File size: 79,170 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 |
from collections import namedtuple
from dataclasses import dataclass
from math import comb
import numpy as np
import warnings
from itertools import combinations
import scipy.stats
from scipy.optimize import shgo
from . import distributions
from ._common import ConfidenceInterval
from ._continuous_distns import norm
from scipy.special import gamma, kv, gammaln
from scipy.fft import ifft
from ._stats_pythran import _a_ij_Aij_Dij2
from ._stats_pythran import (
_concordant_pairs as _P, _discordant_pairs as _Q
)
from ._axis_nan_policy import _axis_nan_policy_factory
from scipy.stats import _stats_py
__all__ = ['epps_singleton_2samp', 'cramervonmises', 'somersd',
'barnard_exact', 'boschloo_exact', 'cramervonmises_2samp',
'tukey_hsd', 'poisson_means_test']
Epps_Singleton_2sampResult = namedtuple('Epps_Singleton_2sampResult',
('statistic', 'pvalue'))
@_axis_nan_policy_factory(Epps_Singleton_2sampResult, n_samples=2, too_small=4)
def epps_singleton_2samp(x, y, t=(0.4, 0.8)):
"""Compute the Epps-Singleton (ES) test statistic.
Test the null hypothesis that two samples have the same underlying
probability distribution.
Parameters
----------
x, y : array-like
The two samples of observations to be tested. Input must not have more
than one dimension. Samples can have different lengths, but both
must have at least five observations.
t : array-like, optional
The points (t1, ..., tn) where the empirical characteristic function is
to be evaluated. It should be positive distinct numbers. The default
value (0.4, 0.8) is proposed in [1]_. Input must not have more than
one dimension.
Returns
-------
statistic : float
The test statistic.
pvalue : float
The associated p-value based on the asymptotic chi2-distribution.
See Also
--------
ks_2samp, anderson_ksamp
Notes
-----
Testing whether two samples are generated by the same underlying
distribution is a classical question in statistics. A widely used test is
the Kolmogorov-Smirnov (KS) test which relies on the empirical
distribution function. Epps and Singleton introduce a test based on the
empirical characteristic function in [1]_.
One advantage of the ES test compared to the KS test is that is does
not assume a continuous distribution. In [1]_, the authors conclude
that the test also has a higher power than the KS test in many
examples. They recommend the use of the ES test for discrete samples as
well as continuous samples with at least 25 observations each, whereas
`anderson_ksamp` is recommended for smaller sample sizes in the
continuous case.
The p-value is computed from the asymptotic distribution of the test
statistic which follows a `chi2` distribution. If the sample size of both
`x` and `y` is below 25, the small sample correction proposed in [1]_ is
applied to the test statistic.
The default values of `t` are determined in [1]_ by considering
various distributions and finding good values that lead to a high power
of the test in general. Table III in [1]_ gives the optimal values for
the distributions tested in that study. The values of `t` are scaled by
the semi-interquartile range in the implementation, see [1]_.
References
----------
.. [1] T. W. Epps and K. J. Singleton, "An omnibus test for the two-sample
problem using the empirical characteristic function", Journal of
Statistical Computation and Simulation 26, p. 177--203, 1986.
.. [2] S. J. Goerg and J. Kaiser, "Nonparametric testing of distributions
- the Epps-Singleton two-sample test using the empirical characteristic
function", The Stata Journal 9(3), p. 454--465, 2009.
"""
# x and y are converted to arrays by the decorator
t = np.asarray(t)
# check if x and y are valid inputs
nx, ny = len(x), len(y)
if (nx < 5) or (ny < 5):
raise ValueError('x and y should have at least 5 elements, but len(x) '
f'= {nx} and len(y) = {ny}.')
if not np.isfinite(x).all():
raise ValueError('x must not contain nonfinite values.')
if not np.isfinite(y).all():
raise ValueError('y must not contain nonfinite values.')
n = nx + ny
# check if t is valid
if t.ndim > 1:
raise ValueError(f't must be 1d, but t.ndim equals {t.ndim}.')
if np.less_equal(t, 0).any():
raise ValueError('t must contain positive elements only.')
# rescale t with semi-iqr as proposed in [1]; import iqr here to avoid
# circular import
from scipy.stats import iqr
sigma = iqr(np.hstack((x, y))) / 2
ts = np.reshape(t, (-1, 1)) / sigma
# covariance estimation of ES test
gx = np.vstack((np.cos(ts*x), np.sin(ts*x))).T # shape = (nx, 2*len(t))
gy = np.vstack((np.cos(ts*y), np.sin(ts*y))).T
cov_x = np.cov(gx.T, bias=True) # the test uses biased cov-estimate
cov_y = np.cov(gy.T, bias=True)
est_cov = (n/nx)*cov_x + (n/ny)*cov_y
est_cov_inv = np.linalg.pinv(est_cov)
r = np.linalg.matrix_rank(est_cov_inv)
if r < 2*len(t):
warnings.warn('Estimated covariance matrix does not have full rank. '
'This indicates a bad choice of the input t and the '
'test might not be consistent.', # see p. 183 in [1]_
stacklevel=2)
# compute test statistic w distributed asympt. as chisquare with df=r
g_diff = np.mean(gx, axis=0) - np.mean(gy, axis=0)
w = n*np.dot(g_diff.T, np.dot(est_cov_inv, g_diff))
# apply small-sample correction
if (max(nx, ny) < 25):
corr = 1.0/(1.0 + n**(-0.45) + 10.1*(nx**(-1.7) + ny**(-1.7)))
w = corr * w
chi2 = _stats_py._SimpleChi2(r)
p = _stats_py._get_pvalue(w, chi2, alternative='greater', symmetric=False, xp=np)
return Epps_Singleton_2sampResult(w, p)
def poisson_means_test(k1, n1, k2, n2, *, diff=0, alternative='two-sided'):
r"""
Performs the Poisson means test, AKA the "E-test".
This is a test of the null hypothesis that the difference between means of
two Poisson distributions is `diff`. The samples are provided as the
number of events `k1` and `k2` observed within measurement intervals
(e.g. of time, space, number of observations) of sizes `n1` and `n2`.
Parameters
----------
k1 : int
Number of events observed from distribution 1.
n1: float
Size of sample from distribution 1.
k2 : int
Number of events observed from distribution 2.
n2 : float
Size of sample from distribution 2.
diff : float, default=0
The hypothesized difference in means between the distributions
underlying the samples.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the difference between distribution means is not
equal to `diff`
* 'less': the difference between distribution means is less than
`diff`
* 'greater': the difference between distribution means is greater
than `diff`
Returns
-------
statistic : float
The test statistic (see [1]_ equation 3.3).
pvalue : float
The probability of achieving such an extreme value of the test
statistic under the null hypothesis.
Notes
-----
Let:
.. math:: X_1 \sim \mbox{Poisson}(\mathtt{n1}\lambda_1)
be a random variable independent of
.. math:: X_2 \sim \mbox{Poisson}(\mathtt{n2}\lambda_2)
and let ``k1`` and ``k2`` be the observed values of :math:`X_1`
and :math:`X_2`, respectively. Then `poisson_means_test` uses the number
of observed events ``k1`` and ``k2`` from samples of size ``n1`` and
``n2``, respectively, to test the null hypothesis that
.. math::
H_0: \lambda_1 - \lambda_2 = \mathtt{diff}
A benefit of the E-test is that it has good power for small sample sizes,
which can reduce sampling costs [1]_. It has been evaluated and determined
to be more powerful than the comparable C-test, sometimes referred to as
the Poisson exact test.
References
----------
.. [1] Krishnamoorthy, K., & Thomson, J. (2004). A more powerful test for
comparing two Poisson means. Journal of Statistical Planning and
Inference, 119(1), 23-35.
.. [2] Przyborowski, J., & Wilenski, H. (1940). Homogeneity of results in
testing samples from Poisson series: With an application to testing
clover seed for dodder. Biometrika, 31(3/4), 313-323.
Examples
--------
Suppose that a gardener wishes to test the number of dodder (weed) seeds
in a sack of clover seeds that they buy from a seed company. It has
previously been established that the number of dodder seeds in clover
follows the Poisson distribution.
A 100 gram sample is drawn from the sack before being shipped to the
gardener. The sample is analyzed, and it is found to contain no dodder
seeds; that is, `k1` is 0. However, upon arrival, the gardener draws
another 100 gram sample from the sack. This time, three dodder seeds are
found in the sample; that is, `k2` is 3. The gardener would like to
know if the difference is significant and not due to chance. The
null hypothesis is that the difference between the two samples is merely
due to chance, or that :math:`\lambda_1 - \lambda_2 = \mathtt{diff}`
where :math:`\mathtt{diff} = 0`. The alternative hypothesis is that the
difference is not due to chance, or :math:`\lambda_1 - \lambda_2 \ne 0`.
The gardener selects a significance level of 5% to reject the null
hypothesis in favor of the alternative [2]_.
