x)) /
                    (4.*np.pi))

        def support(self):
            return -1, 1

    # Sin 10 distribution
    #          /  0.05 + 0.45*(1 +sin(2 Pi x))  if |x| <= 5
    #  f(x) = <
    #          \  0        otherwise
    # Taken from UNU.RAN test suite (from file t_pinv.c)
    class dist3:
        def pdf(self, x):
            return 0.2 * (0.05 + 0.45 * (1 + np.sin(2*np.pi*x)))

        def cdf(self, x):
            return x/10. + 0.5 + 0.09/(2*np.pi) * (np.cos(10*np.pi) -
                                                   np.cos(2*np.pi*x))

        def support(self):
            return -5, 5

    dists = [dist0(), dist1(), dist2(), dist3()]

    # exact mean and variance of the distributions in the list dists
    mv0 = [0., 4./15.]
    mv1 = [0., 0.01]
    mv2 = [-0.45/np.pi, 2/3*0.5 - 0.45**2/np.pi**2]
    mv3 = [-0.45/np.pi, 0.2 * 250/3 * 0.5 - 0.45**2/np.pi**2]
    mvs = [mv0, mv1, mv2, mv3]

    @pytest.mark.parametrize("dist, mv_ex",
                             zip(dists, mvs))
    def test_basic(self, dist, mv_ex):
        rng = NumericalInversePolynomial(dist, random_state=42)
        check_cont_samples(rng, dist, mv_ex)

    @pytest.mark.xslow
    @pytest.mark.parametrize("distname, params", distcont)
    def test_basic_all_scipy_dists(self, distname, params):

        very_slow_dists = ['anglit', 'gausshyper', 'kappa4',
                           'ksone', 'kstwo', 'levy_l',
                           'levy_stable', 'studentized_range',
                           'trapezoid', 'triang', 'vonmises']
        # for these distributions, some assertions fail due to minor
        # numerical differences. They can be avoided either by changing
        # the seed or by increasing the u_resolution.
        fail_dists = ['chi2', 'fatiguelife', 'gibrat',
                      'halfgennorm', 'lognorm', 'ncf',
                      'ncx2', 'pareto', 't']
        # for these distributions, skip the check for agreement between sample
        # moments and true moments. We cannot expect them to pass due to the
        # high variance of sample moments.
        skip_sample_moment_check = ['rel_breitwigner']

        if distname in very_slow_dists:
            pytest.skip(f"PINV too slow for {distname}")
        if distname in fail_dists:
            pytest.skip(f"PINV fails for {distname}")
        dist = (getattr(stats, distname)
                if isinstance(distname, str)
                else distname)
        dist = dist(*params)
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            rng = NumericalInversePolynomial(dist, random_state=42)
        if distname in skip_sample_moment_check:
            return
        check_cont_samples(rng, dist, [dist.mean(), dist.var()])

    @pytest.mark.parametrize("pdf, err, msg", bad_pdfs_common)
    def test_bad_pdf(self, pdf, err, msg):
        class dist:
            pass
        dist.pdf = pdf
        with pytest.raises(err, match=msg):
            NumericalInversePolynomial(dist, domain=[0, 5])

    @pytest.mark.parametrize("logpdf, err, msg", bad_logpdfs_common)
    def test_bad_logpdf(self, logpdf, err, msg):
        class dist:
            pass
        dist.logpdf = logpdf
        with pytest.raises(err, match=msg):
            NumericalInversePolynomial(dist, domain=[0, 5])

    # test domains with inf + nan in them. need to write a custom test for
    # this because not all methods support infinite tails.
    @pytest.mark.parametrize("domain, err, msg", inf_nan_domains)
    def test_inf_nan_domains(self, domain, err, msg):
        with pytest.raises(err, match=msg):
            NumericalInversePolynomial(StandardNormal(), domain=domain)

    u = [
        # test if quantile 0 and 1 return -inf and inf respectively and check
        # the correctness of the PPF for equidistant points between 0 and 1.
        np.linspace(0, 1, num=10000),
        # test the PPF method for empty arrays
        [], [[]],
        # test if nans and infs return nan result.
        [np.nan], [-np.inf, np.nan, np.inf],
        # test if a scalar is returned for a scalar input.
        0,
        # test for arrays with nans, values greater than 1 and less than 0,
        # and some valid values.
        [[np.nan, 0.5, 0.1], [0.2, 0.4, np.inf], [-2, 3, 4]]
    ]

