File size: 20,139 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# Compute the two-sided one-sample Kolmogorov-Smirnov Prob(Dn <= d) where:
# D_n = sup_x{|F_n(x) - F(x)|},
# F_n(x) is the empirical CDF for a sample of size n {x_i: i=1,...,n},
# F(x) is the CDF of a probability distribution.
#
# Exact methods:
# Prob(D_n >= d) can be computed via a matrix algorithm of Durbin[1]
# or a recursion algorithm due to Pomeranz[2].
# Marsaglia, Tsang & Wang[3] gave a computation-efficient way to perform
# the Durbin algorithm.
# D_n >= d <==> D_n+ >= d or D_n- >= d (the one-sided K-S statistics), hence
# Prob(D_n >= d) = 2*Prob(D_n+ >= d) - Prob(D_n+ >= d and D_n- >= d).
# For d > 0.5, the latter intersection probability is 0.
#
# Approximate methods:
# For d close to 0.5, ignoring that intersection term may still give a
# reasonable approximation.
# Li-Chien[4] and Korolyuk[5] gave an asymptotic formula extending
# Kolmogorov's initial asymptotic, suitable for large d. (See
# scipy.special.kolmogorov for that asymptotic)
# Pelz-Good[6] used the functional equation for Jacobi theta functions to
# transform the Li-Chien/Korolyuk formula produce a computational formula
# suitable for small d.
#
# Simard and L'Ecuyer[7] provided an algorithm to decide when to use each of
# the above approaches and it is that which is used here.
#
# Other approaches:
# Carvalho[8] optimizes Durbin's matrix algorithm for large values of d.
# Moscovich and Nadler[9] use FFTs to compute the convolutions.
# References:
# [1] Durbin J (1968).
# "The Probability that the Sample Distribution Function Lies Between Two
# Parallel Straight Lines."
# Annals of Mathematical Statistics, 39, 398-411.
# [2] Pomeranz J (1974).
# "Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for
# Small Samples (Algorithm 487)."
# Communications of the ACM, 17(12), 703-704.
# [3] Marsaglia G, Tsang WW, Wang J (2003).
# "Evaluating Kolmogorov's Distribution."
# Journal of Statistical Software, 8(18), 1-4.
# [4] LI-CHIEN, C. (1956).
# "On the exact distribution of the statistics of A. N. Kolmogorov and
# their asymptotic expansion."
# Acta Matematica Sinica, 6, 55-81.
# [5] KOROLYUK, V. S. (1960).
# "Asymptotic analysis of the distribution of the maximum deviation in
# the Bernoulli scheme."
# Theor. Probability Appl., 4, 339-366.
# [6] Pelz W, Good IJ (1976).
# "Approximating the Lower Tail-areas of the Kolmogorov-Smirnov One-sample
# Statistic."
# Journal of the Royal Statistical Society, Series B, 38(2), 152-156.
# [7] Simard, R., L'Ecuyer, P. (2011)
# "Computing the Two-Sided Kolmogorov-Smirnov Distribution",
# Journal of Statistical Software, Vol 39, 11, 1-18.
# [8] Carvalho, Luis (2015)
# "An Improved Evaluation of Kolmogorov's Distribution"
# Journal of Statistical Software, Code Snippets; Vol 65(3), 1-8.
# [9] Amit Moscovich, Boaz Nadler (2017)
# "Fast calculation of boundary crossing probabilities for Poisson
# processes",
# Statistics & Probability Letters, Vol 123, 177-182.
import numpy as np
import scipy.special
import scipy.special._ufuncs as scu
from scipy._lib._finite_differences import _derivative
_E128 = 128
_EP128 = np.ldexp(np.longdouble(1), _E128)
_EM128 = np.ldexp(np.longdouble(1), -_E128)
_SQRT2PI = np.sqrt(2 * np.pi)
_LOG_2PI = np.log(2 * np.pi)
_MIN_LOG = -708
_SQRT3 = np.sqrt(3)