>>> import scipy.stats as stats
>>> res = stats.poisson_means_test(0, 100, 3, 100)
>>> res.statistic, res.pvalue
(-1.7320508075688772, 0.08837900929018157)
The p-value is .088, indicating a near 9% chance of observing a value of
the test statistic under the null hypothesis. This exceeds 5%, so the
gardener does not reject the null hypothesis as the difference cannot be
regarded as significant at this level.
"""
_poisson_means_test_iv(k1, n1, k2, n2, diff, alternative)
# "for a given k_1 and k_2, an estimate of \lambda_2 is given by" [1] (3.4)
lmbd_hat2 = ((k1 + k2) / (n1 + n2) - diff * n1 / (n1 + n2))
# "\hat{\lambda_{2k}} may be less than or equal to zero ... and in this
# case the null hypothesis cannot be rejected ... [and] it is not necessary
# to compute the p-value". [1] page 26 below eq. (3.6).
if lmbd_hat2 <= 0:
return _stats_py.SignificanceResult(0, 1)
# The unbiased variance estimate [1] (3.2)
var = k1 / (n1 ** 2) + k2 / (n2 ** 2)
# The _observed_ pivot statistic from the input. It follows the
# unnumbered equation following equation (3.3) This is used later in
# comparison with the computed pivot statistics in an indicator function.
t_k1k2 = (k1 / n1 - k2 / n2 - diff) / np.sqrt(var)
# Equation (3.5) of [1] is lengthy, so it is broken into several parts,
# beginning here. Note that the probability mass function of poisson is
# exp^(-\mu)*\mu^k/k!, so and this is called with shape \mu, here noted
# here as nlmbd_hat*. The strategy for evaluating the double summation in
# (3.5) is to create two arrays of the values of the two products inside
# the summation and then broadcast them together into a matrix, and then
# sum across the entire matrix.
# Compute constants (as seen in the first and second separated products in
# (3.5).). (This is the shape (\mu) parameter of the poisson distribution.)
nlmbd_hat1 = n1 * (lmbd_hat2 + diff)
nlmbd_hat2 = n2 * lmbd_hat2
# Determine summation bounds for tail ends of distribution rather than
# summing to infinity. `x1*` is for the outer sum and `x2*` is the inner
# sum.
x1_lb, x1_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat1)
x2_lb, x2_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat2)
# Construct arrays to function as the x_1 and x_2 counters on the summation
# in (3.5). `x1` is in columns and `x2` is in rows to allow for
# broadcasting.
x1 = np.arange(x1_lb, x1_ub + 1)
x2 = np.arange(x2_lb, x2_ub + 1)[:, None]
# These are the two products in equation (3.5) with `prob_x1` being the
# first (left side) and `prob_x2` being the second (right side). (To
# make as clear as possible: the 1st contains a "+ d" term, the 2nd does
# not.)
prob_x1 = distributions.poisson.pmf(x1, nlmbd_hat1)
prob_x2 = distributions.poisson.pmf(x2, nlmbd_hat2)
# compute constants for use in the "pivot statistic" per the
# unnumbered equation following (3.3).
lmbd_x1 = x1 / n1
lmbd_x2 = x2 / n2
lmbds_diff = lmbd_x1 - lmbd_x2 - diff
var_x1x2 = lmbd_x1 / n1 + lmbd_x2 / n2
# This is the 'pivot statistic' for use in the indicator of the summation
# (left side of "I[.]").
with np.errstate(invalid='ignore', divide='ignore'):
t_x1x2 = lmbds_diff / np.sqrt(var_x1x2)
# `[indicator]` implements the "I[.] ... the indicator function" per
# the paragraph following equation (3.5).
if alternative == 'two-sided':
indicator = np.abs(t_x1x2) >= np.abs(t_k1k2)
elif alternative == 'less':
indicator = t_x1x2 <= t_k1k2
else:
indicator = t_x1x2 >= t_k1k2
# Multiply all combinations of the products together, exclude terms
# based on the `indicator` and then sum. (3.5)
pvalue = np.sum((prob_x1 * prob_x2)[indicator])
return _stats_py.SignificanceResult(t_k1k2, pvalue)
def _poisson_means_test_iv(k1, n1, k2, n2, diff, alternative):
# """check for valid types and values of input to `poisson_mean_test`."""
if k1 != int(k1) or k2 != int(k2):
raise TypeError('`k1` and `k2` must be integers.')
count_err = '`k1` and `k2` must be greater than or equal to 0.'
if k1 < 0 or k2 < 0:
raise ValueError(count_err)
if n1 <= 0 or n2 <= 0:
raise ValueError('`n1` and `n2` must be greater than 0.')
if diff < 0:
raise ValueError('diff must be greater than or equal to 0.')
alternatives = {'two-sided', 'less', 'greater'}
if alternative.lower() not in alternatives:
raise ValueError(f"Alternative must be one of '{alternatives}'.")
class CramerVonMisesResult:
def __init__(self, statistic, pvalue):
self.statistic = statistic
self.pvalue = pvalue
def __repr__(self):
return (f"{self.__class__.__name__}(statistic={self.statistic}, "
f"pvalue={self.pvalue})")
def _psi1_mod(x):
"""
psi1 is defined in equation 1.10 in Csörgő, S. and Faraway, J. (1996).
This implements a modified version by excluding the term V(x) / 12
(here: _cdf_cvm_inf(x) / 12) to avoid evaluating _cdf_cvm_inf(x)
twice in _cdf_cvm.
Implementation based on MAPLE code of Julian Faraway and R code of the
function pCvM in the package goftest (v1.1.1), permission granted
by Adrian Baddeley. Main difference in the implementation: the code
here keeps adding terms of the series until the terms are small enough.
"""
def _ed2(y):
z = y**2 / 4
b = kv(1/4, z) + kv(3/4, z)
return np.exp(-z) * (y/2)**(3/2) * b / np.sqrt(np.pi)
def _ed3(y):
z = y**2 / 4
c = np.exp(-z) / np.sqrt(np.pi)
return c * (y/2)**(5/2) * (2*kv(1/4, z) + 3*kv(3/4, z) - kv(5/4, z))
def _Ak(k, x):
m = 2*k + 1
sx = 2 * np.sqrt(x)
y1 = x**(3/4)
y2 = x**(5/4)
e1 = m * gamma(k + 1/2) * _ed2((4 * k + 3)/sx) / (9 * y1)
e2 = gamma(k + 1/2) * _ed3((4 * k + 1) / sx) / (72 * y2)
e3 = 2 * (m + 2) * gamma(k + 3/2) * _ed3((4 * k + 5) / sx) / (12 * y2)
e4 = 7 * m * gamma(k + 1/2) * _ed2((4 * k + 1) / sx) / (144 * y1)
e5 = 7 * m * gamma(k + 1/2) * _ed2((4 * k + 5) / sx) / (144 * y1)
return e1 + e2 + e3 + e4 + e5
x = np.asarray(x)
tot = np.zeros_like(x, dtype='float')
cond = np.ones_like(x, dtype='bool')
k = 0
while np.any(cond):
z = -_Ak(k, x[cond]) / (np.pi * gamma(k + 1))
tot[cond] = tot[cond] + z
cond[cond] = np.abs(z) >= 1e-7
k += 1
return tot
def _cdf_cvm_inf(x):
"""
Calculate the cdf of the Cramér-von Mises statistic (infinite sample size).
See equation 1.2 in Csörgő, S. and Faraway, J. (1996).
Implementation based on MAPLE code of Julian Faraway and R code of the
function pCvM in the package goftest (v1.1.1), permission granted
by Adrian Baddeley. Main difference in the implementation: the code
here keeps adding terms of the series until the terms are small enough.
The function is not expected to be accurate for large values of x, say
x > 4, when the cdf is very close to 1.
"""
x = np.asarray(x)
def term(x, k):
# this expression can be found in [2], second line of (1.3)
u = np.exp(gammaln(k + 0.5) - gammaln(k+1)) / (np.pi**1.5 * np.sqrt(x))
y = 4*k + 1
q = y**2 / (16*x)
b = kv(0.25, q)
return u * np.sqrt(y) * np.exp(-q) * b
tot = np.zeros_like(x, dtype='float')
cond = np.ones_like(x, dtype='bool')
k = 0
while np.any(cond):
z = term(x[cond], k)
tot[cond] = tot[cond] + z
cond[cond] = np.abs(z) >= 1e-7
k += 1
return tot
def _cdf_cvm(x, n=None):
"""
Calculate the cdf of the Cramér-von Mises statistic for a finite sample
size n. If N is None, use the asymptotic cdf (n=inf).
See equation 1.8 in Csörgő, S. and Faraway, J. (1996) for finite samples,
1.2 for the asymptotic cdf.
The function is not expected to be accurate for large values of x, say
x > 2, when the cdf is very close to 1 and it might return values > 1
in that case, e.g. _cdf_cvm(2.0, 12) = 1.0000027556716846. Moreover, it
is not accurate for small values of n, especially close to the bounds of
the distribution's domain, [1/(12*n), n/3], where the value jumps to 0
and 1, respectively. These are limitations of the approximation by Csörgő
and Faraway (1996) implemented in this function.