    @pytest.mark.parametrize("u", u)
    def test_ppf(self, u):
        dist = StandardNormal()
        rng = NumericalInversePolynomial(dist, u_resolution=1e-14)
        # Older versions of NumPy throw RuntimeWarnings for comparisons
        # with nan.
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in greater")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "greater_equal")
            sup.filter(RuntimeWarning, "invalid value encountered in less")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "less_equal")
            res = rng.ppf(u)
            expected = stats.norm.ppf(u)
        assert_allclose(res, expected, rtol=1e-11, atol=1e-11)
        assert res.shape == expected.shape

    x = [np.linspace(-10, 10, num=10000), [], [[]], [np.nan],
         [-np.inf, np.nan, np.inf], 0,
         [[np.nan, 0.5, 0.1], [0.2, 0.4, np.inf], [-np.inf, 3, 4]]]

    @pytest.mark.parametrize("x", x)
    def test_cdf(self, x):
        dist = StandardNormal()
        rng = NumericalInversePolynomial(dist, u_resolution=1e-14)
        # Older versions of NumPy throw RuntimeWarnings for comparisons
        # with nan.
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in greater")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "greater_equal")
            sup.filter(RuntimeWarning, "invalid value encountered in less")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "less_equal")
            res = rng.cdf(x)
            expected = stats.norm.cdf(x)
        assert_allclose(res, expected, rtol=1e-11, atol=1e-11)
        assert res.shape == expected.shape

    @pytest.mark.slow
    def test_u_error(self):
        dist = StandardNormal()
        rng = NumericalInversePolynomial(dist, u_resolution=1e-10)
        max_error, mae = rng.u_error()
        assert max_error < 1e-10
        assert mae <= max_error
        rng = NumericalInversePolynomial(dist, u_resolution=1e-14)
        max_error, mae = rng.u_error()
        assert max_error < 1e-14
        assert mae <= max_error

    bad_orders = [1, 4.5, 20, np.inf, np.nan]
    bad_u_resolution = [1e-20, 1e-1, np.inf, np.nan]

    @pytest.mark.parametrize("order", bad_orders)
    def test_bad_orders(self, order):
        dist = StandardNormal()

        msg = r"`order` must be an integer in the range \[3, 17\]."
        with pytest.raises(ValueError, match=msg):
            NumericalInversePolynomial(dist, order=order)

    @pytest.mark.parametrize("u_resolution", bad_u_resolution)
    def test_bad_u_resolution(self, u_resolution):
        msg = r"`u_resolution` must be between 1e-15 and 1e-5."
        with pytest.raises(ValueError, match=msg):
            NumericalInversePolynomial(StandardNormal(),
                                       u_resolution=u_resolution)

    def test_bad_args(self):

        class BadDist:
            def cdf(self, x):
                return stats.norm._cdf(x)

        dist = BadDist()
        msg = r"Either of the methods `pdf` or `logpdf` must be specified"
        with pytest.raises(ValueError, match=msg):
            rng = NumericalInversePolynomial(dist)

        dist = StandardNormal()
        rng = NumericalInversePolynomial(dist)
        msg = r"`sample_size` must be greater than or equal to 1000."
        with pytest.raises(ValueError, match=msg):
            rng.u_error(10)

        class Distribution:
            def pdf(self, x):
                return np.exp(-0.5 * x*x)

        dist = Distribution()
        rng = NumericalInversePolynomial(dist)
        msg = r"Exact CDF required but not found."
        with pytest.raises(ValueError, match=msg):
            rng.u_error()

    def test_logpdf_pdf_consistency(self):
        # 1. check that PINV works with pdf and logpdf only
        # 2. check that generated ppf is the same (up to a small tolerance)

        class MyDist:
            pass

        # create generator from dist with only pdf
        dist_pdf = MyDist()
        dist_pdf.pdf = lambda x: math.exp(-x*x/2)
        rng1 = NumericalInversePolynomial(dist_pdf)

