File size: 82,429 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
import pytest

import numpy as np
from numpy.testing import assert_allclose, assert_equal, suppress_warnings

from scipy.conftest import array_api_compatible
from scipy._lib._util import rng_integers
from scipy._lib._array_api import array_namespace, is_numpy
from scipy._lib._array_api_no_0d import xp_assert_close, xp_assert_equal
from scipy import stats, special
from scipy.optimize import root

from scipy.stats import bootstrap, monte_carlo_test, permutation_test, power
import scipy.stats._resampling as _resampling


def test_bootstrap_iv():

    message = "`data` must be a sequence of samples."
    with pytest.raises(ValueError, match=message):
        bootstrap(1, np.mean)

    message = "`data` must contain at least one sample."
    with pytest.raises(ValueError, match=message):
        bootstrap(tuple(), np.mean)

    message = "each sample in `data` must contain two or more observations..."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3], [1]), np.mean)

    message = ("When `paired is True`, all samples must have the same length ")
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True)

    message = "`vectorized` must be `True`, `False`, or `None`."
    with pytest.raises(ValueError, match=message):
        bootstrap(1, np.mean, vectorized='ekki')

    message = "`axis` must be an integer."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, axis=1.5)

    message = "could not convert string to float"
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, confidence_level='ni')

    message = "`n_resamples` must be a non-negative integer."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000)

    message = "`n_resamples` must be a non-negative integer."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5)

    message = "`batch` must be a positive integer or None."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, batch=-1000)

    message = "`batch` must be a positive integer or None."
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, batch=1000.5)

    message = "`method` must be in"
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, method='ekki')

    message = "`bootstrap_result` must have attribute `bootstrap_distribution'"
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, bootstrap_result=10)

    message = "Either `bootstrap_result.bootstrap_distribution.size`"
    with pytest.raises(ValueError, match=message):
        bootstrap(([1, 2, 3],), np.mean, n_resamples=0)

    message = "SeedSequence expects int or sequence of ints"
    with pytest.raises(TypeError, match=message):
        bootstrap(([1, 2, 3],), np.mean, rng='herring')


@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
@pytest.mark.parametrize("axis", [0, 1, 2])
def test_bootstrap_batch(method, axis):
    # for one-sample statistics, batch size shouldn't affect the result
    np.random.seed(0)

    x = np.random.rand(10, 11, 12)
    # SPEC-007 leave one call with random_state to ensure it still works
    res1 = bootstrap((x,), np.mean, batch=None, method=method,
                     random_state=0, axis=axis, n_resamples=100)
    np.random.seed(0)
    res2 = bootstrap((x,), np.mean, batch=10, method=method,
                     axis=axis, n_resamples=100)

    assert_equal(res2.confidence_interval.low, res1.confidence_interval.low)
    assert_equal(res2.confidence_interval.high, res1.confidence_interval.high)
    assert_equal(res2.standard_error, res1.standard_error)


@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
def test_bootstrap_paired(method):
    # test that `paired` works as expected
    np.random.seed(0)
    n = 100
    x = np.random.rand(n)
    y = np.random.rand(n)

    def my_statistic(x, y, axis=-1):
        return ((x-y)**2).mean(axis=axis)

    def my_paired_statistic(i, axis=-1):
        a = x[i]
        b = y[i]
        res = my_statistic(a, b)
        return res

    i = np.arange(len(x))

    res1 = bootstrap((i,), my_paired_statistic, rng=0)
    res2 = bootstrap((x, y), my_statistic, paired=True, rng=0)

    assert_allclose(res1.confidence_interval, res2.confidence_interval)
    assert_allclose(res1.standard_error, res2.standard_error)


@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
@pytest.mark.parametrize("axis", [0, 1, 2])
@pytest.mark.parametrize("paired", [True, False])
def test_bootstrap_vectorized(method, axis, paired):
    # test that paired is vectorized as expected: when samples are tiled,
    # CI and standard_error of each axis-slice is the same as those of the
    # original 1d sample

    np.random.seed(0)

    def my_statistic(x, y, z, axis=-1):
        return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis)

    shape = 10, 11, 12
    n_samples = shape[axis]

    x = np.random.rand(n_samples)
    y = np.random.rand(n_samples)
    z = np.random.rand(n_samples)
    res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method,
                     rng=0, axis=0, n_resamples=100)
    assert (res1.bootstrap_distribution.shape
            == res1.standard_error.shape + (100,))

    reshape = [1, 1, 1]
    reshape[axis] = n_samples
    x = np.broadcast_to(x.reshape(reshape), shape)
    y = np.broadcast_to(y.reshape(reshape), shape)
    z = np.broadcast_to(z.reshape(reshape), shape)
    res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method,
                     rng=0, axis=axis, n_resamples=100)

    assert_allclose(res2.confidence_interval.low,
                    res1.confidence_interval.low)
    assert_allclose(res2.confidence_interval.high,
                    res1.confidence_interval.high)
    assert_allclose(res2.standard_error, res1.standard_error)

    result_shape = list(shape)
    result_shape.pop(axis)

    assert_equal(res2.confidence_interval.low.shape, result_shape)
    assert_equal(res2.confidence_interval.high.shape, result_shape)
    assert_equal(res2.standard_error.shape, result_shape)


@pytest.mark.slow
@pytest.mark.xfail_on_32bit("MemoryError with BCa observed in CI")
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
def test_bootstrap_against_theory(method):
    # based on https://www.statology.org/confidence-intervals-python/
    rng = np.random.default_rng(2442101192988600726)
    data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=rng)
    alpha = 0.95
    dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data))
    expected_interval = dist.interval(confidence=alpha)
    expected_se = dist.std()

    config = dict(data=(data,), statistic=np.mean, n_resamples=5000,
                  method=method, rng=rng)
    res = bootstrap(**config, confidence_level=alpha)
    assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4)
    assert_allclose(res.standard_error, expected_se, atol=3e-4)

    config.update(dict(n_resamples=0, bootstrap_result=res))
    res = bootstrap(**config, confidence_level=alpha, alternative='less')
    assert_allclose(res.confidence_interval.high, dist.ppf(alpha), rtol=5e-4)

    config.update(dict(n_resamples=0, bootstrap_result=res))
    res = bootstrap(**config, confidence_level=alpha, alternative='greater')
    assert_allclose(res.confidence_interval.low, dist.ppf(1-alpha), rtol=5e-4)


tests_R = {"basic": (23.77, 79.12),
           "percentile": (28.86, 84.21),
           "BCa": (32.31, 91.43)}


@pytest.mark.parametrize("method, expected", tests_R.items())
def test_bootstrap_against_R(method, expected):
    # Compare against R's "boot" library
    # library(boot)

    # stat <- function (x, a) {
    #     mean(x[a])
    # }

    # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22,
    #        23, 34, 50, 81, 89, 121, 134, 213)

    # # Use a large value so we get a few significant digits for the CI.
    # n = 1000000
    # bootresult = boot(x, stat, n)
    # result <- boot.ci(bootresult)
    # print(result)
    x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22,
                  23, 34, 50, 81, 89, 121, 134, 213])
    res = bootstrap((x,), np.mean, n_resamples=1000000, method=method,
                    rng=0)
    assert_allclose(res.confidence_interval, expected, rtol=0.005)


tests_against_itself_1samp = {"basic": 1780,
                              "percentile": 1784,
                              "BCa": 1784}


def test_multisample_BCa_against_R():
    # Because bootstrap is stochastic, it's tricky to test against reference
    # behavior. Here, we show that SciPy's BCa CI matches R wboot's BCa CI
    # much more closely than the other SciPy CIs do.

    # arbitrary skewed data
    x = [0.75859206, 0.5910282, -0.4419409, -0.36654601,
         0.34955357, -1.38835871, 0.76735821]
    y = [1.41186073, 0.49775975, 0.08275588, 0.24086388,
         0.03567057, 0.52024419, 0.31966611, 1.32067634]

    # a multi-sample statistic for which the BCa CI tends to be different
    # from the other CIs
    def statistic(x, y, axis):
        s1 = stats.skew(x, axis=axis)
        s2 = stats.skew(y, axis=axis)
        return s1 - s2

    # compute confidence intervals using each method
    rng = np.random.default_rng(468865032284792692)

    res_basic = stats.bootstrap((x, y), statistic, method='basic',
                                batch=100, rng=rng)
    res_percent = stats.bootstrap((x, y), statistic, method='percentile',
                                  batch=100, rng=rng)
    res_bca = stats.bootstrap((x, y), statistic, method='bca',
                              batch=100, rng=rng)

    # compute midpoints so we can compare just one number for each
    mid_basic = np.mean(res_basic.confidence_interval)
    mid_percent = np.mean(res_percent.confidence_interval)
    mid_bca = np.mean(res_bca.confidence_interval)

    # reference for BCA CI computed using R wboot package:
    # library(wBoot)
    # library(moments)

    # x = c(0.75859206, 0.5910282, -0.4419409, -0.36654601,
    #       0.34955357, -1.38835871,  0.76735821)
    # y = c(1.41186073, 0.49775975, 0.08275588, 0.24086388,
    #       0.03567057, 0.52024419, 0.31966611, 1.32067634)

    # twoskew <- function(x1, y1) {skewness(x1) - skewness(y1)}
    # boot.two.bca(x, y, skewness, conf.level = 0.95,
    #              R = 9999, stacked = FALSE)
    mid_wboot = -1.5519

