File size: 59,747 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
import warnings
from collections import namedtuple
import numpy as np
from scipy import optimize, stats
from scipy._lib._util import check_random_state, _transition_to_rng


def _combine_bounds(name, user_bounds, shape_domain, integral):
    """Intersection of user-defined bounds and distribution PDF/PMF domain"""

    user_bounds = np.atleast_1d(user_bounds)

    if user_bounds[0] > user_bounds[1]:
        message = (f"There are no values for `{name}` on the interval "
                   f"{list(user_bounds)}.")
        raise ValueError(message)

    bounds = (max(user_bounds[0], shape_domain[0]),
              min(user_bounds[1], shape_domain[1]))

    if integral and (np.ceil(bounds[0]) > np.floor(bounds[1])):
        message = (f"There are no integer values for `{name}` on the interval "
                   f"defined by the user-provided bounds and the domain "
                   "of the distribution.")
        raise ValueError(message)
    elif not integral and (bounds[0] > bounds[1]):
        message = (f"There are no values for `{name}` on the interval "
                   f"defined by the user-provided bounds and the domain "
                   "of the distribution.")
        raise ValueError(message)

    if not np.all(np.isfinite(bounds)):
        message = (f"The intersection of user-provided bounds for `{name}` "
                   f"and the domain of the distribution is not finite. Please "
                   f"provide finite bounds for shape `{name}` in `bounds`.")
        raise ValueError(message)

    return bounds


class FitResult:
    r"""Result of fitting a discrete or continuous distribution to data

    Attributes
    ----------
    params : namedtuple
        A namedtuple containing the maximum likelihood estimates of the
        shape parameters, location, and (if applicable) scale of the
        distribution.
    success : bool or None
        Whether the optimizer considered the optimization to terminate
        successfully or not.
    message : str or None
        Any status message provided by the optimizer.

    """

    def __init__(self, dist, data, discrete, res):
        self._dist = dist
        self._data = data
        self.discrete = discrete
        self.pxf = getattr(dist, "pmf", None) or getattr(dist, "pdf", None)

        shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
        if not discrete:
            FitParams = namedtuple('FitParams', shape_names + ['loc', 'scale'])
        else:
            FitParams = namedtuple('FitParams', shape_names + ['loc'])

        self.params = FitParams(*res.x)

        # Optimizer can report success even when nllf is infinite
        if res.success and not np.isfinite(self.nllf()):
            res.success = False
            res.message = ("Optimization converged to parameter values that "
                           "are inconsistent with the data.")
        self.success = getattr(res, "success", None)
        self.message = getattr(res, "message", None)

    def __repr__(self):
        keys = ["params", "success", "message"]
        m = max(map(len, keys)) + 1
        return '\n'.join([key.rjust(m) + ': ' + repr(getattr(self, key))
                          for key in keys if getattr(self, key) is not None])

    def nllf(self, params=None, data=None):
        """Negative log-likelihood function

        Evaluates the negative of the log-likelihood function of the provided
        data at the provided parameters.

        Parameters
        ----------
        params : tuple, optional
            The shape parameters, location, and (if applicable) scale of the
            distribution as a single tuple. Default is the maximum likelihood
            estimates (``self.params``).
        data : array_like, optional
            The data for which the log-likelihood function is to be evaluated.
            Default is the data to which the distribution was fit.

        Returns
        -------
        nllf : float
            The negative of the log-likelihood function.

        """
        params = params if params is not None else self.params
        data = data if data is not None else self._data
        return self._dist.nnlf(theta=params, x=data)

    def plot(self, ax=None, *, plot_type="hist"):
        """Visually compare the data against the fitted distribution.

        Available only if `matplotlib` is installed.

        Parameters
        ----------
        ax : `matplotlib.axes.Axes`
            Axes object to draw the plot onto, otherwise uses the current Axes.
        plot_type : {"hist", "qq", "pp", "cdf"}
            Type of plot to draw. Options include:

            - "hist": Superposes the PDF/PMF of the fitted distribution
              over a normalized histogram of the data.
            - "qq": Scatter plot of theoretical quantiles against the
              empirical quantiles. Specifically, the x-coordinates are the
              values of the fitted distribution PPF evaluated at the
              percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is the
              number of data points, and the y-coordinates are the sorted
              data points.
            - "pp": Scatter plot of theoretical percentiles against the
              observed percentiles. Specifically, the x-coordinates are the
              percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
              the number of data points, and the y-coordinates are the values
              of the fitted distribution CDF evaluated at the sorted
              data points.
            - "cdf": Superposes the CDF of the fitted distribution over the
              empirical CDF. Specifically, the x-coordinates of the empirical
              CDF are the sorted data points, and the y-coordinates are the
              percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
              the number of data points.

        Returns
        -------
        ax : `matplotlib.axes.Axes`
            The matplotlib Axes object on which the plot was drawn.

        Examples
        --------
        >>> import numpy as np
        >>> from scipy import stats
        >>> import matplotlib.pyplot as plt  # matplotlib must be installed
        >>> rng = np.random.default_rng()
        >>> data = stats.nbinom(5, 0.5).rvs(size=1000, random_state=rng)
        >>> bounds = [(0, 30), (0, 1)]
        >>> res = stats.fit(stats.nbinom, data, bounds)
        >>> ax = res.plot()  # save matplotlib Axes object

        The `matplotlib.axes.Axes` object can be used to customize the plot.
        See `matplotlib.axes.Axes` documentation for details.