"""
x = np.asarray(x)
if n is None:
y = _cdf_cvm_inf(x)
else:
# support of the test statistic is [12/n, n/3], see 1.1 in [2]
y = np.zeros_like(x, dtype='float')
sup = (1./(12*n) < x) & (x < n/3.)
# note: _psi1_mod does not include the term _cdf_cvm_inf(x) / 12
# therefore, we need to add it here
y[sup] = _cdf_cvm_inf(x[sup]) * (1 + 1./(12*n)) + _psi1_mod(x[sup]) / n
y[x >= n/3] = 1
if y.ndim == 0:
return y[()]
return y
def _cvm_result_to_tuple(res):
return res.statistic, res.pvalue
@_axis_nan_policy_factory(CramerVonMisesResult, n_samples=1, too_small=1,
result_to_tuple=_cvm_result_to_tuple)
def cramervonmises(rvs, cdf, args=()):
"""Perform the one-sample Cramér-von Mises test for goodness of fit.
This performs a test of the goodness of fit of a cumulative distribution
function (cdf) :math:`F` compared to the empirical distribution function
:math:`F_n` of observed random variates :math:`X_1, ..., X_n` that are
assumed to be independent and identically distributed ([1]_).
The null hypothesis is that the :math:`X_i` have cumulative distribution
:math:`F`.
Parameters
----------
rvs : array_like
A 1-D array of observed values of the random variables :math:`X_i`.
The sample must contain at least two observations.
cdf : str or callable
The cumulative distribution function :math:`F` to test the
observations against. If a string, it should be the name of a
distribution in `scipy.stats`. If a callable, that callable is used
to calculate the cdf: ``cdf(x, *args) -> float``.
args : tuple, optional
Distribution parameters. These are assumed to be known; see Notes.
Returns
-------
res : object with attributes
statistic : float
Cramér-von Mises statistic.
pvalue : float
The p-value.
See Also
--------
kstest, cramervonmises_2samp
Notes
-----
.. versionadded:: 1.6.0
The p-value relies on the approximation given by equation 1.8 in [2]_.
It is important to keep in mind that the p-value is only accurate if
one tests a simple hypothesis, i.e. the parameters of the reference
distribution are known. If the parameters are estimated from the data
(composite hypothesis), the computed p-value is not reliable.
References
----------
.. [1] Cramér-von Mises criterion, Wikipedia,
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
.. [2] Csörgő, S. and Faraway, J. (1996). The Exact and Asymptotic
Distribution of Cramér-von Mises Statistics. Journal of the
Royal Statistical Society, pp. 221-234.
Examples
--------
Suppose we wish to test whether data generated by ``scipy.stats.norm.rvs``
were, in fact, drawn from the standard normal distribution. We choose a
significance level of ``alpha=0.05``.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng(165417232101553420507139617764912913465)
>>> x = stats.norm.rvs(size=500, random_state=rng)
>>> res = stats.cramervonmises(x, 'norm')
>>> res.statistic, res.pvalue
(0.1072085112565724, 0.5508482238203407)
The p-value exceeds our chosen significance level, so we do not
reject the null hypothesis that the observed sample is drawn from the
standard normal distribution.
Now suppose we wish to check whether the same samples shifted by 2.1 is
consistent with being drawn from a normal distribution with a mean of 2.
>>> y = x + 2.1
>>> res = stats.cramervonmises(y, 'norm', args=(2,))
>>> res.statistic, res.pvalue
(0.8364446265294695, 0.00596286797008283)
Here we have used the `args` keyword to specify the mean (``loc``)
of the normal distribution to test the data against. This is equivalent
to the following, in which we create a frozen normal distribution with
mean 2.1, then pass its ``cdf`` method as an argument.
>>> frozen_dist = stats.norm(loc=2)
>>> res = stats.cramervonmises(y, frozen_dist.cdf)
>>> res.statistic, res.pvalue
(0.8364446265294695, 0.00596286797008283)
In either case, we would reject the null hypothesis that the observed
sample is drawn from a normal distribution with a mean of 2 (and default
variance of 1) because the p-value is less than our chosen
significance level.
"""
if isinstance(cdf, str):
cdf = getattr(distributions, cdf).cdf
vals = np.sort(np.asarray(rvs))
if vals.size <= 1:
raise ValueError('The sample must contain at least two observations.')
n = len(vals)
cdfvals = cdf(vals, *args)
u = (2*np.arange(1, n+1) - 1)/(2*n)
w = 1/(12*n) + np.sum((u - cdfvals)**2)
# avoid small negative values that can occur due to the approximation
p = np.clip(1. - _cdf_cvm(w, n), 0., None)
return CramerVonMisesResult(statistic=w, pvalue=p)
def _get_wilcoxon_distr(n):
"""
Distribution of probability of the Wilcoxon ranksum statistic r_plus (sum
of ranks of positive differences).
Returns an array with the probabilities of all the possible ranks
r = 0, ..., n*(n+1)/2
"""
c = np.ones(1, dtype=np.float64)
for k in range(1, n + 1):
prev_c = c
c = np.zeros(k * (k + 1) // 2 + 1, dtype=np.float64)
m = len(prev_c)
c[:m] = prev_c * 0.5
c[-m:] += prev_c * 0.5
return c
def _get_wilcoxon_distr2(n):
"""
Distribution of probability of the Wilcoxon ranksum statistic r_plus (sum
of ranks of positive differences).
Returns an array with the probabilities of all the possible ranks
r = 0, ..., n*(n+1)/2
This is a slower reference function
References
----------
.. [1] 1. Harris T, Hardin JW. Exact Wilcoxon Signed-Rank and Wilcoxon
Mann-Whitney Ranksum Tests. The Stata Journal. 2013;13(2):337-343.
"""
ai = np.arange(1, n+1)[:, None]
t = n*(n+1)/2
q = 2*t
j = np.arange(q)
theta = 2*np.pi/q*j
phi_sp = np.prod(np.cos(theta*ai), axis=0)
phi_s = np.exp(1j*theta*t) * phi_sp
p = np.real(ifft(phi_s))
res = np.zeros(int(t)+1)
res[:-1:] = p[::2]
res[0] /= 2
res[-1] = res[0]
return res
def _tau_b(A):
"""Calculate Kendall's tau-b and p-value from contingency table."""
# See [2] 2.2 and 4.2
# contingency table must be truly 2D
if A.shape[0] == 1 or A.shape[1] == 1:
return np.nan, np.nan
NA = A.sum()
PA = _P(A)
QA = _Q(A)
Sri2 = (A.sum(axis=1)**2).sum()
Scj2 = (A.sum(axis=0)**2).sum()
denominator = (NA**2 - Sri2)*(NA**2 - Scj2)
tau = (PA-QA)/(denominator)**0.5
numerator = 4*(_a_ij_Aij_Dij2(A) - (PA - QA)**2 / NA)
s02_tau_b = numerator/denominator
if s02_tau_b == 0: # Avoid divide by zero
return tau, 0
Z = tau/s02_tau_b**0.5
p = 2*norm.sf(abs(Z)) # 2-sided p-value
return tau, p
def _somers_d(A, alternative='two-sided'):
"""Calculate Somers' D and p-value from contingency table."""
# See [3] page 1740
# contingency table must be truly 2D
if A.shape[0] <= 1 or A.shape[1] <= 1:
return np.nan, np.nan
NA = A.sum()
NA2 = NA**2
PA = _P(A)
QA = _Q(A)
Sri2 = (A.sum(axis=1)**2).sum()
d = (PA - QA)/(NA2 - Sri2)
S = _a_ij_Aij_Dij2(A) - (PA-QA)**2/NA
with np.errstate(divide='ignore'):
Z = (PA - QA)/(4*(S))**0.5
norm = _stats_py._SimpleNormal()
p = _stats_py._get_pvalue(Z, norm, alternative, xp=np)
return d, p
@dataclass
class SomersDResult:
statistic: float
pvalue: float
table: np.ndarray
def somersd(x, y=None, alternative='two-sided'):
r"""Calculates Somers' D, an asymmetric measure of ordinal association.
Like Kendall's :math:`\tau`, Somers' :math:`D` is a measure of the
correspondence between two rankings. Both statistics consider the
difference between the number of concordant and discordant pairs in two
rankings :math:`X` and :math:`Y`, and both are normalized such that values
close to 1 indicate strong agreement and values close to -1 indicate
strong disagreement. They differ in how they are normalized. To show the
relationship, Somers' :math:`D` can be defined in terms of Kendall's
:math:`\tau_a`:
.. math::
D(Y|X) = \frac{\tau_a(X, Y)}{\tau_a(X, X)}
Suppose the first ranking :math:`X` has :math:`r` distinct ranks and the
second ranking :math:`Y` has :math:`s` distinct ranks. These two lists of
:math:`n` rankings can also be viewed as an :math:`r \times s` contingency
table in which element :math:`i, j` is the number of rank pairs with rank
:math:`i` in ranking :math:`X` and rank :math:`j` in ranking :math:`Y`.