        # create dist with only logpdf
        dist_logpdf = MyDist()
        dist_logpdf.logpdf = lambda x: -x*x/2
        rng2 = NumericalInversePolynomial(dist_logpdf)

        q = np.linspace(1e-5, 1-1e-5, num=100)
        assert_allclose(rng1.ppf(q), rng2.ppf(q))


class TestNumericalInverseHermite:
    #         /  (1 +sin(2 Pi x))/2  if |x| <= 1
    # f(x) = <
    #         \  0        otherwise
    # Taken from UNU.RAN test suite (from file t_hinv.c)
    class dist0:
        def pdf(self, x):
            return 0.5*(1. + np.sin(2.*np.pi*x))

        def dpdf(self, x):
            return np.pi*np.cos(2.*np.pi*x)

        def cdf(self, x):
            return (1. + 2.*np.pi*(1 + x) - np.cos(2.*np.pi*x)) / (4.*np.pi)

        def support(self):
            return -1, 1

    #         /  Max(sin(2 Pi x)),0)Pi/2  if -1 < x <0.5
    # f(x) = <
    #         \  0        otherwise
    # Taken from UNU.RAN test suite (from file t_hinv.c)
    class dist1:
        def pdf(self, x):
            if (x <= -0.5):
                return np.sin((2. * np.pi) * x) * 0.5 * np.pi
            if (x < 0.):
                return 0.
            if (x <= 0.5):
                return np.sin((2. * np.pi) * x) * 0.5 * np.pi

        def dpdf(self, x):
            if (x <= -0.5):
                return np.cos((2. * np.pi) * x) * np.pi * np.pi
            if (x < 0.):
                return 0.
            if (x <= 0.5):
                return np.cos((2. * np.pi) * x) * np.pi * np.pi

        def cdf(self, x):
            if (x <= -0.5):
                return 0.25 * (1 - np.cos((2. * np.pi) * x))
            if (x < 0.):
                return 0.5
            if (x <= 0.5):
                return 0.75 - 0.25 * np.cos((2. * np.pi) * x)

        def support(self):
            return -1, 0.5

    dists = [dist0(), dist1()]

    # exact mean and variance of the distributions in the list dists
    mv0 = [-1/(2*np.pi), 1/3 - 1/(4*np.pi*np.pi)]
    mv1 = [-1/4, 3/8-1/(2*np.pi*np.pi) - 1/16]
    mvs = [mv0, mv1]

    @pytest.mark.parametrize("dist, mv_ex",
                             zip(dists, mvs))
    @pytest.mark.parametrize("order", [3, 5])
    def test_basic(self, dist, mv_ex, order):
        rng = NumericalInverseHermite(dist, order=order, random_state=42)
        check_cont_samples(rng, dist, mv_ex)

    # test domains with inf + nan in them. need to write a custom test for
    # this because not all methods support infinite tails.
    @pytest.mark.parametrize("domain, err, msg", inf_nan_domains)
    def test_inf_nan_domains(self, domain, err, msg):
        with pytest.raises(err, match=msg):
            NumericalInverseHermite(StandardNormal(), domain=domain)

    def basic_test_all_scipy_dists(self, distname, shapes):
        slow_dists = {'ksone', 'kstwo', 'levy_stable', 'skewnorm'}
        fail_dists = {'beta', 'gausshyper', 'geninvgauss', 'ncf', 'nct',
                      'norminvgauss', 'genhyperbolic', 'studentized_range',
                      'vonmises', 'kappa4', 'invgauss', 'wald'}

        if distname in slow_dists:
            pytest.skip("Distribution is too slow")
        if distname in fail_dists:
            # specific reasons documented in gh-13319
            # https://github.com/scipy/scipy/pull/13319#discussion_r626188955
            pytest.xfail("Fails - usually due to inaccurate CDF/PDF")

        np.random.seed(0)

        dist = getattr(stats, distname)(*shapes)
        fni = NumericalInverseHermite(dist)

        x = np.random.rand(10)
        p_tol = np.max(np.abs(dist.ppf(x)-fni.ppf(x))/np.abs(dist.ppf(x)))
        u_tol = np.max(np.abs(dist.cdf(fni.ppf(x)) - x))

        assert p_tol < 1e-8
        assert u_tol < 1e-12

    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    @pytest.mark.xslow
    @pytest.mark.parametrize(("distname", "shapes"), distcont)
    def test_basic_all_scipy_dists(self, distname, shapes):
        # if distname == "truncnorm":
        #     pytest.skip("Tested separately")
        self.basic_test_all_scipy_dists(distname, shapes)