_PI_SQUARED = np.pi ** 2
_PI_FOUR = np.pi ** 4
_PI_SIX = np.pi ** 6
# [Lifted from _loggamma.pxd.] If B_m are the Bernoulli numbers,
# then Stirling coeffs are B_{2j}/(2j)/(2j-1) for j=8,...1.
_STIRLING_COEFFS = [-2.955065359477124183e-2, 6.4102564102564102564e-3,
-1.9175269175269175269e-3, 8.4175084175084175084e-4,
-5.952380952380952381e-4, 7.9365079365079365079e-4,
-2.7777777777777777778e-3, 8.3333333333333333333e-2]
def _log_nfactorial_div_n_pow_n(n):
# Computes n! / n**n
# = (n-1)! / n**(n-1)
# Uses Stirling's approximation, but removes n*log(n) up-front to
# avoid subtractive cancellation.
# = log(n)/2 - n + log(sqrt(2pi)) + sum B_{2j}/(2j)/(2j-1)/n**(2j-1)
rn = 1.0/n
return np.log(n)/2 - n + _LOG_2PI/2 + rn * np.polyval(_STIRLING_COEFFS, rn/n)
def _clip_prob(p):
"""clips a probability to range 0<=p<=1."""
return np.clip(p, 0.0, 1.0)
def _select_and_clip_prob(cdfprob, sfprob, cdf=True):
"""Selects either the CDF or SF, and then clips to range 0<=p<=1."""
p = np.where(cdf, cdfprob, sfprob)
return _clip_prob(p)
def _kolmogn_DMTW(n, d, cdf=True):
r"""Computes the Kolmogorov CDF: Pr(D_n <= d) using the MTW approach to
the Durbin matrix algorithm.
Durbin (1968); Marsaglia, Tsang, Wang (2003). [1], [3].
"""
# Write d = (k-h)/n, where k is positive integer and 0 <= h < 1
# Generate initial matrix H of size m*m where m=(2k-1)
# Compute k-th row of (n!/n^n) * H^n, scaling intermediate results.
# Requires memory O(m^2) and computation O(m^2 log(n)).
# Most suitable for small m.
if d >= 1.0:
return _select_and_clip_prob(1.0, 0.0, cdf)
nd = n * d
if nd <= 0.5:
return _select_and_clip_prob(0.0, 1.0, cdf)
k = int(np.ceil(nd))
h = k - nd
m = 2 * k - 1
H = np.zeros([m, m])
# Initialize: v is first column (and last row) of H
# v[j] = (1-h^(j+1)/(j+1)! (except for v[-1])
# w[j] = 1/(j)!
# q = k-th row of H (actually i!/n^i*H^i)
intm = np.arange(1, m + 1)
v = 1.0 - h ** intm
w = np.empty(m)
fac = 1.0
for j in intm:
w[j - 1] = fac
fac /= j # This might underflow. Isn't a problem.
v[j - 1] *= fac
tt = max(2 * h - 1.0, 0)**m - 2*h**m
v[-1] = (1.0 + tt) * fac
for i in range(1, m):
H[i - 1:, i] = w[:m - i + 1]
H[:, 0] = v
H[-1, :] = np.flip(v, axis=0)
Hpwr = np.eye(np.shape(H)[0]) # Holds intermediate powers of H
nn = n
expnt = 0 # Scaling of Hpwr
Hexpnt = 0 # Scaling of H
while nn > 0:
if nn % 2:
Hpwr = np.matmul(Hpwr, H)
expnt += Hexpnt
H = np.matmul(H, H)
Hexpnt *= 2
# Scale as needed.
if np.abs(H[k - 1, k - 1]) > _EP128:
H /= _EP128
Hexpnt += _E128
nn = nn // 2
p = Hpwr[k - 1, k - 1]
# Multiply by n!/n^n
for i in range(1, n + 1):
p = i * p / n
if np.abs(p) < _EM128:
p *= _EP128
expnt -= _E128
# unscale
if expnt != 0:
p = np.ldexp(p, expnt)
return _select_and_clip_prob(p, 1.0-p, cdf)
def _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf):
"""Compute the endpoints of the interval for row i."""