    # compute percent difference relative to wboot BCA method
    diff_basic = (mid_basic - mid_wboot)/abs(mid_wboot)
    diff_percent = (mid_percent - mid_wboot)/abs(mid_wboot)
    diff_bca = (mid_bca - mid_wboot)/abs(mid_wboot)

    # SciPy's BCa CI midpoint is much closer than that of the other methods
    assert diff_basic < -0.15
    assert diff_percent > 0.15
    assert abs(diff_bca) < 0.03


def test_BCa_acceleration_against_reference():
    # Compare the (deterministic) acceleration parameter for a multi-sample
    # problem against a reference value. The example is from [1], but Efron's
    # value seems inaccurate. Straightforward code for computing the
    # reference acceleration (0.011008228344026734) is available at:
    # https://github.com/scipy/scipy/pull/16455#issuecomment-1193400981

    y = np.array([10, 27, 31, 40, 46, 50, 52, 104, 146])
    z = np.array([16, 23, 38, 94, 99, 141, 197])

    def statistic(z, y, axis=0):
        return np.mean(z, axis=axis) - np.mean(y, axis=axis)

    data = [z, y]
    res = stats.bootstrap(data, statistic)

    axis = -1
    alpha = 0.95
    theta_hat_b = res.bootstrap_distribution
    batch = 100
    _, _, a_hat = _resampling._bca_interval(data, statistic, axis, alpha,
                                            theta_hat_b, batch)
    assert_allclose(a_hat, 0.011008228344026734)


@pytest.mark.slow
@pytest.mark.parametrize("method, expected",
                         tests_against_itself_1samp.items())
def test_bootstrap_against_itself_1samp(method, expected):
    # The expected values in this test were generated using bootstrap
    # to check for unintended changes in behavior. The test also makes sure
    # that bootstrap works with multi-sample statistics and that the
    # `axis` argument works as expected / function is vectorized.
    np.random.seed(0)

    n = 100  # size of sample
    n_resamples = 999  # number of bootstrap resamples used to form each CI
    confidence_level = 0.9

    # The true mean is 5
    dist = stats.norm(loc=5, scale=1)
    stat_true = dist.mean()

    # Do the same thing 2000 times. (The code is fully vectorized.)
    n_replications = 2000
    data = dist.rvs(size=(n_replications, n))
    res = bootstrap((data,),
                    statistic=np.mean,
                    confidence_level=confidence_level,
                    n_resamples=n_resamples,
                    batch=50,
                    method=method,
                    axis=-1)
    ci = res.confidence_interval

    # ci contains vectors of lower and upper confidence interval bounds
    ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1]))
    assert ci_contains_true == expected

    # ci_contains_true is not inconsistent with confidence_level
    pvalue = stats.binomtest(ci_contains_true, n_replications,
                             confidence_level).pvalue
    assert pvalue > 0.1


tests_against_itself_2samp = {"basic": 892,
                              "percentile": 890}


@pytest.mark.slow
@pytest.mark.parametrize("method, expected",
                         tests_against_itself_2samp.items())
def test_bootstrap_against_itself_2samp(method, expected):
    # The expected values in this test were generated using bootstrap
    # to check for unintended changes in behavior. The test also makes sure
    # that bootstrap works with multi-sample statistics and that the
    # `axis` argument works as expected / function is vectorized.
    np.random.seed(0)

    n1 = 100  # size of sample 1
    n2 = 120  # size of sample 2
    n_resamples = 999  # number of bootstrap resamples used to form each CI
    confidence_level = 0.9

    # The statistic we're interested in is the difference in means
    def my_stat(data1, data2, axis=-1):
        mean1 = np.mean(data1, axis=axis)
        mean2 = np.mean(data2, axis=axis)
        return mean1 - mean2

    # The true difference in the means is -0.1
    dist1 = stats.norm(loc=0, scale=1)
    dist2 = stats.norm(loc=0.1, scale=1)
    stat_true = dist1.mean() - dist2.mean()

    # Do the same thing 1000 times. (The code is fully vectorized.)
    n_replications = 1000
    data1 = dist1.rvs(size=(n_replications, n1))
    data2 = dist2.rvs(size=(n_replications, n2))
    res = bootstrap((data1, data2),
                    statistic=my_stat,
                    confidence_level=confidence_level,
                    n_resamples=n_resamples,
                    batch=50,
                    method=method,
                    axis=-1)
    ci = res.confidence_interval

    # ci contains vectors of lower and upper confidence interval bounds
    ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1]))
    assert ci_contains_true == expected

    # ci_contains_true is not inconsistent with confidence_level
    pvalue = stats.binomtest(ci_contains_true, n_replications,
                             confidence_level).pvalue
    assert pvalue > 0.1


@pytest.mark.parametrize("method", ["basic", "percentile"])
@pytest.mark.parametrize("axis", [0, 1])
def test_bootstrap_vectorized_3samp(method, axis):
    def statistic(*data, axis=0):
        # an arbitrary, vectorized statistic
        return sum(sample.mean(axis) for sample in data)

    def statistic_1d(*data):
        # the same statistic, not vectorized
        for sample in data:
            assert sample.ndim == 1
        return statistic(*data, axis=0)

    np.random.seed(0)
    x = np.random.rand(4, 5)
    y = np.random.rand(4, 5)
    z = np.random.rand(4, 5)
    res1 = bootstrap((x, y, z), statistic, vectorized=True,
                     axis=axis, n_resamples=100, method=method, rng=0)
    res2 = bootstrap((x, y, z), statistic_1d, vectorized=False,
                     axis=axis, n_resamples=100, method=method, rng=0)
    assert_allclose(res1.confidence_interval, res2.confidence_interval)
    assert_allclose(res1.standard_error, res2.standard_error)


@pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107")
@pytest.mark.parametrize("method", ["basic", "percentile", "BCa"])
@pytest.mark.parametrize("axis", [0, 1])
def test_bootstrap_vectorized_1samp(method, axis):
    def statistic(x, axis=0):
        # an arbitrary, vectorized statistic
        return x.mean(axis=axis)

    def statistic_1d(x):
        # the same statistic, not vectorized
        assert x.ndim == 1
        return statistic(x, axis=0)

    np.random.seed(0)
    x = np.random.rand(4, 5)
    res1 = bootstrap((x,), statistic, vectorized=True, axis=axis,
                     n_resamples=100, batch=None, method=method,
                     rng=0)
    res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis,
                     n_resamples=100, batch=10, method=method,
                     rng=0)
    assert_allclose(res1.confidence_interval, res2.confidence_interval)
    assert_allclose(res1.standard_error, res2.standard_error)


@pytest.mark.parametrize("method", ["basic", "percentile", "BCa"])
def test_bootstrap_degenerate(method):
    data = 35 * [10000.]
    if method == "BCa":
        with np.errstate(invalid='ignore'):
            msg = "The BCa confidence interval cannot be calculated"
            with pytest.warns(stats.DegenerateDataWarning, match=msg):
                res = bootstrap([data, ], np.mean, method=method)
                assert_equal(res.confidence_interval, (np.nan, np.nan))
    else:
        res = bootstrap([data, ], np.mean, method=method)
        assert_equal(res.confidence_interval, (10000., 10000.))
    assert_equal(res.standard_error, 0)


@pytest.mark.parametrize("method", ["basic", "percentile", "BCa"])
def test_bootstrap_gh15678(method):
    # Check that gh-15678 is fixed: when statistic function returned a Python
    # float, method="BCa" failed when trying to add a dimension to the float
    rng = np.random.default_rng(354645618886684)
    dist = stats.norm(loc=2, scale=4)
    data = dist.rvs(size=100, random_state=rng)
    data = (data,)
    res = bootstrap(data, stats.skew, method=method, n_resamples=100,
                    rng=np.random.default_rng(9563))
    # this always worked because np.apply_along_axis returns NumPy data type
    ref = bootstrap(data, stats.skew, method=method, n_resamples=100,
                    rng=np.random.default_rng(9563), vectorized=False)
    assert_allclose(res.confidence_interval, ref.confidence_interval)
    assert_allclose(res.standard_error, ref.standard_error)
    assert isinstance(res.standard_error, np.float64)


def test_bootstrap_min():
    # Check that gh-15883 is fixed: percentileofscore should
    # behave according to the 'mean' behavior and not trigger nan for BCa
    rng = np.random.default_rng(1891289180021102)
    dist = stats.norm(loc=2, scale=4)
    data = dist.rvs(size=100, random_state=rng)
    true_min = np.min(data)
    data = (data,)
    res = bootstrap(data, np.min, method="BCa", n_resamples=100,
                    rng=np.random.default_rng(3942))
    assert true_min == res.confidence_interval.low
    res2 = bootstrap(-np.array(data), np.max, method="BCa", n_resamples=100,
                     rng=np.random.default_rng(3942))
    assert_allclose(-res.confidence_interval.low,
                    res2.confidence_interval.high)
    assert_allclose(-res.confidence_interval.high,
                    res2.confidence_interval.low)


@pytest.mark.parametrize("additional_resamples", [0, 1000])
def test_re_bootstrap(additional_resamples):
    # Test behavior of parameter `bootstrap_result`
    rng = np.random.default_rng(8958153316228384)
    x = rng.random(size=100)

    n1 = 1000
    n2 = additional_resamples
    n3 = n1 + additional_resamples

    rng = np.random.default_rng(296689032789913033)
    res = stats.bootstrap((x,), np.mean, n_resamples=n1, rng=rng,
                          confidence_level=0.95, method='percentile')
    res = stats.bootstrap((x,), np.mean, n_resamples=n2, rng=rng,
                          confidence_level=0.90, method='BCa',
                          bootstrap_result=res)

    rng = np.random.default_rng(296689032789913033)
    ref = stats.bootstrap((x,), np.mean, n_resamples=n3, rng=rng,
                          confidence_level=0.90, method='BCa')

    assert_allclose(res.standard_error, ref.standard_error, rtol=1e-14)
    assert_allclose(res.confidence_interval, ref.confidence_interval,
                    rtol=1e-14)