Accordingly, `somersd` also allows the input data to be supplied as a
single, 2D contingency table instead of as two separate, 1D rankings.
Note that the definition of Somers' :math:`D` is asymmetric: in general,
:math:`D(Y|X) \neq D(X|Y)`. ``somersd(x, y)`` calculates Somers'
:math:`D(Y|X)`: the "row" variable :math:`X` is treated as an independent
variable, and the "column" variable :math:`Y` is dependent. For Somers'
:math:`D(X|Y)`, swap the input lists or transpose the input table.
Parameters
----------
x : array_like
1D array of rankings, treated as the (row) independent variable.
Alternatively, a 2D contingency table.
y : array_like, optional
If `x` is a 1D array of rankings, `y` is a 1D array of rankings of the
same length, treated as the (column) dependent variable.
If `x` is 2D, `y` is ignored.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the rank correlation is nonzero
* 'less': the rank correlation is negative (less than zero)
* 'greater': the rank correlation is positive (greater than zero)
Returns
-------
res : SomersDResult
A `SomersDResult` object with the following fields:
statistic : float
The Somers' :math:`D` statistic.
pvalue : float
The p-value for a hypothesis test whose null
hypothesis is an absence of association, :math:`D=0`.
See notes for more information.
table : 2D array
The contingency table formed from rankings `x` and `y` (or the
provided contingency table, if `x` is a 2D array)
See Also
--------
kendalltau : Calculates Kendall's tau, another correlation measure.
weightedtau : Computes a weighted version of Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
pearsonr : Calculates a Pearson correlation coefficient.
Notes
-----
This function follows the contingency table approach of [2]_ and
[3]_. *p*-values are computed based on an asymptotic approximation of
the test statistic distribution under the null hypothesis :math:`D=0`.
Theoretically, hypothesis tests based on Kendall's :math:`tau` and Somers'
:math:`D` should be identical.
However, the *p*-values returned by `kendalltau` are based
on the null hypothesis of *independence* between :math:`X` and :math:`Y`
(i.e. the population from which pairs in :math:`X` and :math:`Y` are
sampled contains equal numbers of all possible pairs), which is more
specific than the null hypothesis :math:`D=0` used here. If the null
hypothesis of independence is desired, it is acceptable to use the
*p*-value returned by `kendalltau` with the statistic returned by
`somersd` and vice versa. For more information, see [2]_.
Contingency tables are formatted according to the convention used by
SAS and R: the first ranking supplied (``x``) is the "row" variable, and
the second ranking supplied (``y``) is the "column" variable. This is
opposite the convention of Somers' original paper [1]_.
References
----------
.. [1] Robert H. Somers, "A New Asymmetric Measure of Association for
Ordinal Variables", *American Sociological Review*, Vol. 27, No. 6,
pp. 799--811, 1962.
.. [2] Morton B. Brown and Jacqueline K. Benedetti, "Sampling Behavior of
Tests for Correlation in Two-Way Contingency Tables", *Journal of
the American Statistical Association* Vol. 72, No. 358, pp.
309--315, 1977.
.. [3] SAS Institute, Inc., "The FREQ Procedure (Book Excerpt)",
*SAS/STAT 9.2 User's Guide, Second Edition*, SAS Publishing, 2009.
.. [4] Laerd Statistics, "Somers' d using SPSS Statistics", *SPSS
Statistics Tutorials and Statistical Guides*,
https://statistics.laerd.com/spss-tutorials/somers-d-using-spss-statistics.php,
Accessed July 31, 2020.
Examples
--------
We calculate Somers' D for the example given in [4]_, in which a hotel
chain owner seeks to determine the association between hotel room
cleanliness and customer satisfaction. The independent variable, hotel
room cleanliness, is ranked on an ordinal scale: "below average (1)",
"average (2)", or "above average (3)". The dependent variable, customer
satisfaction, is ranked on a second scale: "very dissatisfied (1)",
"moderately dissatisfied (2)", "neither dissatisfied nor satisfied (3)",
"moderately satisfied (4)", or "very satisfied (5)". 189 customers
respond to the survey, and the results are cast into a contingency table
with the hotel room cleanliness as the "row" variable and customer
satisfaction as the "column" variable.
+-----+-----+-----+-----+-----+-----+
| | (1) | (2) | (3) | (4) | (5) |
+=====+=====+=====+=====+=====+=====+
| (1) | 27 | 25 | 14 | 7 | 0 |
+-----+-----+-----+-----+-----+-----+
| (2) | 7 | 14 | 18 | 35 | 12 |
+-----+-----+-----+-----+-----+-----+
| (3) | 1 | 3 | 2 | 7 | 17 |
+-----+-----+-----+-----+-----+-----+
For example, 27 customers assigned their room a cleanliness ranking of
"below average (1)" and a corresponding satisfaction of "very
dissatisfied (1)". We perform the analysis as follows.
>>> from scipy.stats import somersd
>>> table = [[27, 25, 14, 7, 0], [7, 14, 18, 35, 12], [1, 3, 2, 7, 17]]
>>> res = somersd(table)
>>> res.statistic
0.6032766111513396
>>> res.pvalue
1.0007091191074533e-27
The value of the Somers' D statistic is approximately 0.6, indicating
a positive correlation between room cleanliness and customer satisfaction
in the sample.
The *p*-value is very small, indicating a very small probability of
observing such an extreme value of the statistic under the null
hypothesis that the statistic of the entire population (from which
our sample of 189 customers is drawn) is zero. This supports the
alternative hypothesis that the true value of Somers' D for the population
is nonzero.
"""
x, y = np.array(x), np.array(y)
if x.ndim == 1:
if x.size != y.size:
raise ValueError("Rankings must be of equal length.")
table = scipy.stats.contingency.crosstab(x, y)[1]
elif x.ndim == 2:
if np.any(x < 0):
raise ValueError("All elements of the contingency table must be "
"non-negative.")
if np.any(x != x.astype(int)):
raise ValueError("All elements of the contingency table must be "
"integer.")
if x.nonzero()[0].size < 2:
raise ValueError("At least two elements of the contingency table "
"must be nonzero.")
table = x
else:
raise ValueError("x must be either a 1D or 2D array")
# The table type is converted to a float to avoid an integer overflow
d, p = _somers_d(table.astype(float), alternative)
# add alias for consistency with other correlation functions
res = SomersDResult(d, p, table)
res.correlation = d
return res
# This could be combined with `_all_partitions` in `_resampling.py`
def _all_partitions(nx, ny):
"""
Partition a set of indices into two fixed-length sets in all possible ways
Partition a set of indices 0 ... nx + ny - 1 into two sets of length nx and
ny in all possible ways (ignoring order of elements).
"""
z = np.arange(nx+ny)
for c in combinations(z, nx):
x = np.array(c)
mask = np.ones(nx+ny, bool)
mask[x] = False
y = z[mask]
yield x, y
def _compute_log_combinations(n):
"""Compute all log combination of C(n, k)."""
gammaln_arr = gammaln(np.arange(n + 1) + 1)
return gammaln(n + 1) - gammaln_arr - gammaln_arr[::-1]
@dataclass
class BarnardExactResult:
statistic: float
pvalue: float
def barnard_exact(table, alternative="two-sided", pooled=True, n=32):
r"""Perform a Barnard exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes section below.
pooled : bool, optional
Whether to compute score statistic with pooled variance (as in
Student's t-test, for example) or unpooled variance (as in Welch's
t-test). Default is ``True``.
n : int, optional
Number of sampling points used in the construction of the sampling
method. Note that this argument will automatically be converted to
the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to
select sample points. Default is 32. Must be positive. In most cases,
32 points is enough to reach good precision. More points comes at
performance cost.
Returns
-------
ber : BarnardExactResult
A result object with the following attributes.
statistic : float
The Wald statistic with pooled or unpooled variance, depending
on the user choice of `pooled`.
pvalue : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
fisher_exact : Fisher exact test on a 2x2 contingency table.
boschloo_exact : Boschloo's exact test on a 2x2 contingency table,
which is an uniformly more powerful alternative to Fisher's exact test.
Notes
-----
Barnard's test is an exact test used in the analysis of contingency
tables. It examines the association of two categorical variables, and
is a more powerful alternative than Fisher's exact test
for 2x2 contingency tables.