    @pytest.mark.fail_slow(5)
    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    def test_basic_truncnorm_gh17155(self):
        self.basic_test_all_scipy_dists("truncnorm", (0.1, 2))

    def test_input_validation(self):
        match = r"`order` must be either 1, 3, or 5."
        with pytest.raises(ValueError, match=match):
            NumericalInverseHermite(StandardNormal(), order=2)

        match = "`cdf` required but not found"
        with pytest.raises(ValueError, match=match):
            NumericalInverseHermite("norm")

        match = "could not convert string to float"
        with pytest.raises(ValueError, match=match):
            NumericalInverseHermite(StandardNormal(),
                                    u_resolution='ekki')

    rngs = [None, 0, np.random.RandomState(0)]
    rngs.append(np.random.default_rng(0))  # type: ignore
    sizes = [(None, tuple()), (8, (8,)), ((4, 5, 6), (4, 5, 6))]

    @pytest.mark.parametrize('rng', rngs)
    @pytest.mark.parametrize('size_in, size_out', sizes)
    def test_RVS(self, rng, size_in, size_out):
        dist = StandardNormal()
        fni = NumericalInverseHermite(dist)

        rng2 = deepcopy(rng)
        rvs = fni.rvs(size=size_in, random_state=rng)
        if size_in is not None:
            assert rvs.shape == size_out

        if rng2 is not None:
            rng2 = check_random_state(rng2)
            uniform = rng2.uniform(size=size_in)
            rvs2 = stats.norm.ppf(uniform)
            assert_allclose(rvs, rvs2)

    def test_inaccurate_CDF(self):
        # CDF function with inaccurate tail cannot be inverted; see gh-13319
        # https://github.com/scipy/scipy/pull/13319#discussion_r626188955
        shapes = (2.3098496451481823, 0.6268795430096368)
        match = ("98 : one or more intervals very short; possibly due to "
                 "numerical problems with a pole or very flat tail")

        # fails with default tol
        with pytest.warns(RuntimeWarning, match=match):
            NumericalInverseHermite(stats.beta(*shapes))

        # no error with coarser tol
        NumericalInverseHermite(stats.beta(*shapes), u_resolution=1e-8)

    def test_custom_distribution(self):
        dist1 = StandardNormal()
        fni1 = NumericalInverseHermite(dist1)

        dist2 = stats.norm()
        fni2 = NumericalInverseHermite(dist2)

        assert_allclose(fni1.rvs(random_state=0), fni2.rvs(random_state=0))

    u = [
        # check the correctness of the PPF for equidistant points between
        # 0.02 and 0.98.
        np.linspace(0., 1., num=10000),
        # test the PPF method for empty arrays
        [], [[]],
        # test if nans and infs return nan result.
        [np.nan], [-np.inf, np.nan, np.inf],
        # test if a scalar is returned for a scalar input.
        0,
        # test for arrays with nans, values greater than 1 and less than 0,
        # and some valid values.
        [[np.nan, 0.5, 0.1], [0.2, 0.4, np.inf], [-2, 3, 4]]
    ]

    @pytest.mark.parametrize("u", u)
    def test_ppf(self, u):
        dist = StandardNormal()
        rng = NumericalInverseHermite(dist, u_resolution=1e-12)
        # Older versions of NumPy throw RuntimeWarnings for comparisons
        # with nan.
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in greater")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "greater_equal")
            sup.filter(RuntimeWarning, "invalid value encountered in less")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "less_equal")
            res = rng.ppf(u)
            expected = stats.norm.ppf(u)
        assert_allclose(res, expected, rtol=1e-9, atol=3e-10)
        assert res.shape == expected.shape

    @pytest.mark.slow
    def test_u_error(self):
        dist = StandardNormal()
        rng = NumericalInverseHermite(dist, u_resolution=1e-10)
        max_error, mae = rng.u_error()
        assert max_error < 1e-10
        assert mae <= max_error
        with suppress_warnings() as sup:
            # ignore warning about u-resolution being too small.
            sup.filter(RuntimeWarning)
            rng = NumericalInverseHermite(dist, u_resolution=1e-14)
        max_error, mae = rng.u_error()
        assert max_error < 1e-14
        assert mae <= max_error


class TestDiscreteGuideTable:
    basic_fail_dists = {
        'nchypergeom_fisher',  # numerical errors on tails
        'nchypergeom_wallenius',  # numerical errors on tails
        'randint'  # fails on 32-bit ubuntu
    }