@pytest.mark.xfail_on_32bit("Sensible to machine precision")
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
def test_bootstrap_alternative(method):
    rng = np.random.default_rng(5894822712842015040)
    dist = stats.norm(loc=2, scale=4)
    data = (dist.rvs(size=(100), random_state=rng),)

    config = dict(data=data, statistic=np.std, rng=rng, axis=-1)
    t = stats.bootstrap(**config, confidence_level=0.9)

    config.update(dict(n_resamples=0, bootstrap_result=t))
    l = stats.bootstrap(**config, confidence_level=0.95, alternative='less')
    g = stats.bootstrap(**config, confidence_level=0.95, alternative='greater')

    assert_allclose(l.confidence_interval.high, t.confidence_interval.high,
                    rtol=1e-14)
    assert_allclose(g.confidence_interval.low, t.confidence_interval.low,
                    rtol=1e-14)
    assert np.isneginf(l.confidence_interval.low)
    assert np.isposinf(g.confidence_interval.high)

    with pytest.raises(ValueError, match='`alternative` must be one of'):
        stats.bootstrap(**config, alternative='ekki-ekki')


def test_jackknife_resample():
    shape = 3, 4, 5, 6
    np.random.seed(0)
    x = np.random.rand(*shape)
    y = next(_resampling._jackknife_resample(x))

    for i in range(shape[-1]):
        # each resample is indexed along second to last axis
        # (last axis is the one the statistic will be taken over / consumed)
        slc = y[..., i, :]
        expected = np.delete(x, i, axis=-1)

        assert np.array_equal(slc, expected)

    y2 = np.concatenate(list(_resampling._jackknife_resample(x, batch=2)),
                        axis=-2)
    assert np.array_equal(y2, y)


@pytest.mark.parametrize("rng_name", ["RandomState", "default_rng"])
def test_bootstrap_resample(rng_name):
    rng = getattr(np.random, rng_name, None)
    if rng is None:
        pytest.skip(f"{rng_name} not available.")
    rng1 = rng(0)
    rng2 = rng(0)

    n_resamples = 10
    shape = 3, 4, 5, 6

    np.random.seed(0)
    x = np.random.rand(*shape)
    y = _resampling._bootstrap_resample(x, n_resamples, rng=rng1)

    for i in range(n_resamples):
        # each resample is indexed along second to last axis
        # (last axis is the one the statistic will be taken over / consumed)
        slc = y[..., i, :]

        js = rng_integers(rng2, 0, shape[-1], shape[-1])
        expected = x[..., js]

        assert np.array_equal(slc, expected)


@pytest.mark.parametrize("score", [0, 0.5, 1])
@pytest.mark.parametrize("axis", [0, 1, 2])
def test_percentile_of_score(score, axis):
    shape = 10, 20, 30
    np.random.seed(0)
    x = np.random.rand(*shape)
    p = _resampling._percentile_of_score(x, score, axis=-1)

    def vectorized_pos(a, score, axis):
        return np.apply_along_axis(stats.percentileofscore, axis, a, score)

    p2 = vectorized_pos(x, score, axis=-1)/100

    assert_allclose(p, p2, 1e-15)


def test_percentile_along_axis():
    # the difference between _percentile_along_axis and np.percentile is that
    # np.percentile gets _all_ the qs for each axis slice, whereas
    # _percentile_along_axis gets the q corresponding with each axis slice

    shape = 10, 20
    np.random.seed(0)
    x = np.random.rand(*shape)
    q = np.random.rand(*shape[:-1]) * 100
    y = _resampling._percentile_along_axis(x, q)

    for i in range(shape[0]):
        res = y[i]
        expected = np.percentile(x[i], q[i], axis=-1)
        assert_allclose(res, expected, 1e-15)


@pytest.mark.parametrize("axis", [0, 1, 2])
def test_vectorize_statistic(axis):
    # test that _vectorize_statistic vectorizes a statistic along `axis`

    def statistic(*data, axis):
        # an arbitrary, vectorized statistic
        return sum(sample.mean(axis) for sample in data)

    def statistic_1d(*data):
        # the same statistic, not vectorized
        for sample in data:
            assert sample.ndim == 1
        return statistic(*data, axis=0)

    # vectorize the non-vectorized statistic
    statistic2 = _resampling._vectorize_statistic(statistic_1d)

    np.random.seed(0)
    x = np.random.rand(4, 5, 6)
    y = np.random.rand(4, 1, 6)
    z = np.random.rand(1, 5, 6)

    res1 = statistic(x, y, z, axis=axis)
    res2 = statistic2(x, y, z, axis=axis)
    assert_allclose(res1, res2)


@pytest.mark.slow
@pytest.mark.parametrize("method", ["basic", "percentile", "BCa"])
def test_vector_valued_statistic(method):
    # Generate 95% confidence interval around MLE of normal distribution
    # parameters. Repeat 100 times, each time on sample of size 100.
    # Check that confidence interval contains true parameters ~95 times.
    # Confidence intervals are estimated and stochastic; a test failure
    # does not necessarily indicate that something is wrong. More important
    # than values of `counts` below is that the shapes of the outputs are
    # correct.

    rng = np.random.default_rng(2196847219)
    params = 1, 0.5
    sample = stats.norm.rvs(*params, size=(100, 100), random_state=rng)

    def statistic(data, axis):
        return np.asarray([np.mean(data, axis),
                           np.std(data, axis, ddof=1)])

    res = bootstrap((sample,), statistic, method=method, axis=-1,
                    n_resamples=9999, batch=200)

    counts = np.sum((res.confidence_interval.low.T < params)
                    & (res.confidence_interval.high.T > params),
                    axis=0)
    assert np.all(counts >= 90)
    assert np.all(counts <= 100)
    assert res.confidence_interval.low.shape == (2, 100)
    assert res.confidence_interval.high.shape == (2, 100)
    assert res.standard_error.shape == (2, 100)
    assert res.bootstrap_distribution.shape == (2, 100, 9999)


@pytest.mark.slow
@pytest.mark.filterwarnings('ignore::RuntimeWarning')
def test_vector_valued_statistic_gh17715():
    # gh-17715 reported a mistake introduced in the extension of BCa to
    # multi-sample statistics; a `len` should have been `.shape[-1]`. Check
    # that this is resolved.

    rng = np.random.default_rng(141921000979291141)

    def concordance(x, y, axis):
        xm = x.mean(axis)
        ym = y.mean(axis)
        cov = ((x - xm[..., None]) * (y - ym[..., None])).mean(axis)
        return (2 * cov) / (x.var(axis) + y.var(axis) + (xm - ym) ** 2)

    def statistic(tp, tn, fp, fn, axis):
        actual = tp + fp
        expected = tp + fn
        return np.nan_to_num(concordance(actual, expected, axis))

    def statistic_extradim(*args, axis):
        return statistic(*args, axis)[np.newaxis, ...]

    data = [[4, 0, 0, 2],  # (tp, tn, fp, fn)
            [2, 1, 2, 1],
            [0, 6, 0, 0],
            [0, 6, 3, 0],
            [0, 8, 1, 0]]
    data = np.array(data).T

    res = bootstrap(data, statistic_extradim, rng=rng, paired=True)
    ref = bootstrap(data, statistic, rng=rng, paired=True)
    assert_allclose(res.confidence_interval.low[0],
                    ref.confidence_interval.low, atol=1e-15)
    assert_allclose(res.confidence_interval.high[0],
                    ref.confidence_interval.high, atol=1e-15)


def test_gh_20850():
    rng = np.random.default_rng(2085020850)
    x = rng.random((10, 2))
    y = rng.random((11, 2))
    def statistic(x, y, axis):
        return stats.ttest_ind(x, y, axis=axis).statistic

    # The shapes do *not* need to be the same along axis
    stats.bootstrap((x, y), statistic)
    stats.bootstrap((x.T, y.T), statistic, axis=1)
    # But even when the shapes *are* the same along axis, the lengths
    # along other dimensions have to be the same (or `bootstrap` warns).
    message = "Ignoring the dimension specified by `axis`..."
    with pytest.warns(FutureWarning, match=message):
        stats.bootstrap((x, y[:10, 0]), statistic)  # this won't work after 1.16
    with pytest.warns(FutureWarning, match=message):
        stats.bootstrap((x, y[:10, 0:1]), statistic)  # this will
    with pytest.warns(FutureWarning, match=message):
        stats.bootstrap((x.T, y.T[0:1, :10]), statistic, axis=1)  # this will


# --- Test Monte Carlo Hypothesis Test --- #

class TestMonteCarloHypothesisTest:
    atol = 2.5e-2  # for comparing p-value

    def get_rvs(self, rvs_in, rs, dtype=None, xp=np):
        return lambda *args, **kwds: xp.asarray(rvs_in(*args, random_state=rs, **kwds),
                                                dtype=dtype)

    def get_statistic(self, xp):
        def statistic(x, axis):
            m = xp.mean(x, axis=axis)
            v = xp.var(x, axis=axis, correction=1)
            n = x.shape[axis]
            return m / (v/n)**0.5
            # return stats.ttest_1samp(x, popmean=0., axis=axis).statistic)
        return statistic