if i == 0:
j1, j2 = -ll - ceilf - 1, ll + ceilf - 1
else:
# i + 1 = 2*ip1div2 + ip1mod2
ip1div2, ip1mod2 = divmod(i + 1, 2)
if ip1mod2 == 0: # i is odd
if ip1div2 == n + 1:
j1, j2 = n - ll - ceilf - 1, n + ll + ceilf - 1
else:
j1, j2 = ip1div2 - 1 - ll - roundf - 1, ip1div2 + ll - 1 + ceilf - 1
else:
j1, j2 = ip1div2 - 1 - ll - 1, ip1div2 + ll + roundf - 1
return max(j1 + 2, 0), min(j2, n)
def _kolmogn_Pomeranz(n, x, cdf=True):
r"""Computes Pr(D_n <= d) using the Pomeranz recursion algorithm.
Pomeranz (1974) [2]
"""
# V is n*(2n+2) matrix.
# Each row is convolution of the previous row and probabilities from a
# Poisson distribution.
# Desired CDF probability is n! V[n-1, 2n+1] (final entry in final row).
# Only two rows are needed at any given stage:
# - Call them V0 and V1.
# - Swap each iteration
# Only a few (contiguous) entries in each row can be non-zero.
# - Keep track of start and end (j1 and j2 below)
# - V0s and V1s track the start in the two rows
# Scale intermediate results as needed.
# Only a few different Poisson distributions can occur
t = n * x
ll = int(np.floor(t))
f = 1.0 * (t - ll) # fractional part of t
g = min(f, 1.0 - f)
ceilf = (1 if f > 0 else 0)
roundf = (1 if f > 0.5 else 0)
npwrs = 2 * (ll + 1) # Maximum number of powers needed in convolutions
gpower = np.empty(npwrs) # gpower = (g/n)^m/m!
twogpower = np.empty(npwrs) # twogpower = (2g/n)^m/m!
onem2gpower = np.empty(npwrs) # onem2gpower = ((1-2g)/n)^m/m!
# gpower etc are *almost* Poisson probs, just missing normalizing factor.
gpower[0] = 1.0
twogpower[0] = 1.0
onem2gpower[0] = 1.0
expnt = 0
g_over_n, two_g_over_n, one_minus_two_g_over_n = g/n, 2*g/n, (1 - 2*g)/n
for m in range(1, npwrs):
gpower[m] = gpower[m - 1] * g_over_n / m
twogpower[m] = twogpower[m - 1] * two_g_over_n / m
onem2gpower[m] = onem2gpower[m - 1] * one_minus_two_g_over_n / m
V0 = np.zeros([npwrs])
V1 = np.zeros([npwrs])
V1[0] = 1 # first row
V0s, V1s = 0, 0 # start indices of the two rows
j1, j2 = _pomeranz_compute_j1j2(0, n, ll, ceilf, roundf)
for i in range(1, 2 * n + 2):
# Preserve j1, V1, V1s, V0s from last iteration
k1 = j1
V0, V1 = V1, V0
V0s, V1s = V1s, V0s
V1.fill(0.0)
j1, j2 = _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf)
if i == 1 or i == 2 * n + 1:
pwrs = gpower
else:
pwrs = (twogpower if i % 2 else onem2gpower)
ln2 = j2 - k1 + 1
if ln2 > 0:
conv = np.convolve(V0[k1 - V0s:k1 - V0s + ln2], pwrs[:ln2])
conv_start = j1 - k1 # First index to use from conv
conv_len = j2 - j1 + 1 # Number of entries to use from conv
V1[:conv_len] = conv[conv_start:conv_start + conv_len]