    def test_guide_factor_gt3_raises_warning(self):
        pv = [0.1, 0.3, 0.6]
        urng = np.random.default_rng()
        with pytest.warns(RuntimeWarning):
            DiscreteGuideTable(pv, random_state=urng, guide_factor=7)

    def test_guide_factor_zero_raises_warning(self):
        pv = [0.1, 0.3, 0.6]
        urng = np.random.default_rng()
        with pytest.warns(RuntimeWarning):
            DiscreteGuideTable(pv, random_state=urng, guide_factor=0)

    def test_negative_guide_factor_raises_warning(self):
        # This occurs from the UNU.RAN wrapper automatically.
        # however it already gives a useful warning
        # Here we just test that a warning is raised.
        pv = [0.1, 0.3, 0.6]
        urng = np.random.default_rng()
        with pytest.warns(RuntimeWarning):
            DiscreteGuideTable(pv, random_state=urng, guide_factor=-1)

    @pytest.mark.parametrize("distname, params", distdiscrete)
    def test_basic(self, distname, params):
        if distname in self.basic_fail_dists:
            msg = ("DGT fails on these probably because of large domains "
                   "and small computation errors in PMF.")
            pytest.skip(msg)

        if not isinstance(distname, str):
            dist = distname
        else:
            dist = getattr(stats, distname)

        dist = dist(*params)
        domain = dist.support()

        if not np.isfinite(domain[1] - domain[0]):
            # DGT only works with finite domain. So, skip the distributions
            # with infinite tails.
            pytest.skip("DGT only works with a finite domain.")

        k = np.arange(domain[0], domain[1]+1)
        pv = dist.pmf(k)
        mv_ex = dist.stats('mv')
        rng = DiscreteGuideTable(dist, random_state=42)
        check_discr_samples(rng, pv, mv_ex)

    u = [
        # the correctness of the PPF for equidistant points between 0 and 1.
        np.linspace(0, 1, num=10000),
        # test the PPF method for empty arrays
        [], [[]],
        # test if nans and infs return nan result.
        [np.nan], [-np.inf, np.nan, np.inf],
        # test if a scalar is returned for a scalar input.
        0,
        # test for arrays with nans, values greater than 1 and less than 0,
        # and some valid values.
        [[np.nan, 0.5, 0.1], [0.2, 0.4, np.inf], [-2, 3, 4]]
    ]

    @pytest.mark.parametrize('u', u)
    def test_ppf(self, u):
        n, p = 4, 0.1
        dist = stats.binom(n, p)
        rng = DiscreteGuideTable(dist, random_state=42)

        # Older versions of NumPy throw RuntimeWarnings for comparisons
        # with nan.
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in greater")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "greater_equal")
            sup.filter(RuntimeWarning, "invalid value encountered in less")
            sup.filter(RuntimeWarning, "invalid value encountered in "
                                       "less_equal")

            res = rng.ppf(u)
            expected = stats.binom.ppf(u, n, p)
        assert_equal(res.shape, expected.shape)
        assert_equal(res, expected)

    @pytest.mark.parametrize("pv, msg", bad_pv_common)
    def test_bad_pv(self, pv, msg):
        with pytest.raises(ValueError, match=msg):
            DiscreteGuideTable(pv)

    # DGT doesn't support infinite tails. So, it should throw an error when
    # inf is present in the domain.
    inf_domain = [(-np.inf, np.inf), (np.inf, np.inf), (-np.inf, -np.inf),
                  (0, np.inf), (-np.inf, 0)]

    @pytest.mark.parametrize("domain", inf_domain)
    def test_inf_domain(self, domain):
        with pytest.raises(ValueError, match=r"must be finite"):
            DiscreteGuideTable(stats.binom(10, 0.2), domain=domain)


class TestSimpleRatioUniforms:
    # pdf with piecewise linear function as transformed density
    # with T = -1/sqrt with shift. Taken from UNU.RAN test suite
    # (from file t_srou.c)
    class dist:
        def __init__(self, shift):
            self.shift = shift
            self.mode = shift

        def pdf(self, x):
            x -= self.shift
            y = 1. / (abs(x) + 1.)
            return 0.5 * y * y

        def cdf(self, x):
            x -= self.shift
            if x <= 0.:
                return 0.5 / (1. - x)
            else:
                return 1. - 0.5 / (1. + x)

    dists = [dist(0.), dist(10000.)]