    @array_api_compatible
    def test_input_validation(self, xp):
        # test that the appropriate error messages are raised for invalid input

        data = xp.asarray([1., 2., 3.])
        def stat(x, axis=None):
            return xp.mean(x, axis=axis)

        message = "Array shapes are incompatible for broadcasting."
        temp = (xp.zeros((2, 5)), xp.zeros((3, 5)))
        rvs = (stats.norm.rvs, stats.norm.rvs)
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(temp, rvs, lambda x, y, axis: 1, axis=-1)

        message = "`axis` must be an integer."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, axis=1.5)

        message = "`vectorized` must be `True`, `False`, or `None`."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, vectorized=1.5)

        message = "`rvs` must be callable or sequence of callables."
        with pytest.raises(TypeError, match=message):
            monte_carlo_test(data, None, stat)
        with pytest.raises(TypeError, match=message):
            temp = xp.asarray([[1., 2.], [3., 4.]])
            monte_carlo_test(temp, [lambda x: x, None], stat)

        message = "If `rvs` is a sequence..."
        with pytest.raises(ValueError, match=message):
            temp = xp.asarray([[1., 2., 3.]])
            monte_carlo_test(temp, [lambda x: x, lambda x: x], stat)

        message = "`statistic` must be callable."
        with pytest.raises(TypeError, match=message):
            monte_carlo_test(data, stats.norm.rvs, None)

        message = "`n_resamples` must be a positive integer."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, n_resamples=-1000)

        message = "`n_resamples` must be a positive integer."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, n_resamples=1000.5)

        message = "`batch` must be a positive integer or None."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, batch=-1000)

        message = "`batch` must be a positive integer or None."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, batch=1000.5)

        message = "`alternative` must be in..."
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(data, stats.norm.rvs, stat, alternative='ekki')

        # *If* this raises a value error, make sure it has the intended message
        message = "Signature inspection of statistic"
        def rvs(size):
            return xp.asarray(stats.norm.rvs(size=size))
        try:
            monte_carlo_test(data, rvs, xp.mean)
        except ValueError as e:
            assert str(e).startswith(message)

    @array_api_compatible
    def test_input_validation_xp(self, xp):
        def non_vectorized_statistic(x):
            return xp.mean(x)

        message = "`statistic` must be vectorized..."
        sample = xp.asarray([1., 2., 3.])
        if is_numpy(xp):
            monte_carlo_test(sample, stats.norm.rvs, non_vectorized_statistic)
            return

        with pytest.raises(ValueError, match=message):
            monte_carlo_test(sample, stats.norm.rvs, non_vectorized_statistic)
        with pytest.raises(ValueError, match=message):
            monte_carlo_test(sample, stats.norm.rvs, xp.mean, vectorized=False)

    @pytest.mark.xslow
    @array_api_compatible
    def test_batch(self, xp):
        # make sure that the `batch` parameter is respected by checking the
        # maximum batch size provided in calls to `statistic`
        rng = np.random.default_rng(23492340193)
        x = xp.asarray(rng.standard_normal(size=10))

        xp_test = array_namespace(x)  # numpy.std doesn't have `correction`
        def statistic(x, axis):
            batch_size = 1 if x.ndim == 1 else x.shape[0]
            statistic.batch_size = max(batch_size, statistic.batch_size)
            statistic.counter += 1
            return self.get_statistic(xp_test)(x, axis=axis)
        statistic.counter = 0
        statistic.batch_size = 0

        kwds = {'sample': x, 'statistic': statistic,
                'n_resamples': 1000, 'vectorized': True}

        kwds['rvs'] = self.get_rvs(stats.norm.rvs, np.random.default_rng(328423), xp=xp)
        res1 = monte_carlo_test(batch=1, **kwds)
        assert_equal(statistic.counter, 1001)
        assert_equal(statistic.batch_size, 1)

        kwds['rvs'] = self.get_rvs(stats.norm.rvs, np.random.default_rng(328423), xp=xp)
        statistic.counter = 0
        res2 = monte_carlo_test(batch=50, **kwds)
        assert_equal(statistic.counter, 21)
        assert_equal(statistic.batch_size, 50)

        kwds['rvs'] = self.get_rvs(stats.norm.rvs, np.random.default_rng(328423), xp=xp)
        statistic.counter = 0
        res3 = monte_carlo_test(**kwds)
        assert_equal(statistic.counter, 2)
        assert_equal(statistic.batch_size, 1000)

        xp_assert_equal(res1.pvalue, res3.pvalue)
        xp_assert_equal(res2.pvalue, res3.pvalue)

    @array_api_compatible
    @pytest.mark.parametrize('axis', range(-3, 3))
    def test_axis_dtype(self, axis, xp):
        # test that Nd-array samples are handled correctly for valid values
        # of the `axis` parameter; also make sure non-default dtype is maintained
        rng = np.random.default_rng(2389234)
        size = [2, 3, 4]
        size[axis] = 100

        # Determine non-default dtype
        dtype_default = xp.asarray(1.).dtype
        dtype_str = 'float32'if ("64" in str(dtype_default)) else 'float64'
        dtype_np = getattr(np, dtype_str)
        dtype = getattr(xp, dtype_str)

        # ttest_1samp is CPU array-API compatible, but it would be good to
        # include CuPy in this test. We'll perform ttest_1samp with a
        # NumPy array, but all the rest with be done with fully array-API
        # compatible code.
        x = rng.standard_normal(size=size, dtype=dtype_np)
        expected = stats.ttest_1samp(x, popmean=0., axis=axis)

        x = xp.asarray(x, dtype=dtype)
        xp_test = array_namespace(x)  # numpy.std doesn't have `correction`
        statistic = self.get_statistic(xp_test)
        rvs = self.get_rvs(stats.norm.rvs, rng, dtype=dtype, xp=xp)

        res = monte_carlo_test(x, rvs, statistic, vectorized=True,
                               n_resamples=20000, axis=axis)

        ref_statistic = xp.asarray(expected.statistic, dtype=dtype)
        ref_pvalue = xp.asarray(expected.pvalue, dtype=dtype)
        xp_assert_close(res.statistic, ref_statistic)
        xp_assert_close(res.pvalue, ref_pvalue, atol=self.atol)

    @array_api_compatible
    @pytest.mark.parametrize('alternative', ("two-sided", "less", "greater"))
    def test_alternative(self, alternative, xp):
        # test that `alternative` is working as expected
        rng = np.random.default_rng(65723433)

        x = rng.standard_normal(size=30)
        ref = stats.ttest_1samp(x, 0., alternative=alternative)

        x = xp.asarray(x)
        xp_test = array_namespace(x)  # numpy.std doesn't have `correction`
        statistic = self.get_statistic(xp_test)
        rvs = self.get_rvs(stats.norm.rvs, rng, xp=xp)

        res = monte_carlo_test(x, rvs, statistic, alternative=alternative)

        xp_assert_close(res.statistic, xp.asarray(ref.statistic))
        xp_assert_close(res.pvalue, xp.asarray(ref.pvalue), atol=self.atol)


    # Tests below involve statistics that are not yet array-API compatible.
    # They can be converted when the statistics are converted.
    @pytest.mark.slow
    @pytest.mark.parametrize('alternative', ("less", "greater"))
    @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5))  # skewness
    def test_against_ks_1samp(self, alternative, a):
        # test that monte_carlo_test can reproduce pvalue of ks_1samp
        rng = np.random.default_rng(65723433)

        x = stats.skewnorm.rvs(a=a, size=30, random_state=rng)
        expected = stats.ks_1samp(x, stats.norm.cdf, alternative=alternative)

        def statistic1d(x):
            return stats.ks_1samp(x, stats.norm.cdf, mode='asymp',
                                  alternative=alternative).statistic

        norm_rvs = self.get_rvs(stats.norm.rvs, rng)
        res = monte_carlo_test(x, norm_rvs, statistic1d,
                               n_resamples=1000, vectorized=False,
                               alternative=alternative)

        assert_allclose(res.statistic, expected.statistic)
        if alternative == 'greater':
            assert_allclose(res.pvalue, expected.pvalue, atol=self.atol)
        elif alternative == 'less':
            assert_allclose(1-res.pvalue, expected.pvalue, atol=self.atol)

    @pytest.mark.parametrize('hypotest', (stats.skewtest, stats.kurtosistest))
    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    @pytest.mark.parametrize('a', np.linspace(-2, 2, 5))  # skewness
    def test_against_normality_tests(self, hypotest, alternative, a):
        # test that monte_carlo_test can reproduce pvalue of normality tests
        rng = np.random.default_rng(85723405)

        x = stats.skewnorm.rvs(a=a, size=150, random_state=rng)
        expected = hypotest(x, alternative=alternative)

        def statistic(x, axis):
            return hypotest(x, axis=axis).statistic

        norm_rvs = self.get_rvs(stats.norm.rvs, rng)
        res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True,
                               alternative=alternative)

        assert_allclose(res.statistic, expected.statistic)
        assert_allclose(res.pvalue, expected.pvalue, atol=self.atol)