# Scale to avoid underflow.
if 0 < np.max(V1) < _EM128:
V1 *= _EP128
expnt -= _E128
V1s = V0s + j1 - k1
# multiply by n!
ans = V1[n - V1s]
for m in range(1, n + 1):
if np.abs(ans) > _EP128:
ans *= _EM128
expnt += _E128
ans *= m
# Undo any intermediate scaling
if expnt != 0:
ans = np.ldexp(ans, expnt)
ans = _select_and_clip_prob(ans, 1.0 - ans, cdf)
return ans
def _kolmogn_PelzGood(n, x, cdf=True):
"""Computes the Pelz-Good approximation to Prob(Dn <= x) with 0<=x<=1.
Start with Li-Chien, Korolyuk approximation:
Prob(Dn <= x) ~ K0(z) + K1(z)/sqrt(n) + K2(z)/n + K3(z)/n**1.5
where z = x*sqrt(n).
Transform each K_(z) using Jacobi theta functions into a form suitable
for small z.
Pelz-Good (1976). [6]
"""
if x <= 0.0:
return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
if x >= 1.0:
return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
z = np.sqrt(n) * x
zsquared, zthree, zfour, zsix = z**2, z**3, z**4, z**6
qlog = -_PI_SQUARED / 8 / zsquared
if qlog < _MIN_LOG: # z ~ 0.041743441416853426
return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
q = np.exp(qlog)
# Coefficients of terms in the sums for K1, K2 and K3
k1a = -zsquared
k1b = _PI_SQUARED / 4
k2a = 6 * zsix + 2 * zfour
k2b = (2 * zfour - 5 * zsquared) * _PI_SQUARED / 4
k2c = _PI_FOUR * (1 - 2 * zsquared) / 16
k3d = _PI_SIX * (5 - 30 * zsquared) / 64
k3c = _PI_FOUR * (-60 * zsquared + 212 * zfour) / 16
k3b = _PI_SQUARED * (135 * zfour - 96 * zsix) / 4
k3a = -30 * zsix - 90 * z**8
K0to3 = np.zeros(4)
# Use a Horner scheme to evaluate sum c_i q^(i^2)
# Reduces to a sum over odd integers.
maxk = int(np.ceil(16 * z / np.pi))
for k in range(maxk, 0, -1):
m = 2 * k - 1
msquared, mfour, msix = m**2, m**4, m**6
qpower = np.power(q, 8 * k)
coeffs = np.array([1.0,
k1a + k1b*msquared,
k2a + k2b*msquared + k2c*mfour,
k3a + k3b*msquared + k3c*mfour + k3d*msix])
K0to3 *= qpower
K0to3 += coeffs
K0to3 *= q
K0to3 *= _SQRT2PI
# z**10 > 0 as z > 0.04
K0to3 /= np.array([z, 6 * zfour, 72 * z**7, 6480 * z**10])
# Now do the other sum over the other terms, all integers k
# K_2: (pi^2 k^2) q^(k^2),
# K_3: (3pi^2 k^2 z^2 - pi^4 k^4)*q^(k^2)
# Don't expect much subtractive cancellation so use direct calculation
q = np.exp(-_PI_SQUARED / 2 / zsquared)
ks = np.arange(maxk, 0, -1)
ksquared = ks ** 2
sqrt3z = _SQRT3 * z
kspi = np.pi * ks
qpwers = q ** ksquared
k2extra = np.sum(ksquared * qpwers)
k2extra *= _PI_SQUARED * _SQRT2PI/(-36 * zthree)
K0to3[2] += k2extra
k3extra = np.sum((sqrt3z + kspi) * (sqrt3z - kspi) * ksquared * qpwers)
k3extra *= _PI_SQUARED * _SQRT2PI/(216 * zsix)
K0to3[3] += k3extra
powers_of_n = np.power(n * 1.0, np.arange(len(K0to3)) / 2.0)
K0to3 /= powers_of_n
if not cdf:
K0to3 *= -1
K0to3[0] += 1
Ksum = sum(K0to3)
return Ksum
def _kolmogn(n, x, cdf=True):
"""Computes the CDF(or SF) for the two-sided Kolmogorov-Smirnov statistic.
x must be of type float, n of type integer.