Let's define :math:`X_0` a 2x2 matrix representing the observed sample,
where each column stores the binomial experiment, as in the example
below. Let's also define :math:`p_1, p_2` the theoretical binomial
probabilities for :math:`x_{11}` and :math:`x_{12}`. When using
Barnard exact test, we can assert three different null hypotheses :
- :math:`H_0 : p_1 \geq p_2` versus :math:`H_1 : p_1 < p_2`,
with `alternative` = "less"
- :math:`H_0 : p_1 \leq p_2` versus :math:`H_1 : p_1 > p_2`,
with `alternative` = "greater"
- :math:`H_0 : p_1 = p_2` versus :math:`H_1 : p_1 \neq p_2`,
with `alternative` = "two-sided" (default one)
In order to compute Barnard's exact test, we are using the Wald
statistic [3]_ with pooled or unpooled variance.
Under the default assumption that both variances are equal
(``pooled = True``), the statistic is computed as:
.. math::
T(X) = \frac{
\hat{p}_1 - \hat{p}_2
}{
\sqrt{
\hat{p}(1 - \hat{p})
(\frac{1}{c_1} +
\frac{1}{c_2})
}
}
with :math:`\hat{p}_1, \hat{p}_2` and :math:`\hat{p}` the estimator of
:math:`p_1, p_2` and :math:`p`, the latter being the combined probability,
given the assumption that :math:`p_1 = p_2`.
If this assumption is invalid (``pooled = False``), the statistic is:
.. math::
T(X) = \frac{
\hat{p}_1 - \hat{p}_2
}{
\sqrt{
\frac{\hat{p}_1 (1 - \hat{p}_1)}{c_1} +
\frac{\hat{p}_2 (1 - \hat{p}_2)}{c_2}
}
}
The p-value is then computed as:
.. math::
\sum
\binom{c_1}{x_{11}}
\binom{c_2}{x_{12}}
\pi^{x_{11} + x_{12}}
(1 - \pi)^{t - x_{11} - x_{12}}
where the sum is over all 2x2 contingency tables :math:`X` such that:
* :math:`T(X) \leq T(X_0)` when `alternative` = "less",
* :math:`T(X) \geq T(X_0)` when `alternative` = "greater", or
* :math:`T(X) \geq |T(X_0)|` when `alternative` = "two-sided".
Above, :math:`c_1, c_2` are the sum of the columns 1 and 2,
and :math:`t` the total (sum of the 4 sample's element).
The returned p-value is the maximum p-value taken over the nuisance
parameter :math:`\pi`, where :math:`0 \leq \pi \leq 1`.
This function's complexity is :math:`O(n c_1 c_2)`, where `n` is the
number of sample points.
References
----------
.. [1] Barnard, G. A. "Significance Tests for 2x2 Tables". *Biometrika*.
34.1/2 (1947): 123-138. :doi:`dpgkg3`
.. [2] Mehta, Cyrus R., and Pralay Senchaudhuri. "Conditional versus
unconditional exact tests for comparing two binomials."
*Cytel Software Corporation* 675 (2003): 1-5.
.. [3] "Wald Test". *Wikipedia*. https://en.wikipedia.org/wiki/Wald_test
Examples
--------
An example use of Barnard's test is presented in [2]_.
Consider the following example of a vaccine efficacy study
(Chan, 1998). In a randomized clinical trial of 30 subjects, 15 were
inoculated with a recombinant DNA influenza vaccine and the 15 were
inoculated with a placebo. Twelve of the 15 subjects in the placebo
group (80%) eventually became infected with influenza whereas for the
vaccine group, only 7 of the 15 subjects (47%) became infected. The
data are tabulated as a 2 x 2 table::
Vaccine Placebo
Yes 7 12
No 8 3
When working with statistical hypothesis testing, we usually use a
threshold probability or significance level upon which we decide
to reject the null hypothesis :math:`H_0`. Suppose we choose the common
significance level of 5%.
Our alternative hypothesis is that the vaccine will lower the chance of
becoming infected with the virus; that is, the probability :math:`p_1` of
catching the virus with the vaccine will be *less than* the probability
:math:`p_2` of catching the virus without the vaccine. Therefore, we call
`barnard_exact` with the ``alternative="less"`` option:
>>> import scipy.stats as stats
>>> res = stats.barnard_exact([[7, 12], [8, 3]], alternative="less")
>>> res.statistic
-1.894
>>> res.pvalue
0.03407
Under the null hypothesis that the vaccine will not lower the chance of
becoming infected, the probability of obtaining test results at least as
extreme as the observed data is approximately 3.4%. Since this p-value is
less than our chosen significance level, we have evidence to reject
:math:`H_0` in favor of the alternative.
Suppose we had used Fisher's exact test instead:
>>> _, pvalue = stats.fisher_exact([[7, 12], [8, 3]], alternative="less")
>>> pvalue
0.0640
With the same threshold significance of 5%, we would not have been able
to reject the null hypothesis in favor of the alternative. As stated in
[2]_, Barnard's test is uniformly more powerful than Fisher's exact test
because Barnard's test does not condition on any margin. Fisher's test
should only be used when both sets of marginals are fixed.
"""
if n <= 0:
raise ValueError(
"Number of points `n` must be strictly positive, "
f"found {n!r}"
)
table = np.asarray(table, dtype=np.int64)
if not table.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(table < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in table.sum(axis=0):
# If both values in column are zero, the p-value is 1 and
# the score's statistic is NaN.
return BarnardExactResult(np.nan, 1.0)
total_col_1, total_col_2 = table.sum(axis=0)
x1 = np.arange(total_col_1 + 1, dtype=np.int64).reshape(-1, 1)
x2 = np.arange(total_col_2 + 1, dtype=np.int64).reshape(1, -1)
# We need to calculate the wald statistics for each combination of x1 and
# x2.
p1, p2 = x1 / total_col_1, x2 / total_col_2
if pooled:
p = (x1 + x2) / (total_col_1 + total_col_2)
variances = p * (1 - p) * (1 / total_col_1 + 1 / total_col_2)
else:
variances = p1 * (1 - p1) / total_col_1 + p2 * (1 - p2) / total_col_2
# To avoid warning when dividing by 0
with np.errstate(divide="ignore", invalid="ignore"):
wald_statistic = np.divide((p1 - p2), np.sqrt(variances))
wald_statistic[p1 == p2] = 0 # Removing NaN values
wald_stat_obs = wald_statistic[table[0, 0], table[0, 1]]
if alternative == "two-sided":
index_arr = np.abs(wald_statistic) >= abs(wald_stat_obs)
elif alternative == "less":
index_arr = wald_statistic <= wald_stat_obs
elif alternative == "greater":
index_arr = wald_statistic >= wald_stat_obs
else:
msg = (
"`alternative` should be one of {'two-sided', 'less', 'greater'},"
f" found {alternative!r}"
)
raise ValueError(msg)
x1_sum_x2 = x1 + x2
x1_log_comb = _compute_log_combinations(total_col_1)
x2_log_comb = _compute_log_combinations(total_col_2)
x1_sum_x2_log_comb = x1_log_comb[x1] + x2_log_comb[x2]
result = shgo(
_get_binomial_log_p_value_with_nuisance_param,
args=(x1_sum_x2, x1_sum_x2_log_comb, index_arr),
bounds=((0, 1),),
n=n,
sampling_method="sobol",
)
# result.fun is the negative log pvalue and therefore needs to be
# changed before return
p_value = np.clip(np.exp(-result.fun), a_min=0, a_max=1)
return BarnardExactResult(wald_stat_obs, p_value)
@dataclass
class BoschlooExactResult:
statistic: float
pvalue: float
def boschloo_exact(table, alternative="two-sided", n=32):
r"""Perform Boschloo's exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes section below.
n : int, optional
Number of sampling points used in the construction of the sampling
method. Note that this argument will automatically be converted to
the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to
select sample points. Default is 32. Must be positive. In most cases,
32 points is enough to reach good precision. More points comes at
performance cost.
Returns
-------
ber : BoschlooExactResult
A result object with the following attributes.
statistic : float
The statistic used in Boschloo's test; that is, the p-value
from Fisher's exact test.
pvalue : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
fisher_exact : Fisher exact test on a 2x2 contingency table.
barnard_exact : Barnard's exact test, which is a more powerful alternative
than Fisher's exact test for 2x2 contingency tables.
Notes
-----
Boschloo's test is an exact test used in the analysis of contingency
tables. It examines the association of two categorical variables, and
is a uniformly more powerful alternative to Fisher's exact test
for 2x2 contingency tables.
Boschloo's exact test uses the p-value of Fisher's exact test as a
statistic, and Boschloo's p-value is the probability under the null
hypothesis of observing such an extreme value of this statistic.
Let's define :math:`X_0` a 2x2 matrix representing the observed sample,
where each column stores the binomial experiment, as in the example
below. Let's also define :math:`p_1, p_2` the theoretical binomial
probabilities for :math:`x_{11}` and :math:`x_{12}`. When using
Boschloo exact test, we can assert three different alternative hypotheses:
- :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 < p_2`,
with `alternative` = "less"
- :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 > p_2`,
with `alternative` = "greater"
- :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 \neq p_2`,
with `alternative` = "two-sided" (default)
There are multiple conventions for computing a two-sided p-value when the
null distribution is asymmetric. Here, we apply the convention that the
p-value of a two-sided test is twice the minimum of the p-values of the
one-sided tests (clipped to 1.0). Note that `fisher_exact` follows a
different convention, so for a given `table`, the statistic reported by
`boschloo_exact` may differ from the p-value reported by `fisher_exact`
when ``alternative='two-sided'``.