    @pytest.mark.parametrize('a', np.arange(-2, 3))  # skewness parameter
    def test_against_normaltest(self, a):
        # test that monte_carlo_test can reproduce pvalue of normaltest
        rng = np.random.default_rng(12340513)

        x = stats.skewnorm.rvs(a=a, size=150, random_state=rng)
        expected = stats.normaltest(x)

        def statistic(x, axis):
            return stats.normaltest(x, axis=axis).statistic

        norm_rvs = self.get_rvs(stats.norm.rvs, rng)
        res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True,
                               alternative='greater')

        assert_allclose(res.statistic, expected.statistic)
        assert_allclose(res.pvalue, expected.pvalue, atol=self.atol)

    @pytest.mark.xslow
    @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5))  # skewness
    def test_against_cramervonmises(self, a):
        # test that monte_carlo_test can reproduce pvalue of cramervonmises
        rng = np.random.default_rng(234874135)

        x = stats.skewnorm.rvs(a=a, size=30, random_state=rng)
        expected = stats.cramervonmises(x, stats.norm.cdf)

        def statistic1d(x):
            return stats.cramervonmises(x, stats.norm.cdf).statistic

        norm_rvs = self.get_rvs(stats.norm.rvs, rng)
        res = monte_carlo_test(x, norm_rvs, statistic1d,
                               n_resamples=1000, vectorized=False,
                               alternative='greater')

        assert_allclose(res.statistic, expected.statistic)
        assert_allclose(res.pvalue, expected.pvalue, atol=self.atol)

    @pytest.mark.slow
    @pytest.mark.parametrize('dist_name', ('norm', 'logistic'))
    @pytest.mark.parametrize('i', range(5))
    def test_against_anderson(self, dist_name, i):
        # test that monte_carlo_test can reproduce results of `anderson`. Note:
        # `anderson` does not provide a p-value; it provides a list of
        # significance levels and the associated critical value of the test
        # statistic. `i` used to index this list.

        # find the skewness for which the sample statistic matches one of the
        # critical values provided by `stats.anderson`

        def fun(a):
            rng = np.random.default_rng(394295467)
            x = stats.tukeylambda.rvs(a, size=100, random_state=rng)
            expected = stats.anderson(x, dist_name)
            return expected.statistic - expected.critical_values[i]
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            sol = root(fun, x0=0)
        assert sol.success

        # get the significance level (p-value) associated with that critical
        # value
        a = sol.x[0]
        rng = np.random.default_rng(394295467)
        x = stats.tukeylambda.rvs(a, size=100, random_state=rng)
        expected = stats.anderson(x, dist_name)
        expected_stat = expected.statistic
        expected_p = expected.significance_level[i]/100

        # perform equivalent Monte Carlo test and compare results
        def statistic1d(x):
            return stats.anderson(x, dist_name).statistic

        dist_rvs = self.get_rvs(getattr(stats, dist_name).rvs, rng)
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            res = monte_carlo_test(x, dist_rvs,
                                   statistic1d, n_resamples=1000,
                                   vectorized=False, alternative='greater')

        assert_allclose(res.statistic, expected_stat)
        assert_allclose(res.pvalue, expected_p, atol=2*self.atol)

    def test_p_never_zero(self):
        # Use biased estimate of p-value to ensure that p-value is never zero
        # per monte_carlo_test reference [1]
        rng = np.random.default_rng(2190176673029737545)
        x = np.zeros(100)
        res = monte_carlo_test(x, rng.random, np.mean,
                               vectorized=True, alternative='less')
        assert res.pvalue == 0.0001

    def test_against_ttest_ind(self):
        # test that `monte_carlo_test` can reproduce results of `ttest_ind`.
        rng = np.random.default_rng(219017667302737545)
        data = rng.random(size=(2, 5)), rng.random(size=7)  # broadcastable
        rvs = rng.normal, rng.normal
        def statistic(x, y, axis):
            return stats.ttest_ind(x, y, axis=axis).statistic

        res = stats.monte_carlo_test(data, rvs, statistic, axis=-1)
        ref = stats.ttest_ind(data[0], [data[1]], axis=-1)
        assert_allclose(res.statistic, ref.statistic)
        assert_allclose(res.pvalue, ref.pvalue, rtol=2e-2)

    def test_against_f_oneway(self):
        # test that `monte_carlo_test` can reproduce results of `f_oneway`.
        rng = np.random.default_rng(219017667302737545)
        data = (rng.random(size=(2, 100)), rng.random(size=(2, 101)),
                rng.random(size=(2, 102)), rng.random(size=(2, 103)))
        rvs = rng.normal, rng.normal, rng.normal, rng.normal

        def statistic(*args, axis):
            return stats.f_oneway(*args, axis=axis).statistic

        res = stats.monte_carlo_test(data, rvs, statistic, axis=-1,
                                     alternative='greater')
        ref = stats.f_oneway(*data, axis=-1)

        assert_allclose(res.statistic, ref.statistic)
        assert_allclose(res.pvalue, ref.pvalue, atol=1e-2)

    @pytest.mark.fail_slow(2)
    @pytest.mark.xfail_on_32bit("Statistic may not depend on sample order on 32-bit")
    def test_finite_precision_statistic(self):
        # Some statistics return numerically distinct values when the values
        # should be equal in theory. Test that `monte_carlo_test` accounts
        # for this in some way.
        rng = np.random.default_rng(2549824598234528)
        n_resamples = 9999
        def rvs(size):
            return 1. * stats.bernoulli(p=0.333).rvs(size=size, random_state=rng)

        x = rvs(100)
        res = stats.monte_carlo_test(x, rvs, np.var, alternative='less',
                                     n_resamples=n_resamples)
        # show that having a tolerance matters
        c0 = np.sum(res.null_distribution <= res.statistic)
        c1 = np.sum(res.null_distribution <= res.statistic*(1+1e-15))
        assert c0 != c1
        assert res.pvalue == (c1 + 1)/(n_resamples + 1)


class TestPower:
    def test_input_validation(self):
        # test that the appropriate error messages are raised for invalid input
        rng = np.random.default_rng(8519895914314711673)

        test = stats.ttest_ind
        rvs = (rng.normal, rng.normal)
        n_observations = (10, 12)

        message = "`vectorized` must be `True`, `False`, or `None`."
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, vectorized=1.5)

        message = "`rvs` must be callable or sequence of callables."
        with pytest.raises(TypeError, match=message):
            power(test, None, n_observations)
        with pytest.raises(TypeError, match=message):
            power(test, (rng.normal, 'ekki'), n_observations)

        message = "If `rvs` is a sequence..."
        with pytest.raises(ValueError, match=message):
            power(test, (rng.normal,), n_observations)
        with pytest.raises(ValueError, match=message):
            power(test, rvs, (10,))

        message = "`significance` must contain floats between 0 and 1."
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, significance=2)
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, significance=np.linspace(-1, 1))

        message = "`kwargs` must be a dictionary"
        with pytest.raises(TypeError, match=message):
            power(test, rvs, n_observations, kwargs=(1, 2, 3))

        message = "shape mismatch: objects cannot be broadcast"
        with pytest.raises(ValueError, match=message):
            power(test, rvs, ([10, 11], [12, 13, 14]))
        with pytest.raises(ValueError, match=message):
            power(test, rvs, ([10, 11], [12, 13]), kwargs={'x': [1, 2, 3]})

        message = "`test` must be callable"
        with pytest.raises(TypeError, match=message):
            power(None, rvs, n_observations)

        message = "`n_resamples` must be a positive integer"
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, n_resamples=-10)
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, n_resamples=10.5)

        message = "`batch` must be a positive integer"
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, batch=-10)
        with pytest.raises(ValueError, match=message):
            power(test, rvs, n_observations, batch=10.5)

    @pytest.mark.slow
    def test_batch(self):
        # make sure that the `batch` parameter is respected by checking the
        # maximum batch size provided in calls to `test`
        rng = np.random.default_rng(23492340193)

        def test(x, axis):
            batch_size = 1 if x.ndim == 1 else len(x)
            test.batch_size = max(batch_size, test.batch_size)
            test.counter += 1
            return stats.ttest_1samp(x, 0, axis=axis).pvalue
        test.counter = 0
        test.batch_size = 0

        kwds = dict(test=test, n_observations=10, n_resamples=1000)

        rng = np.random.default_rng(23492340193)
        res1 = power(**kwds, rvs=rng.normal, batch=1)
        assert_equal(test.counter, 1000)
        assert_equal(test.batch_size, 1)

        rng = np.random.default_rng(23492340193)
        test.counter = 0
        res2 = power(**kwds, rvs=rng.normal, batch=50)
        assert_equal(test.counter, 20)
        assert_equal(test.batch_size, 50)

        rng = np.random.default_rng(23492340193)
        test.counter = 0
        res3 = power(**kwds, rvs=rng.normal, batch=1000)
        assert_equal(test.counter, 1)
        assert_equal(test.batch_size, 1000)

        assert_equal(res1.power, res3.power)
        assert_equal(res2.power, res3.power)

    @pytest.mark.slow
    def test_vectorization(self):
        # Test that `power` is vectorized as expected
        rng = np.random.default_rng(25495254834552)

        # Single vectorized call
        popmeans = np.array([0, 0.2])
        def test(x, alternative, axis=-1):
            # ensure that popmeans axis is zeroth and orthogonal to the rest
            popmeans_expanded = np.expand_dims(popmeans, tuple(range(1, x.ndim + 1)))
            return stats.ttest_1samp(x, popmeans_expanded, alternative=alternative,
                                     axis=axis)

        # nx and kwargs broadcast against one another
        nx = np.asarray([10, 15, 20, 50, 100])[:, np.newaxis]
        kwargs = {'alternative': ['less', 'greater', 'two-sided']}