Simard & L'Ecuyer (2011) [7].
"""
if np.isnan(n):
return n # Keep the same type of nan
if int(n) != n or n <= 0:
return np.nan
if x >= 1.0:
return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
if x <= 0.0:
return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
t = n * x
if t <= 1.0: # Ruben-Gambino: 1/2n <= x <= 1/n
if t <= 0.5:
return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
if n <= 140:
prob = np.prod(np.arange(1, n+1) * (1.0/n) * (2*t - 1))
else:
prob = np.exp(_log_nfactorial_div_n_pow_n(n) + n * np.log(2*t-1))
return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
if t >= n - 1: # Ruben-Gambino
prob = 2 * (1.0 - x)**n
return _select_and_clip_prob(1 - prob, prob, cdf=cdf)
if x >= 0.5: # Exact: 2 * smirnov
prob = 2 * scipy.special.smirnov(n, x)
return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
nxsquared = t * x
if n <= 140:
if nxsquared <= 0.754693:
prob = _kolmogn_DMTW(n, x, cdf=True)
return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
if nxsquared <= 4:
prob = _kolmogn_Pomeranz(n, x, cdf=True)
return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
# Now use Miller approximation of 2*smirnov
prob = 2 * scipy.special.smirnov(n, x)
return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
# Split CDF and SF as they have different cutoffs on nxsquared.
if not cdf:
if nxsquared >= 370.0:
return 0.0
if nxsquared >= 2.2:
prob = 2 * scipy.special.smirnov(n, x)
return _clip_prob(prob)
# Fall through and compute the SF as 1.0-CDF
if nxsquared >= 18.0:
cdfprob = 1.0
elif n <= 100000 and n * x**1.5 <= 1.4:
cdfprob = _kolmogn_DMTW(n, x, cdf=True)
else:
cdfprob = _kolmogn_PelzGood(n, x, cdf=True)
return _select_and_clip_prob(cdfprob, 1.0 - cdfprob, cdf=cdf)
def _kolmogn_p(n, x):
"""Computes the PDF for the two-sided Kolmogorov-Smirnov statistic.
x must be of type float, n of type integer.
"""
if np.isnan(n):
return n # Keep the same type of nan
if int(n) != n or n <= 0:
return np.nan
if x >= 1.0 or x <= 0:
return 0
t = n * x
if t <= 1.0:
# Ruben-Gambino: n!/n^n * (2t-1)^n -> 2 n!/n^n * n^2 * (2t-1)^(n-1)
if t <= 0.5:
return 0.0
if n <= 140:
prd = np.prod(np.arange(1, n) * (1.0 / n) * (2 * t - 1))
else:
prd = np.exp(_log_nfactorial_div_n_pow_n(n) + (n-1) * np.log(2 * t - 1))
return prd * 2 * n**2
if t >= n - 1:
# Ruben-Gambino : 1-2(1-x)**n -> 2n*(1-x)**(n-1)
return 2 * (1.0 - x) ** (n-1) * n
if x >= 0.5:
return 2 * scipy.stats.ksone.pdf(x, n)
# Just take a small delta.
# Ideally x +/- delta would stay within [i/n, (i+1)/n] for some integer a.
# as the CDF is a piecewise degree n polynomial.
# It has knots at 1/n, 2/n, ... (n-1)/n
# and is not a C-infinity function at the knots
delta = x / 2.0**16
delta = min(delta, x - 1.0/n)
delta = min(delta, 0.5 - x)
def _kk(_x):
return kolmogn(n, _x)
return _derivative(_kk, x, dx=delta, order=5)
def _kolmogni(n, p, q):
"""Computes the PPF/ISF of kolmogn.