.. versionadded:: 1.7.0
References
----------
.. [1] R.D. Boschloo. "Raised conditional level of significance for the
2 x 2-table when testing the equality of two probabilities",
Statistica Neerlandica, 24(1), 1970
.. [2] "Boschloo's test", Wikipedia,
https://en.wikipedia.org/wiki/Boschloo%27s_test
.. [3] Lise M. Saari et al. "Employee attitudes and job satisfaction",
Human Resource Management, 43(4), 395-407, 2004,
:doi:`10.1002/hrm.20032`.
Examples
--------
In the following example, we consider the article "Employee
attitudes and job satisfaction" [3]_
which reports the results of a survey from 63 scientists and 117 college
professors. Of the 63 scientists, 31 said they were very satisfied with
their jobs, whereas 74 of the college professors were very satisfied
with their work. Is this significant evidence that college
professors are happier with their work than scientists?
The following table summarizes the data mentioned above::
college professors scientists
Very Satisfied 74 31
Dissatisfied 43 32
When working with statistical hypothesis testing, we usually use a
threshold probability or significance level upon which we decide
to reject the null hypothesis :math:`H_0`. Suppose we choose the common
significance level of 5%.
Our alternative hypothesis is that college professors are truly more
satisfied with their work than scientists. Therefore, we expect
:math:`p_1` the proportion of very satisfied college professors to be
greater than :math:`p_2`, the proportion of very satisfied scientists.
We thus call `boschloo_exact` with the ``alternative="greater"`` option:
>>> import scipy.stats as stats
>>> res = stats.boschloo_exact([[74, 31], [43, 32]], alternative="greater")
>>> res.statistic
0.0483
>>> res.pvalue
0.0355
Under the null hypothesis that scientists are happier in their work than
college professors, the probability of obtaining test
results at least as extreme as the observed data is approximately 3.55%.
Since this p-value is less than our chosen significance level, we have
evidence to reject :math:`H_0` in favor of the alternative hypothesis.
"""
hypergeom = distributions.hypergeom
if n <= 0:
raise ValueError(
"Number of points `n` must be strictly positive,"
f" found {n!r}"
)
table = np.asarray(table, dtype=np.int64)
if not table.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(table < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in table.sum(axis=0):
# If both values in column are zero, the p-value is 1 and
# the score's statistic is NaN.
return BoschlooExactResult(np.nan, np.nan)
total_col_1, total_col_2 = table.sum(axis=0)
total = total_col_1 + total_col_2
x1 = np.arange(total_col_1 + 1, dtype=np.int64).reshape(1, -1)
x2 = np.arange(total_col_2 + 1, dtype=np.int64).reshape(-1, 1)
x1_sum_x2 = x1 + x2
if alternative == 'less':
pvalues = hypergeom.cdf(x1, total, x1_sum_x2, total_col_1).T
elif alternative == 'greater':
# Same formula as the 'less' case, but with the second column.
pvalues = hypergeom.cdf(x2, total, x1_sum_x2, total_col_2).T
elif alternative == 'two-sided':
boschloo_less = boschloo_exact(table, alternative="less", n=n)
boschloo_greater = boschloo_exact(table, alternative="greater", n=n)
res = (
boschloo_less if boschloo_less.pvalue < boschloo_greater.pvalue
else boschloo_greater
)
# Two-sided p-value is defined as twice the minimum of the one-sided
# p-values
pvalue = np.clip(2 * res.pvalue, a_min=0, a_max=1)
return BoschlooExactResult(res.statistic, pvalue)
else:
msg = (
f"`alternative` should be one of {'two-sided', 'less', 'greater'},"
f" found {alternative!r}"
)
raise ValueError(msg)
fisher_stat = pvalues[table[0, 0], table[0, 1]]
# fisher_stat * (1+1e-13) guards us from small numerical error. It is
# equivalent to np.isclose with relative tol of 1e-13 and absolute tol of 0
# For more throughout explanations, see gh-14178
index_arr = pvalues <= fisher_stat * (1+1e-13)
x1, x2, x1_sum_x2 = x1.T, x2.T, x1_sum_x2.T
x1_log_comb = _compute_log_combinations(total_col_1)
x2_log_comb = _compute_log_combinations(total_col_2)
x1_sum_x2_log_comb = x1_log_comb[x1] + x2_log_comb[x2]
result = shgo(
_get_binomial_log_p_value_with_nuisance_param,
args=(x1_sum_x2, x1_sum_x2_log_comb, index_arr),
bounds=((0, 1),),
n=n,
sampling_method="sobol",
)
# result.fun is the negative log pvalue and therefore needs to be
# changed before return
p_value = np.clip(np.exp(-result.fun), a_min=0, a_max=1)
return BoschlooExactResult(fisher_stat, p_value)
def _get_binomial_log_p_value_with_nuisance_param(
nuisance_param, x1_sum_x2, x1_sum_x2_log_comb, index_arr
):
r"""
Compute the log pvalue in respect of a nuisance parameter considering
a 2x2 sample space.
Parameters
----------
nuisance_param : float
nuisance parameter used in the computation of the maximisation of
the p-value. Must be between 0 and 1
x1_sum_x2 : ndarray
Sum of x1 and x2 inside barnard_exact
x1_sum_x2_log_comb : ndarray
sum of the log combination of x1 and x2
index_arr : ndarray of boolean
Returns
-------
p_value : float
Return the maximum p-value considering every nuisance parameter
between 0 and 1
Notes
-----
Both Barnard's test and Boschloo's test iterate over a nuisance parameter
:math:`\pi \in [0, 1]` to find the maximum p-value. To search this
maxima, this function return the negative log pvalue with respect to the
nuisance parameter passed in params. This negative log p-value is then
used in `shgo` to find the minimum negative pvalue which is our maximum
pvalue.
Also, to compute the different combination used in the
p-values' computation formula, this function uses `gammaln` which is
more tolerant for large value than `scipy.special.comb`. `gammaln` gives
a log combination. For the little precision loss, performances are
improved a lot.
"""
t1, t2 = x1_sum_x2.shape
n = t1 + t2 - 2
with np.errstate(divide="ignore", invalid="ignore"):
log_nuisance = np.log(
nuisance_param,
out=np.zeros_like(nuisance_param),
where=nuisance_param >= 0,
)
log_1_minus_nuisance = np.log(
1 - nuisance_param,
out=np.zeros_like(nuisance_param),
where=1 - nuisance_param >= 0,
)
nuisance_power_x1_x2 = log_nuisance * x1_sum_x2
nuisance_power_x1_x2[(x1_sum_x2 == 0)[:, :]] = 0
nuisance_power_n_minus_x1_x2 = log_1_minus_nuisance * (n - x1_sum_x2)
nuisance_power_n_minus_x1_x2[(x1_sum_x2 == n)[:, :]] = 0
tmp_log_values_arr = (
x1_sum_x2_log_comb
+ nuisance_power_x1_x2
+ nuisance_power_n_minus_x1_x2
)
tmp_values_from_index = tmp_log_values_arr[index_arr]
# To avoid dividing by zero in log function and getting inf value,
# values are centered according to the max
max_value = tmp_values_from_index.max()
# To have better result's precision, the log pvalue is taken here.
# Indeed, pvalue is included inside [0, 1] interval. Passing the
# pvalue to log makes the interval a lot bigger ([-inf, 0]), and thus
# help us to achieve better precision
with np.errstate(divide="ignore", invalid="ignore"):
log_probs = np.exp(tmp_values_from_index - max_value).sum()
log_pvalue = max_value + np.log(
log_probs,
out=np.full_like(log_probs, -np.inf),
where=log_probs > 0,
)
# Since shgo find the minima, minus log pvalue is returned
return -log_pvalue
def _pval_cvm_2samp_exact(s, m, n):
"""
Compute the exact p-value of the Cramer-von Mises two-sample test
for a given value s of the test statistic.
m and n are the sizes of the samples.
[1] Y. Xiao, A. Gordon, and A. Yakovlev, "A C++ Program for
the Cramér-Von Mises Two-Sample Test", J. Stat. Soft.,
vol. 17, no. 8, pp. 1-15, Dec. 2006.
[2] T. W. Anderson "On the Distribution of the Two-Sample Cramer-von Mises
Criterion," The Annals of Mathematical Statistics, Ann. Math. Statist.