        # This dimension is added to the beginning
        significance = np.asarray([0.01, 0.025, 0.05, 0.1])
        res = stats.power(test, rng.normal, nx, significance=significance,
                          kwargs=kwargs)

        # Looping over all combinations
        ref = []
        for significance_i in significance:
            for nx_i in nx:
                for alternative_i in kwargs['alternative']:
                    for popmean_i in popmeans:
                        def test2(x, axis=-1):
                            return stats.ttest_1samp(x, popmean_i, axis=axis,
                                                     alternative=alternative_i)

                        tmp = stats.power(test2, rng.normal, nx_i,
                                          significance=significance_i)
                        ref.append(tmp.power)
        ref = np.reshape(ref, res.power.shape)

        # Show that results are similar
        assert_allclose(res.power, ref, rtol=2e-2, atol=1e-2)

    def test_ttest_ind_null(self):
        # Check that the p-values of `ttest_ind` are uniformly distributed under
        # the null hypothesis
        rng = np.random.default_rng(254952548345528)

        test = stats.ttest_ind
        n_observations = rng.integers(10, 100, size=(2, 10))
        rvs = rng.normal, rng.normal
        significance = np.asarray([0.01, 0.05, 0.1])
        res = stats.power(test, rvs, n_observations, significance=significance)
        significance = np.broadcast_to(significance[:, np.newaxis], res.power.shape)
        assert_allclose(res.power, significance, atol=1e-2)

    def test_ttest_1samp_power(self):
        # Check simulated ttest_1samp power against reference
        rng = np.random.default_rng(254952548345528)

        # Reference values computed with statmodels
        # import numpy as np
        # from statsmodels.stats.power import tt_solve_power
        # tt_solve_power = np.vectorize(tt_solve_power)
        # tt_solve_power([0.1, 0.5, 0.9], [[10], [20]], [[[0.01]], [[0.05]]])
        ref = [[[0.0126515 , 0.10269751, 0.40415802],
                [0.01657775, 0.29734608, 0.86228288]],
               [[0.0592903 , 0.29317561, 0.71718121],
                [0.07094116, 0.56450441, 0.96815163]]]

        kwargs = {'popmean': [0.1, 0.5, 0.9]}
        n_observations = [[10], [20]]
        significance = [0.01, 0.05]
        res = stats.power(stats.ttest_1samp, rng.normal, n_observations,
                          significance=significance, kwargs=kwargs)
        assert_allclose(res.power, ref, atol=1e-2)


class TestPermutationTest:

    rtol = 1e-14

    def setup_method(self):
        self.rng = np.random.default_rng(7170559330470561044)

    # -- Input validation -- #

    def test_permutation_test_iv(self):

        def stat(x, y, axis):
            return stats.ttest_ind((x, y), axis).statistic

        message = "each sample in `data` must contain two or more ..."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1]), stat)

        message = "`data` must be a tuple containing at least two samples"
        with pytest.raises(ValueError, match=message):
            permutation_test((1,), stat)
        with pytest.raises(TypeError, match=message):
            permutation_test(1, stat)

        message = "`axis` must be an integer."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, axis=1.5)

        message = "`permutation_type` must be in..."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat,
                             permutation_type="ekki")

        message = "`vectorized` must be `True`, `False`, or `None`."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, vectorized=1.5)

        message = "`n_resamples` must be a positive integer."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=-1000)

        message = "`n_resamples` must be a positive integer."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=1000.5)

        message = "`batch` must be a positive integer or None."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=-1000)

        message = "`batch` must be a positive integer or None."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=1000.5)

        message = "`alternative` must be in..."
        with pytest.raises(ValueError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, alternative='ekki')

        message = "SeedSequence expects int or sequence of ints"
        with pytest.raises(TypeError, match=message):
            permutation_test(([1, 2, 3], [1, 2, 3]), stat, rng='herring')

    # -- Test Parameters -- #
    # SPEC-007 leave one call with seed to check it still works
    @pytest.mark.parametrize('random_state', [np.random.RandomState,
                                              np.random.default_rng])
    @pytest.mark.parametrize('permutation_type',
                             ['pairings', 'samples', 'independent'])
    def test_batch(self, permutation_type, random_state):
        # make sure that the `batch` parameter is respected by checking the
        # maximum batch size provided in calls to `statistic`
        x = self.rng.random(10)
        y = self.rng.random(10)

        def statistic(x, y, axis):
            batch_size = 1 if x.ndim == 1 else len(x)
            statistic.batch_size = max(batch_size, statistic.batch_size)
            statistic.counter += 1
            return np.mean(x, axis=axis) - np.mean(y, axis=axis)
        statistic.counter = 0
        statistic.batch_size = 0

        kwds = {'n_resamples': 1000, 'permutation_type': permutation_type,
                'vectorized': True}
        res1 = stats.permutation_test((x, y), statistic, batch=1,
                                      random_state=random_state(0), **kwds)
        assert_equal(statistic.counter, 1001)
        assert_equal(statistic.batch_size, 1)

        statistic.counter = 0
        res2 = stats.permutation_test((x, y), statistic, batch=50,
                                      random_state=random_state(0), **kwds)
        assert_equal(statistic.counter, 21)
        assert_equal(statistic.batch_size, 50)

        statistic.counter = 0
        res3 = stats.permutation_test((x, y), statistic, batch=1000,
                                      random_state=random_state(0), **kwds)
        assert_equal(statistic.counter, 2)
        assert_equal(statistic.batch_size, 1000)

        assert_equal(res1.pvalue, res3.pvalue)
        assert_equal(res2.pvalue, res3.pvalue)

    # SPEC-007 leave at least one call with seed to check it still works
    @pytest.mark.parametrize('random_state', [np.random.RandomState,
                                              np.random.default_rng])
    @pytest.mark.parametrize('permutation_type, exact_size',
                             [('pairings', special.factorial(3)**2),
                              ('samples', 2**3),
                              ('independent', special.binom(6, 3))])
    def test_permutations(self, permutation_type, exact_size, random_state):
        # make sure that the `permutations` parameter is respected by checking
        # the size of the null distribution
        x = self.rng.random(3)
        y = self.rng.random(3)

        def statistic(x, y, axis):
            return np.mean(x, axis=axis) - np.mean(y, axis=axis)

        kwds = {'permutation_type': permutation_type,
                'vectorized': True}
        res = stats.permutation_test((x, y), statistic, n_resamples=3,
                                     random_state=random_state(0), **kwds)
        assert_equal(res.null_distribution.size, 3)

        res = stats.permutation_test((x, y), statistic, **kwds)
        assert_equal(res.null_distribution.size, exact_size)

    # -- Randomized Permutation Tests -- #

    # To get reasonable accuracy, these next three tests are somewhat slow.
    # Originally, I had them passing for all combinations of permutation type,
    # alternative, and RNG, but that takes too long for CI. Instead, split
    # into three tests, each testing a particular combination of the three
    # parameters.

    def test_randomized_test_against_exact_both(self):
        # check that the randomized and exact tests agree to reasonable
        # precision for permutation_type='both

        alternative, rng = 'less', 0

        nx, ny, permutations = 8, 9, 24000
        assert special.binom(nx + ny, nx) > permutations

        x = stats.norm.rvs(size=nx)
        y = stats.norm.rvs(size=ny)
        data = x, y

        def statistic(x, y, axis):
            return np.mean(x, axis=axis) - np.mean(y, axis=axis)

        kwds = {'vectorized': True, 'permutation_type': 'independent',
                'batch': 100, 'alternative': alternative, 'rng': rng}
        res = permutation_test(data, statistic, n_resamples=permutations,
                               **kwds)
        res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds)

        assert res.statistic == res2.statistic
        assert_allclose(res.pvalue, res2.pvalue, atol=1e-2)

    @pytest.mark.slow()
    def test_randomized_test_against_exact_samples(self):
        # check that the randomized and exact tests agree to reasonable
        # precision for permutation_type='samples'

        alternative, rng = 'greater', None

        nx, ny, permutations = 15, 15, 32000
        assert 2**nx > permutations

        x = stats.norm.rvs(size=nx)
        y = stats.norm.rvs(size=ny)
        data = x, y

        def statistic(x, y, axis):
            return np.mean(x - y, axis=axis)

        kwds = {'vectorized': True, 'permutation_type': 'samples',
                'batch': 100, 'alternative': alternative, 'rng': rng}
        res = permutation_test(data, statistic, n_resamples=permutations,
                               **kwds)
        res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds)

        assert res.statistic == res2.statistic
        assert_allclose(res.pvalue, res2.pvalue, atol=1e-2)

    def test_randomized_test_against_exact_pairings(self):
        # check that the randomized and exact tests agree to reasonable
        # precision for permutation_type='pairings'

        alternative, rng = 'two-sided', self.rng

        nx, ny, permutations = 8, 8, 40000
        assert special.factorial(nx) > permutations

        x = stats.norm.rvs(size=nx)
        y = stats.norm.rvs(size=ny)
        data = [x]

        def statistic1d(x):
            return stats.pearsonr(x, y)[0]

        statistic = _resampling._vectorize_statistic(statistic1d)

        kwds = {'vectorized': True, 'permutation_type': 'samples',
                'batch': 100, 'alternative': alternative, 'rng': rng}
        res = permutation_test(data, statistic, n_resamples=permutations,
                               **kwds)
        res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds)

        assert res.statistic == res2.statistic
        assert_allclose(res.pvalue, res2.pvalue, atol=1e-2)