n of type integer, n>= 1
p is the CDF, q the SF, p+q=1
"""
if np.isnan(n):
return n # Keep the same type of nan
if int(n) != n or n <= 0:
return np.nan
if p <= 0:
return 1.0/n
if q <= 0:
return 1.0
delta = np.exp((np.log(p) - scipy.special.loggamma(n+1))/n)
if delta <= 1.0/n:
return (delta + 1.0 / n) / 2
x = -np.expm1(np.log(q/2.0)/n)
if x >= 1 - 1.0/n:
return x
x1 = scu._kolmogci(p)/np.sqrt(n)
x1 = min(x1, 1.0 - 1.0/n)
def _f(x):
return _kolmogn(n, x) - p
return scipy.optimize.brentq(_f, 1.0/n, x1, xtol=1e-14)
def kolmogn(n, x, cdf=True):
"""Computes the CDF for the two-sided Kolmogorov-Smirnov distribution.
The two-sided Kolmogorov-Smirnov distribution has as its CDF Pr(D_n <= x),
for a sample of size n drawn from a distribution with CDF F(t), where
:math:`D_n &= sup_t |F_n(t) - F(t)|`, and
:math:`F_n(t)` is the Empirical Cumulative Distribution Function of the sample.
Parameters
----------
n : integer, array_like
the number of samples
x : float, array_like
The K-S statistic, float between 0 and 1
cdf : bool, optional
whether to compute the CDF(default=true) or the SF.
Returns
-------
cdf : ndarray
CDF (or SF it cdf is False) at the specified locations.
The return value has shape the result of numpy broadcasting n and x.
"""
it = np.nditer([n, x, cdf, None], flags=['zerosize_ok'],
op_dtypes=[None, np.float64, np.bool_, np.float64])
for _n, _x, _cdf, z in it:
if np.isnan(_n):
z[...] = _n
continue
if int(_n) != _n:
raise ValueError(f'n is not integral: {_n}')
z[...] = _kolmogn(int(_n), _x, cdf=_cdf)
result = it.operands[-1]
return result
def kolmognp(n, x):
"""Computes the PDF for the two-sided Kolmogorov-Smirnov distribution.
Parameters
----------
n : integer, array_like
the number of samples
x : float, array_like
The K-S statistic, float between 0 and 1
Returns
-------
pdf : ndarray
The PDF at the specified locations
The return value has shape the result of numpy broadcasting n and x.
"""
it = np.nditer([n, x, None])
for _n, _x, z in it:
if np.isnan(_n):
z[...] = _n
continue
if int(_n) != _n:
raise ValueError(f'n is not integral: {_n}')
z[...] = _kolmogn_p(int(_n), _x)
result = it.operands[-1]
return result
def kolmogni(n, q, cdf=True):
"""Computes the PPF(or ISF) for the two-sided Kolmogorov-Smirnov distribution.
Parameters
----------
n : integer, array_like
the number of samples
q : float, array_like
Probabilities, float between 0 and 1
cdf : bool, optional
whether to compute the PPF(default=true) or the ISF.
Returns
-------
ppf : ndarray
PPF (or ISF if cdf is False) at the specified locations
The return value has shape the result of numpy broadcasting n and x.
"""
it = np.nditer([n, q, cdf, None])
for _n, _q, _cdf, z in it:
if np.isnan(_n):
z[...] = _n
continue
if int(_n) != _n:
raise ValueError(f'n is not integral: {_n}')
_pcdf, _psf = (_q, 1-_q) if _cdf else (1-_q, _q)
z[...] = _kolmogni(int(_n), _pcdf, _psf)
result = it.operands[-1]
return result
|