33(3), 1148-1159, (September, 1962)
"""
# [1, p. 3]
lcm = np.lcm(m, n)
# [1, p. 4], below eq. 3
a = lcm // m
b = lcm // n
# Combine Eq. 9 in [2] with Eq. 2 in [1] and solve for $\zeta$
# Hint: `s` is $U$ in [2], and $T_2$ in [1] is $T$ in [2]
mn = m * n
zeta = lcm ** 2 * (m + n) * (6 * s - mn * (4 * mn - 1)) // (6 * mn ** 2)
# bound maximum value that may appear in `gs` (remember both rows!)
zeta_bound = lcm**2 * (m + n) # bound elements in row 1
combinations = comb(m + n, m) # sum of row 2
max_gs = max(zeta_bound, combinations)
dtype = np.min_scalar_type(max_gs)
# the frequency table of $g_{u, v}^+$ defined in [1, p. 6]
gs = ([np.array([[0], [1]], dtype=dtype)]
+ [np.empty((2, 0), dtype=dtype) for _ in range(m)])
for u in range(n + 1):
next_gs = []
tmp = np.empty((2, 0), dtype=dtype)
for v, g in enumerate(gs):
# Calculate g recursively with eq. 11 in [1]. Even though it
# doesn't look like it, this also does 12/13 (all of Algorithm 1).
vi, i0, i1 = np.intersect1d(tmp[0], g[0], return_indices=True)
tmp = np.concatenate([
np.stack([vi, tmp[1, i0] + g[1, i1]]),
np.delete(tmp, i0, 1),
np.delete(g, i1, 1)
], 1)
res = (a * v - b * u) ** 2
tmp[0] += res.astype(dtype)
next_gs.append(tmp)
gs = next_gs
value, freq = gs[m]
return np.float64(np.sum(freq[value >= zeta]) / combinations)
@_axis_nan_policy_factory(CramerVonMisesResult, n_samples=2, too_small=1,
result_to_tuple=_cvm_result_to_tuple)
def cramervonmises_2samp(x, y, method='auto'):
"""Perform the two-sample Cramér-von Mises test for goodness of fit.
This is the two-sample version of the Cramér-von Mises test ([1]_):
for two independent samples :math:`X_1, ..., X_n` and
:math:`Y_1, ..., Y_m`, the null hypothesis is that the samples
come from the same (unspecified) continuous distribution.
Parameters
----------
x : array_like
A 1-D array of observed values of the random variables :math:`X_i`.
Must contain at least two observations.
y : array_like
A 1-D array of observed values of the random variables :math:`Y_i`.
Must contain at least two observations.
method : {'auto', 'asymptotic', 'exact'}, optional
The method used to compute the p-value, see Notes for details.
The default is 'auto'.
Returns
-------
res : object with attributes
statistic : float
Cramér-von Mises statistic.
pvalue : float
The p-value.
See Also
--------
cramervonmises, anderson_ksamp, epps_singleton_2samp, ks_2samp
Notes
-----
.. versionadded:: 1.7.0
The statistic is computed according to equation 9 in [2]_. The
calculation of the p-value depends on the keyword `method`:
- ``asymptotic``: The p-value is approximated by using the limiting
distribution of the test statistic.
- ``exact``: The exact p-value is computed by enumerating all
possible combinations of the test statistic, see [2]_.
If ``method='auto'``, the exact approach is used
if both samples contain equal to or less than 20 observations,
otherwise the asymptotic distribution is used.
If the underlying distribution is not continuous, the p-value is likely to
be conservative (Section 6.2 in [3]_). When ranking the data to compute
the test statistic, midranks are used if there are ties.
References
----------
.. [1] https://en.wikipedia.org/wiki/Cramer-von_Mises_criterion
.. [2] Anderson, T.W. (1962). On the distribution of the two-sample
Cramer-von-Mises criterion. The Annals of Mathematical
Statistics, pp. 1148-1159.
.. [3] Conover, W.J., Practical Nonparametric Statistics, 1971.
Examples
--------
Suppose we wish to test whether two samples generated by
``scipy.stats.norm.rvs`` have the same distribution. We choose a
significance level of alpha=0.05.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(size=100, random_state=rng)
>>> y = stats.norm.rvs(size=70, random_state=rng)
>>> res = stats.cramervonmises_2samp(x, y)
>>> res.statistic, res.pvalue
(0.29376470588235293, 0.1412873014573014)
The p-value exceeds our chosen significance level, so we do not
reject the null hypothesis that the observed samples are drawn from the
same distribution.
For small sample sizes, one can compute the exact p-values:
>>> x = stats.norm.rvs(size=7, random_state=rng)
>>> y = stats.t.rvs(df=2, size=6, random_state=rng)
>>> res = stats.cramervonmises_2samp(x, y, method='exact')
>>> res.statistic, res.pvalue
(0.197802197802198, 0.31643356643356646)
The p-value based on the asymptotic distribution is a good approximation
even though the sample size is small.
>>> res = stats.cramervonmises_2samp(x, y, method='asymptotic')
>>> res.statistic, res.pvalue
(0.197802197802198, 0.2966041181527128)
Independent of the method, one would not reject the null hypothesis at the
chosen significance level in this example.
"""
xa = np.sort(np.asarray(x))
ya = np.sort(np.asarray(y))
if xa.size <= 1 or ya.size <= 1:
raise ValueError('x and y must contain at least two observations.')
if method not in ['auto', 'exact', 'asymptotic']:
raise ValueError('method must be either auto, exact or asymptotic.')
nx = len(xa)
ny = len(ya)
if method == 'auto':
if max(nx, ny) > 20:
method = 'asymptotic'
else:
method = 'exact'
# get ranks of x and y in the pooled sample
z = np.concatenate([xa, ya])
# in case of ties, use midrank (see [1])
r = scipy.stats.rankdata(z, method='average')
rx = r[:nx]
ry = r[nx:]
# compute U (eq. 10 in [2])
u = nx * np.sum((rx - np.arange(1, nx+1))**2)
u += ny * np.sum((ry - np.arange(1, ny+1))**2)
# compute T (eq. 9 in [2])
k, N = nx*ny, nx + ny
t = u / (k*N) - (4*k - 1)/(6*N)
if method == 'exact':
p = _pval_cvm_2samp_exact(u, nx, ny)
else:
# compute expected value and variance of T (eq. 11 and 14 in [2])
et = (1 + 1/N)/6
vt = (N+1) * (4*k*N - 3*(nx**2 + ny**2) - 2*k)
vt = vt / (45 * N**2 * 4 * k)
# computed the normalized statistic (eq. 15 in [2])
tn = 1/6 + (t - et) / np.sqrt(45 * vt)
# approximate distribution of tn with limiting distribution
# of the one-sample test statistic
# if tn < 0.003, the _cdf_cvm_inf(tn) < 1.28*1e-18, return 1.0 directly
if tn < 0.003:
p = 1.0
else:
p = max(0, 1. - _cdf_cvm_inf(tn))
return CramerVonMisesResult(statistic=t, pvalue=p)
class TukeyHSDResult:
"""Result of `scipy.stats.tukey_hsd`.
Attributes
----------
statistic : float ndarray
The computed statistic of the test for each comparison. The element
at index ``(i, j)`` is the statistic for the comparison between groups
``i`` and ``j``.
pvalue : float ndarray
The associated p-value from the studentized range distribution. The
element at index ``(i, j)`` is the p-value for the comparison
between groups ``i`` and ``j``.
Notes
-----
The string representation of this object displays the most recently
calculated confidence interval, and if none have been previously
calculated, it will evaluate ``confidence_interval()``.
References
----------
.. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1. Tukey's
Method."
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
28 November 2020.
"""
def __init__(self, statistic, pvalue, _nobs, _ntreatments, _stand_err):
self.statistic = statistic
self.pvalue = pvalue
self._ntreatments = _ntreatments
self._nobs = _nobs
self._stand_err = _stand_err
self._ci = None
self._ci_cl = None
def __str__(self):
# Note: `__str__` prints the confidence intervals from the most
# recent call to `confidence_interval`. If it has not been called,
# it will be called with the default CL of .95.
if self._ci is None:
self.confidence_interval(confidence_level=.95)
s = ("Tukey's HSD Pairwise Group Comparisons"
f" ({self._ci_cl*100:.1f}% Confidence Interval)\n")
s += "Comparison Statistic p-value Lower CI Upper CI\n"
for i in range(self.pvalue.shape[0]):
for j in range(self.pvalue.shape[0]):
if i != j:
s += (f" ({i} - {j}) {self.statistic[i, j]:>10.3f}"
f"{self.pvalue[i, j]:>10.3f}"
f"{self._ci.low[i, j]:>10.3f}"
f"{self._ci.high[i, j]:>10.3f}\n")
return s
def confidence_interval(self, confidence_level=.95):
"""Compute the confidence interval for the specified confidence level.
Parameters
----------
confidence_level : float, optional
Confidence level for the computed confidence interval
of the estimated proportion. Default is .95.
Returns
-------
ci : ``ConfidenceInterval`` object
The object has attributes ``low`` and ``high`` that hold the
lower and upper bounds of the confidence intervals for each
comparison. The high and low values are accessible for each
comparison at index ``(i, j)`` between groups ``i`` and ``j``.
References
----------
.. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1.