    # -- Independent (Unpaired) Sample Tests -- #

    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    def test_against_ks_2samp(self, alternative):

        x = self.rng.normal(size=4, scale=1)
        y = self.rng.normal(size=5, loc=3, scale=3)

        expected = stats.ks_2samp(x, y, alternative=alternative, mode='exact')

        def statistic1d(x, y):
            return stats.ks_2samp(x, y, mode='asymp',
                                  alternative=alternative).statistic

        # ks_2samp is always a one-tailed 'greater' test
        # it's the statistic that changes (D+ vs D- vs max(D+, D-))
        res = permutation_test((x, y), statistic1d, n_resamples=np.inf,
                               alternative='greater', rng=self.rng)

        assert_allclose(res.statistic, expected.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    def test_against_ansari(self, alternative):

        x = self.rng.normal(size=4, scale=1)
        y = self.rng.normal(size=5, scale=3)

        # ansari has a different convention for 'alternative'
        alternative_correspondence = {"less": "greater",
                                      "greater": "less",
                                      "two-sided": "two-sided"}
        alternative_scipy = alternative_correspondence[alternative]
        expected = stats.ansari(x, y, alternative=alternative_scipy)

        def statistic1d(x, y):
            return stats.ansari(x, y).statistic

        res = permutation_test((x, y), statistic1d, n_resamples=np.inf,
                               alternative=alternative, rng=self.rng)

        assert_allclose(res.statistic, expected.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    def test_against_mannwhitneyu(self, alternative):

        x = stats.uniform.rvs(size=(3, 5, 2), loc=0, random_state=self.rng)
        y = stats.uniform.rvs(size=(3, 5, 2), loc=0.05, random_state=self.rng)

        expected = stats.mannwhitneyu(x, y, axis=1, alternative=alternative)

        def statistic(x, y, axis):
            return stats.mannwhitneyu(x, y, axis=axis).statistic

        res = permutation_test((x, y), statistic, vectorized=True,
                               n_resamples=np.inf, alternative=alternative,
                               axis=1, rng=self.rng)

        assert_allclose(res.statistic, expected.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    def test_against_cvm(self):

        x = stats.norm.rvs(size=4, scale=1, random_state=self.rng)
        y = stats.norm.rvs(size=5, loc=3, scale=3, random_state=self.rng)

        expected = stats.cramervonmises_2samp(x, y, method='exact')

        def statistic1d(x, y):
            return stats.cramervonmises_2samp(x, y,
                                              method='asymptotic').statistic

        # cramervonmises_2samp has only one alternative, greater
        res = permutation_test((x, y), statistic1d, n_resamples=np.inf,
                               alternative='greater', rng=self.rng)

        assert_allclose(res.statistic, expected.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    @pytest.mark.xslow()
    @pytest.mark.parametrize('axis', (-1, 2))
    def test_vectorized_nsamp_ptype_both(self, axis):
        # Test that permutation_test with permutation_type='independent' works
        # properly for a 3-sample statistic with nd array samples of different
        # (but compatible) shapes and ndims. Show that exact permutation test
        # and random permutation tests approximate SciPy's asymptotic pvalues
        # and that exact and random permutation test results are even closer
        # to one another (than they are to the asymptotic results).

        # Three samples, different (but compatible) shapes with different ndims
        rng = np.random.default_rng(6709265303529651545)
        x = rng.random(size=(3))
        y = rng.random(size=(1, 3, 2))
        z = rng.random(size=(2, 1, 4))
        data = (x, y, z)

        # Define the statistic (and pvalue for comparison)
        def statistic1d(*data):
            return stats.kruskal(*data).statistic

        def pvalue1d(*data):
            return stats.kruskal(*data).pvalue

        statistic = _resampling._vectorize_statistic(statistic1d)
        pvalue = _resampling._vectorize_statistic(pvalue1d)

        # Calculate the expected results
        x2 = np.broadcast_to(x, (2, 3, 3))  # broadcast manually because
        y2 = np.broadcast_to(y, (2, 3, 2))  # _vectorize_statistic doesn't
        z2 = np.broadcast_to(z, (2, 3, 4))
        expected_statistic = statistic(x2, y2, z2, axis=axis)
        expected_pvalue = pvalue(x2, y2, z2, axis=axis)

        # Calculate exact and randomized permutation results
        kwds = {'vectorized': False, 'axis': axis, 'alternative': 'greater',
                'permutation_type': 'independent', 'rng': self.rng}
        res = permutation_test(data, statistic1d, n_resamples=np.inf, **kwds)
        res2 = permutation_test(data, statistic1d, n_resamples=1000, **kwds)

        # Check results
        assert_allclose(res.statistic, expected_statistic, rtol=self.rtol)
        assert_allclose(res.statistic, res2.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected_pvalue, atol=6e-2)
        assert_allclose(res.pvalue, res2.pvalue, atol=3e-2)

    # -- Paired-Sample Tests -- #

    @pytest.mark.slow
    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    def test_against_wilcoxon(self, alternative):

        x = stats.uniform.rvs(size=(3, 6, 2), loc=0, random_state=self.rng)
        y = stats.uniform.rvs(size=(3, 6, 2), loc=0.05, random_state=self.rng)

        # We'll check both 1- and 2-sample versions of the same test;
        # we expect identical results to wilcoxon in all cases.
        def statistic_1samp_1d(z):
            # 'less' ensures we get the same of two statistics every time
            return stats.wilcoxon(z, alternative='less').statistic

        def statistic_2samp_1d(x, y):
            return stats.wilcoxon(x, y, alternative='less').statistic

        def test_1d(x, y):
            return stats.wilcoxon(x, y, alternative=alternative)

        test = _resampling._vectorize_statistic(test_1d)

        expected = test(x, y, axis=1)
        expected_stat = expected[0]
        expected_p = expected[1]

        kwds = {'vectorized': False, 'axis': 1, 'alternative': alternative,
                'permutation_type': 'samples', 'rng': self.rng,
                'n_resamples': np.inf}
        res1 = permutation_test((x-y,), statistic_1samp_1d, **kwds)
        res2 = permutation_test((x, y), statistic_2samp_1d, **kwds)

        # `wilcoxon` returns a different statistic with 'two-sided'
        assert_allclose(res1.statistic, res2.statistic, rtol=self.rtol)
        if alternative != 'two-sided':
            assert_allclose(res2.statistic, expected_stat, rtol=self.rtol)

        assert_allclose(res2.pvalue, expected_p, rtol=self.rtol)
        assert_allclose(res1.pvalue, res2.pvalue, rtol=self.rtol)

    @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided"))
    def test_against_binomtest(self, alternative):

        x = self.rng.integers(0, 2, size=10)
        x[x == 0] = -1
        # More naturally, the test would flip elements between 0 and one.
        # However, permutation_test will flip the _signs_ of the elements.
        # So we have to work with +1/-1 instead of 1/0.

        def statistic(x, axis=0):
            return np.sum(x > 0, axis=axis)

        k, n, p = statistic(x), 10, 0.5
        expected = stats.binomtest(k, n, p, alternative=alternative)

        res = stats.permutation_test((x,), statistic, vectorized=True,
                                     permutation_type='samples',
                                     n_resamples=np.inf, rng=self.rng,
                                     alternative=alternative)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    # -- Exact Association Tests -- #

    def test_against_kendalltau(self):

        x = self.rng.normal(size=6)
        y = x + self.rng.normal(size=6)

        expected = stats.kendalltau(x, y, method='exact')

        def statistic1d(x):
            return stats.kendalltau(x, y, method='asymptotic').statistic

        # kendalltau currently has only one alternative, two-sided
        res = permutation_test((x,), statistic1d, permutation_type='pairings',
                               n_resamples=np.inf, rng=self.rng)

        assert_allclose(res.statistic, expected.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol)

    @pytest.mark.parametrize('alternative', ('less', 'greater', 'two-sided'))
    def test_against_fisher_exact(self, alternative):

        def statistic(x,):
            return np.sum((x == 1) & (y == 1))

        # x and y are binary random variables with some dependence
        rng = np.random.default_rng(6235696159000529929)
        x = (rng.random(7) > 0.6).astype(float)
        y = (rng.random(7) + 0.25*x > 0.6).astype(float)
        tab = stats.contingency.crosstab(x, y)[1]

        res = permutation_test((x,), statistic, permutation_type='pairings',
                               n_resamples=np.inf, alternative=alternative,
                               rng=rng)
        res2 = stats.fisher_exact(tab, alternative=alternative)

        assert_allclose(res.pvalue, res2[1])

    @pytest.mark.xslow()
    @pytest.mark.parametrize('axis', (-2, 1))
    def test_vectorized_nsamp_ptype_samples(self, axis):
        # Test that permutation_test with permutation_type='samples' works
        # properly for a 3-sample statistic with nd array samples of different
        # (but compatible) shapes and ndims. Show that exact permutation test
        # reproduces SciPy's exact pvalue and that random permutation test
        # approximates it.

        x = self.rng.random(size=(2, 4, 3))
        y = self.rng.random(size=(1, 4, 3))
        z = self.rng.random(size=(2, 4, 1))
        x = stats.rankdata(x, axis=axis)
        y = stats.rankdata(y, axis=axis)
        z = stats.rankdata(z, axis=axis)
        y = y[0]  # to check broadcast with different ndim
        data = (x, y, z)

        def statistic1d(*data):
            return stats.page_trend_test(data, ranked=True,
                                         method='asymptotic').statistic

        def pvalue1d(*data):
            return stats.page_trend_test(data, ranked=True,
                                         method='exact').pvalue

        statistic = _resampling._vectorize_statistic(statistic1d)
        pvalue = _resampling._vectorize_statistic(pvalue1d)

        expected_statistic = statistic(*np.broadcast_arrays(*data), axis=axis)
        expected_pvalue = pvalue(*np.broadcast_arrays(*data), axis=axis)