    # exact mean and variance of the distributions in the list dists
    mv1 = [0., np.inf]
    mv2 = [10000., np.inf]
    mvs = [mv1, mv2]

    @pytest.mark.parametrize("dist, mv_ex",
                             zip(dists, mvs))
    def test_basic(self, dist, mv_ex):
        rng = SimpleRatioUniforms(dist, mode=dist.mode, random_state=42)
        check_cont_samples(rng, dist, mv_ex)
        rng = SimpleRatioUniforms(dist, mode=dist.mode,
                                  cdf_at_mode=dist.cdf(dist.mode),
                                  random_state=42)
        check_cont_samples(rng, dist, mv_ex)

    # test domains with inf + nan in them. need to write a custom test for
    # this because not all methods support infinite tails.
    @pytest.mark.parametrize("domain, err, msg", inf_nan_domains)
    def test_inf_nan_domains(self, domain, err, msg):
        with pytest.raises(err, match=msg):
            SimpleRatioUniforms(StandardNormal(), domain=domain)

    def test_bad_args(self):
        # pdf_area < 0
        with pytest.raises(ValueError, match=r"`pdf_area` must be > 0"):
            SimpleRatioUniforms(StandardNormal(), mode=0, pdf_area=-1)


class TestRatioUniforms:
    def test_rv_generation(self):
        # use KS test to check distribution of rvs
        # normal distribution
        f = stats.norm.pdf
        v = np.sqrt(f(np.sqrt(2))) * np.sqrt(2)
        u = np.sqrt(f(0))
        gen = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=12345)
        assert_equal(stats.kstest(gen.rvs(2500), 'norm')[1] > 0.25, True)

        # exponential distribution
        gen = RatioUniforms(lambda x: np.exp(-x), umax=1,
                            vmin=0, vmax=2*np.exp(-1), random_state=12345)
        assert_equal(stats.kstest(gen.rvs(1000), 'expon')[1] > 0.25, True)

    def test_shape(self):
        # test shape of return value depending on size parameter
        f = stats.norm.pdf
        v = np.sqrt(f(np.sqrt(2))) * np.sqrt(2)
        u = np.sqrt(f(0))

        gen1 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        gen2 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        gen3 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        r1, r2, r3 = gen1.rvs(3), gen2.rvs((3,)), gen3.rvs((3, 1))
        assert_equal(r1, r2)
        assert_equal(r2, r3.flatten())
        assert_equal(r1.shape, (3,))
        assert_equal(r3.shape, (3, 1))

        gen4 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=12)
        gen5 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=12)
        r4, r5 = gen4.rvs(size=(3, 3, 3)), gen5.rvs(size=27)
        assert_equal(r4.flatten(), r5)
        assert_equal(r4.shape, (3, 3, 3))

        gen6 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        gen7 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        gen8 = RatioUniforms(f, umax=u, vmin=-v, vmax=v, random_state=1234)
        r6, r7, r8 = gen6.rvs(), gen7.rvs(1), gen8.rvs((1,))
        assert_equal(r6, r7)
        assert_equal(r7, r8)

    def test_random_state(self):
        f = stats.norm.pdf
        v = np.sqrt(f(np.sqrt(2))) * np.sqrt(2)
        umax = np.sqrt(f(0))
        gen1 = RatioUniforms(f, umax=umax, vmin=-v, vmax=v, random_state=1234)
        r1 = gen1.rvs(10)
        np.random.seed(1234)
        gen2 = RatioUniforms(f, umax=umax, vmin=-v, vmax=v)
        r2 = gen2.rvs(10)
        assert_equal(r1, r2)

    def test_exceptions(self):
        f = stats.norm.pdf
        # need vmin < vmax
        with assert_raises(ValueError, match="vmin must be smaller than vmax"):
            RatioUniforms(pdf=f, umax=1, vmin=3, vmax=1)
        with assert_raises(ValueError, match="vmin must be smaller than vmax"):
            RatioUniforms(pdf=f, umax=1, vmin=1, vmax=1)
        # need umax > 0
        with assert_raises(ValueError, match="umax must be positive"):
            RatioUniforms(pdf=f, umax=-1, vmin=1, vmax=3)
        with assert_raises(ValueError, match="umax must be positive"):
            RatioUniforms(pdf=f, umax=0, vmin=1, vmax=3)