Tukey's Method."
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
28 November 2020.
Examples
--------
>>> from scipy.stats import tukey_hsd
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
>>> result = tukey_hsd(group0, group1, group2)
>>> ci = result.confidence_interval()
>>> ci.low
array([[-3.649159, -8.249159, -3.909159],
[ 0.950841, -3.649159, 0.690841],
[-3.389159, -7.989159, -3.649159]])
>>> ci.high
array([[ 3.649159, -0.950841, 3.389159],
[ 8.249159, 3.649159, 7.989159],
[ 3.909159, -0.690841, 3.649159]])
"""
# check to see if the supplied confidence level matches that of the
# previously computed CI.
if (self._ci is not None and self._ci_cl is not None and
confidence_level == self._ci_cl):
return self._ci
if not 0 < confidence_level < 1:
raise ValueError("Confidence level must be between 0 and 1.")
# determine the critical value of the studentized range using the
# appropriate confidence level, number of treatments, and degrees
# of freedom as determined by the number of data less the number of
# treatments. ("Confidence limits for Tukey's method")[1]. Note that
# in the cases of unequal sample sizes there will be a criterion for
# each group comparison.
params = (confidence_level, self._nobs, self._ntreatments - self._nobs)
srd = distributions.studentized_range.ppf(*params)
# also called maximum critical value, the Tukey criterion is the
# studentized range critical value * the square root of mean square
# error over the sample size.
tukey_criterion = srd * self._stand_err
# the confidence levels are determined by the
# `mean_differences` +- `tukey_criterion`
upper_conf = self.statistic + tukey_criterion
lower_conf = self.statistic - tukey_criterion
self._ci = ConfidenceInterval(low=lower_conf, high=upper_conf)
self._ci_cl = confidence_level
return self._ci
def _tukey_hsd_iv(args):
if (len(args)) < 2:
raise ValueError("There must be more than 1 treatment.")
args = [np.asarray(arg) for arg in args]
for arg in args:
if arg.ndim != 1:
raise ValueError("Input samples must be one-dimensional.")
if arg.size <= 1:
raise ValueError("Input sample size must be greater than one.")
if np.isinf(arg).any():
raise ValueError("Input samples must be finite.")
return args
def tukey_hsd(*args):
"""Perform Tukey's HSD test for equality of means over multiple treatments.
Tukey's honestly significant difference (HSD) test performs pairwise
comparison of means for a set of samples. Whereas ANOVA (e.g. `f_oneway`)
assesses whether the true means underlying each sample are identical,
Tukey's HSD is a post hoc test used to compare the mean of each sample
to the mean of each other sample.
The null hypothesis is that the distributions underlying the samples all
have the same mean. The test statistic, which is computed for every
possible pairing of samples, is simply the difference between the sample
means. For each pair, the p-value is the probability under the null
hypothesis (and other assumptions; see notes) of observing such an extreme
value of the statistic, considering that many pairwise comparisons are
being performed. Confidence intervals for the difference between each pair
of means are also available.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group. There must be at least
two arguments.
Returns
-------
result : `~scipy.stats._result_classes.TukeyHSDResult` instance
The return value is an object with the following attributes:
statistic : float ndarray
The computed statistic of the test for each comparison. The element
at index ``(i, j)`` is the statistic for the comparison between
groups ``i`` and ``j``.
pvalue : float ndarray
The computed p-value of the test for each comparison. The element
at index ``(i, j)`` is the p-value for the comparison between
groups ``i`` and ``j``.
The object has the following methods:
confidence_interval(confidence_level=0.95):
Compute the confidence interval for the specified confidence level.
See Also
--------
dunnett : performs comparison of means against a control group.
Notes
-----
The use of this test relies on several assumptions.
1. The observations are independent within and among groups.
2. The observations within each group are normally distributed.
3. The distributions from which the samples are drawn have the same finite
variance.
The original formulation of the test was for samples of equal size [6]_.
In case of unequal sample sizes, the test uses the Tukey-Kramer method
[4]_.
References
----------
.. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1. Tukey's
Method."
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
28 November 2020.
.. [2] Abdi, Herve & Williams, Lynne. (2021). "Tukey's Honestly Significant
Difference (HSD) Test."
https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf
.. [3] "One-Way ANOVA Using SAS PROC ANOVA & PROC GLM." SAS
Tutorials, 2007, www.stattutorials.com/SAS/TUTORIAL-PROC-GLM.htm.
.. [4] Kramer, Clyde Young. "Extension of Multiple Range Tests to Group
Means with Unequal Numbers of Replications." Biometrics, vol. 12,
no. 3, 1956, pp. 307-310. JSTOR, www.jstor.org/stable/3001469.
Accessed 25 May 2021.
.. [5] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.3.3.
The ANOVA table and tests of hypotheses about means"
https://www.itl.nist.gov/div898/handbook/prc/section4/prc433.htm,
2 June 2021.
.. [6] Tukey, John W. "Comparing Individual Means in the Analysis of
Variance." Biometrics, vol. 5, no. 2, 1949, pp. 99-114. JSTOR,
www.jstor.org/stable/3001913. Accessed 14 June 2021.
Examples
--------
Here are some data comparing the time to relief of three brands of
headache medicine, reported in minutes. Data adapted from [3]_.
>>> import numpy as np
>>> from scipy.stats import tukey_hsd
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
We would like to see if the means between any of the groups are
significantly different. First, visually examine a box and whisker plot.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
>>> ax.boxplot([group0, group1, group2])
>>> ax.set_xticklabels(["group0", "group1", "group2"]) # doctest: +SKIP
>>> ax.set_ylabel("mean") # doctest: +SKIP
>>> plt.show()
From the box and whisker plot, we can see overlap in the interquartile
ranges group 1 to group 2 and group 3, but we can apply the ``tukey_hsd``
test to determine if the difference between means is significant. We
set a significance level of .05 to reject the null hypothesis.
>>> res = tukey_hsd(group0, group1, group2)
>>> print(res)
Tukey's HSD Pairwise Group Comparisons (95.0% Confidence Interval)
Comparison Statistic p-value Lower CI Upper CI
(0 - 1) -4.600 0.014 -8.249 -0.951
(0 - 2) -0.260 0.980 -3.909 3.389
(1 - 0) 4.600 0.014 0.951 8.249
(1 - 2) 4.340 0.020 0.691 7.989
(2 - 0) 0.260 0.980 -3.389 3.909
(2 - 1) -4.340 0.020 -7.989 -0.691
The null hypothesis is that each group has the same mean. The p-value for
comparisons between ``group0`` and ``group1`` as well as ``group1`` and
``group2`` do not exceed .05, so we reject the null hypothesis that they
have the same means. The p-value of the comparison between ``group0``
and ``group2`` exceeds .05, so we accept the null hypothesis that there
is not a significant difference between their means.
We can also compute the confidence interval associated with our chosen
confidence level.
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
>>> result = tukey_hsd(group0, group1, group2)
>>> conf = res.confidence_interval(confidence_level=.99)
>>> for ((i, j), l) in np.ndenumerate(conf.low):
... # filter out self comparisons
... if i != j:
... h = conf.high[i,j]
... print(f"({i} - {j}) {l:>6.3f} {h:>6.3f}")
(0 - 1) -9.480 0.280
(0 - 2) -5.140 4.620
(1 - 0) -0.280 9.480
(1 - 2) -0.540 9.220
(2 - 0) -4.620 5.140
(2 - 1) -9.220 0.540
"""
args = _tukey_hsd_iv(args)
ntreatments = len(args)
means = np.asarray([np.mean(arg) for arg in args])
nsamples_treatments = np.asarray([a.size for a in args])
nobs = np.sum(nsamples_treatments)
# determine mean square error [5]. Note that this is sometimes called
# mean square error within.
mse = (np.sum([np.var(arg, ddof=1) for arg in args] *
(nsamples_treatments - 1)) / (nobs - ntreatments))
# The calculation of the standard error differs when treatments differ in
# size. See ("Unequal sample sizes")[1].
if np.unique(nsamples_treatments).size == 1:
# all input groups are the same length, so only one value needs to be
# calculated [1].
normalize = 2 / nsamples_treatments[0]
else:
# to compare groups of differing sizes, we must compute a variance
# value for each individual comparison. Use broadcasting to get the
# resulting matrix. [3], verified against [4] (page 308).
normalize = 1 / nsamples_treatments + 1 / nsamples_treatments[None].T
# the standard error is used in the computation of the tukey criterion and
# finding the p-values.
stand_err = np.sqrt(normalize * mse / 2)
# the mean difference is the test statistic.
mean_differences = means[None].T - means
# Calculate the t-statistic to use within the survival function of the
# studentized range to get the p-value.
t_stat = np.abs(mean_differences) / stand_err
params = t_stat, ntreatments, nobs - ntreatments
pvalues = distributions.studentized_range.sf(*params)
return TukeyHSDResult(mean_differences, pvalues, ntreatments,
nobs, stand_err)
|