        # Let's forgive this use of an integer seed, please.
        kwds = {'vectorized': False, 'axis': axis, 'alternative': 'greater',
                'permutation_type': 'pairings', 'rng': 0}
        res = permutation_test(data, statistic1d, n_resamples=np.inf, **kwds)
        res2 = permutation_test(data, statistic1d, n_resamples=5000, **kwds)

        assert_allclose(res.statistic, expected_statistic, rtol=self.rtol)
        assert_allclose(res.statistic, res2.statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected_pvalue, rtol=self.rtol)
        assert_allclose(res.pvalue, res2.pvalue, atol=3e-2)

    # -- Test Against External References -- #

    tie_case_1 = {'x': [1, 2, 3, 4], 'y': [1.5, 2, 2.5],
                  'expected_less': 0.2000000000,
                  'expected_2sided': 0.4,  # 2*expected_less
                  'expected_Pr_gte_S_mean': 0.3428571429,  # see note below
                  'expected_statistic': 7.5,
                  'expected_avg': 9.142857, 'expected_std': 1.40698}
    tie_case_2 = {'x': [111, 107, 100, 99, 102, 106, 109, 108],
                  'y': [107, 108, 106, 98, 105, 103, 110, 105, 104],
                  'expected_less': 0.1555738379,
                  'expected_2sided': 0.3111476758,
                  'expected_Pr_gte_S_mean': 0.2969971205,  # see note below
                  'expected_statistic': 32.5,
                  'expected_avg': 38.117647, 'expected_std': 5.172124}

    @pytest.mark.xslow()  # only the second case is slow, really
    @pytest.mark.parametrize('case', (tie_case_1, tie_case_2))
    def test_with_ties(self, case):
        """
        Results above from SAS PROC NPAR1WAY, e.g.

        DATA myData;
        INPUT X Y;
        CARDS;
        1 1
        1 2
        1 3
        1 4
        2 1.5
        2 2
        2 2.5
        ods graphics on;
        proc npar1way AB data=myData;
            class X;
            EXACT;
        run;
        ods graphics off;

        Note: SAS provides Pr >= |S-Mean|, which is different from our
        definition of a two-sided p-value.

        """

        x = case['x']
        y = case['y']

        expected_statistic = case['expected_statistic']
        expected_less = case['expected_less']
        expected_2sided = case['expected_2sided']
        expected_Pr_gte_S_mean = case['expected_Pr_gte_S_mean']
        expected_avg = case['expected_avg']
        expected_std = case['expected_std']

        def statistic1d(x, y):
            return stats.ansari(x, y).statistic

        with np.testing.suppress_warnings() as sup:
            sup.filter(UserWarning, "Ties preclude use of exact statistic")
            res = permutation_test((x, y), statistic1d, n_resamples=np.inf,
                                   alternative='less')
            res2 = permutation_test((x, y), statistic1d, n_resamples=np.inf,
                                    alternative='two-sided')

        assert_allclose(res.statistic, expected_statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected_less, atol=1e-10)
        assert_allclose(res2.pvalue, expected_2sided, atol=1e-10)
        assert_allclose(res2.null_distribution.mean(), expected_avg, rtol=1e-6)
        assert_allclose(res2.null_distribution.std(), expected_std, rtol=1e-6)

        # SAS provides Pr >= |S-Mean|; might as well check against that, too
        S = res.statistic
        mean = res.null_distribution.mean()
        n = len(res.null_distribution)
        Pr_gte_S_mean = np.sum(np.abs(res.null_distribution-mean)
                               >= np.abs(S-mean))/n
        assert_allclose(expected_Pr_gte_S_mean, Pr_gte_S_mean)

    @pytest.mark.slow
    @pytest.mark.parametrize('alternative, expected_pvalue',
                             (('less', 0.9708333333333),
                              ('greater', 0.05138888888889),
                              ('two-sided', 0.1027777777778)))
    def test_against_spearmanr_in_R(self, alternative, expected_pvalue):
        """
        Results above from R cor.test, e.g.

        options(digits=16)
        x <- c(1.76405235, 0.40015721, 0.97873798,
               2.2408932, 1.86755799, -0.97727788)
        y <- c(2.71414076, 0.2488, 0.87551913,
               2.6514917, 2.01160156, 0.47699563)
        cor.test(x, y, method = "spearm", alternative = "t")
        """
        # data comes from
        # np.random.seed(0)
        # x = stats.norm.rvs(size=6)
        # y = x + stats.norm.rvs(size=6)
        x = [1.76405235, 0.40015721, 0.97873798,
             2.2408932, 1.86755799, -0.97727788]
        y = [2.71414076, 0.2488, 0.87551913,
             2.6514917, 2.01160156, 0.47699563]
        expected_statistic = 0.7714285714285715

        def statistic1d(x):
            return stats.spearmanr(x, y).statistic

        res = permutation_test((x,), statistic1d, permutation_type='pairings',
                               n_resamples=np.inf, alternative=alternative)

        assert_allclose(res.statistic, expected_statistic, rtol=self.rtol)
        assert_allclose(res.pvalue, expected_pvalue, atol=1e-13)

    @pytest.mark.parametrize("batch", (-1, 0))
    def test_batch_generator_iv(self, batch):
        with pytest.raises(ValueError, match="`batch` must be positive."):
            list(_resampling._batch_generator([1, 2, 3], batch))

    batch_generator_cases = [(range(0), 3, []),
                             (range(6), 3, [[0, 1, 2], [3, 4, 5]]),
                             (range(8), 3, [[0, 1, 2], [3, 4, 5], [6, 7]])]

    @pytest.mark.parametrize("iterable, batch, expected",
                             batch_generator_cases)
    def test_batch_generator(self, iterable, batch, expected):
        got = list(_resampling._batch_generator(iterable, batch))
        assert got == expected

    @pytest.mark.fail_slow(2)
    def test_finite_precision_statistic(self):
        # Some statistics return numerically distinct values when the values
        # should be equal in theory. Test that `permutation_test` accounts
        # for this in some way.
        x = [1, 2, 4, 3]
        y = [2, 4, 6, 8]

        def statistic(x, y):
            return stats.pearsonr(x, y)[0]

        res = stats.permutation_test((x, y), statistic, vectorized=False,
                                     permutation_type='pairings')
        r, pvalue, null = res.statistic, res.pvalue, res.null_distribution

        correct_p = 2 * np.sum(null >= r - 1e-14) / len(null)
        assert pvalue == correct_p == 1/3
        # Compare against other exact correlation tests using R corr.test
        # options(digits=16)
        # x = c(1, 2, 4, 3)
        # y = c(2, 4, 6, 8)
        # cor.test(x, y, alternative = "t", method = "spearman")  # 0.333333333
        # cor.test(x, y, alternative = "t", method = "kendall")  # 0.333333333


def test_all_partitions_concatenated():
    # make sure that _all_paritions_concatenated produces the correct number
    # of partitions of the data into samples of the given sizes and that
    # all are unique
    n = np.array([3, 2, 4], dtype=int)
    nc = np.cumsum(n)

    all_partitions = set()
    counter = 0
    for partition_concatenated in _resampling._all_partitions_concatenated(n):
        counter += 1
        partitioning = np.split(partition_concatenated, nc[:-1])
        all_partitions.add(tuple([frozenset(i) for i in partitioning]))

    expected = np.prod([special.binom(sum(n[i:]), sum(n[i+1:]))
                        for i in range(len(n)-1)])

    assert_equal(counter, expected)
    assert_equal(len(all_partitions), expected)


@pytest.mark.parametrize('fun_name',
                         ['bootstrap', 'permutation_test', 'monte_carlo_test'])
def test_parameter_vectorized(fun_name):
    # Check that parameter `vectorized` is working as desired for all
    # resampling functions. Results don't matter; just don't fail asserts.
    rng = np.random.default_rng(75245098234592)
    sample = rng.random(size=10)

    def rvs(size):  # needed by `monte_carlo_test`
        return stats.norm.rvs(size=size, random_state=rng)

    fun_options = {'bootstrap': {'data': (sample,), 'rng': rng,
                                 'method': 'percentile'},
                   'permutation_test': {'data': (sample,), 'rng': rng,
                                        'permutation_type': 'samples'},
                   'monte_carlo_test': {'sample': sample, 'rvs': rvs}}
    common_options = {'n_resamples': 100}

    fun = getattr(stats, fun_name)
    options = fun_options[fun_name]
    options.update(common_options)

    def statistic(x, axis):
        assert x.ndim > 1 or np.array_equal(x, sample)
        return np.mean(x, axis=axis)
    fun(statistic=statistic, vectorized=None, **options)
    fun(statistic=statistic, vectorized=True, **options)

    def statistic(x):
        assert x.ndim == 1
        return np.mean(x)
    fun(statistic=statistic, vectorized=None, **options)
    fun(statistic=statistic, vectorized=False, **options)


class TestMonteCarloMethod:
    def test_rvs_and_random_state(self):
        message = "Use of `rvs` and `rng` are mutually exclusive."
        rng = np.random.default_rng(34982345)
        with pytest.raises(ValueError, match=message):
            stats.MonteCarloMethod(rvs=rng.random, rng=rng)