        >>> ax.set_xlabel('number of trials')  # customize axis label
        >>> ax.get_children()[0].set_linewidth(5)  # customize line widths
        >>> ax.legend()
        >>> plt.show()
        """
        try:
            import matplotlib  # noqa: F401
        except ModuleNotFoundError as exc:
            message = "matplotlib must be installed to use method `plot`."
            raise ModuleNotFoundError(message) from exc

        plots = {'histogram': self._hist_plot, 'qq': self._qq_plot,
                 'pp': self._pp_plot, 'cdf': self._cdf_plot,
                 'hist': self._hist_plot}
        if plot_type.lower() not in plots:
            message = f"`plot_type` must be one of {set(plots.keys())}"
            raise ValueError(message)
        plot = plots[plot_type.lower()]

        if ax is None:
            import matplotlib.pyplot as plt
            ax = plt.gca()

        fit_params = np.atleast_1d(self.params)

        return plot(ax=ax, fit_params=fit_params)

    def _hist_plot(self, ax, fit_params):
        from matplotlib.ticker import MaxNLocator

        support = self._dist.support(*fit_params)
        lb = support[0] if np.isfinite(support[0]) else min(self._data)
        ub = support[1] if np.isfinite(support[1]) else max(self._data)
        pxf = "PMF" if self.discrete else "PDF"

        if self.discrete:
            x = np.arange(lb, ub + 2)
            y = self.pxf(x, *fit_params)
            ax.vlines(x[:-1], 0, y[:-1], label='Fitted Distribution PMF',
                      color='C0')
            options = dict(density=True, bins=x, align='left', color='C1')
            ax.xaxis.set_major_locator(MaxNLocator(integer=True))
            ax.set_xlabel('k')
            ax.set_ylabel('PMF')
        else:
            x = np.linspace(lb, ub, 200)
            y = self.pxf(x, *fit_params)
            ax.plot(x, y, '--', label='Fitted Distribution PDF', color='C0')
            options = dict(density=True, bins=50, align='mid', color='C1')
            ax.set_xlabel('x')
            ax.set_ylabel('PDF')

        if len(self._data) > 50 or self.discrete:
            ax.hist(self._data, label="Histogram of Data", **options)
        else:
            ax.plot(self._data, np.zeros_like(self._data), "*",
                    label='Data', color='C1')

        ax.set_title(rf"Fitted $\tt {self._dist.name}$ {pxf} and Histogram")
        ax.legend(*ax.get_legend_handles_labels())
        return ax

    def _qp_plot(self, ax, fit_params, qq):
        data = np.sort(self._data)
        ps = self._plotting_positions(len(self._data))

        if qq:
            qp = "Quantiles"
            plot_type = 'Q-Q'
            x = self._dist.ppf(ps, *fit_params)
            y = data
        else:
            qp = "Percentiles"
            plot_type = 'P-P'
            x = ps
            y = self._dist.cdf(data, *fit_params)

        ax.plot(x, y, '.', label=f'Fitted Distribution {plot_type}',
                color='C0', zorder=1)
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()
        lim = [min(xlim[0], ylim[0]), max(xlim[1], ylim[1])]
        if not qq:
            lim = max(lim[0], 0), min(lim[1], 1)

        if self.discrete and qq:
            q_min, q_max = int(lim[0]), int(lim[1]+1)
            q_ideal = np.arange(q_min, q_max)
            # q_ideal = np.unique(self._dist.ppf(ps, *fit_params))
            ax.plot(q_ideal, q_ideal, 'o', label='Reference', color='k',
                    alpha=0.25, markerfacecolor='none', clip_on=True)
        elif self.discrete and not qq:
            # The intent of this is to match the plot that would be produced
            # if x were continuous on [0, 1] and y were cdf(ppf(x)).
            # It can be approximated by letting x = np.linspace(0, 1, 1000),
            # but this might not look great when zooming in. The vertical
            # portions are included to indicate where the transition occurs
            # where the data completely obscures the horizontal portions.
            p_min, p_max = lim
            a, b = self._dist.support(*fit_params)
            p_min = max(p_min, 0 if np.isfinite(a) else 1e-3)
            p_max = min(p_max, 1 if np.isfinite(b) else 1-1e-3)
            q_min, q_max = self._dist.ppf([p_min, p_max], *fit_params)
            qs = np.arange(q_min-1, q_max+1)
            ps = self._dist.cdf(qs, *fit_params)
            ax.step(ps, ps, '-', label='Reference', color='k', alpha=0.25,
                    clip_on=True)
        else:
            ax.plot(lim, lim, '-', label='Reference', color='k', alpha=0.25,
                    clip_on=True)

        ax.set_xlim(lim)
        ax.set_ylim(lim)
        ax.set_xlabel(rf"Fitted $\tt {self._dist.name}$ Theoretical {qp}")
        ax.set_ylabel(f"Data {qp}")
        ax.set_title(rf"Fitted $\tt {self._dist.name}$ {plot_type} Plot")
        ax.legend(*ax.get_legend_handles_labels())
        ax.set_aspect('equal')
        return ax

    def _qq_plot(self, **kwargs):
        return self._qp_plot(qq=True, **kwargs)

    def _pp_plot(self, **kwargs):
        return self._qp_plot(qq=False, **kwargs)

    def _plotting_positions(self, n, a=.5):
        # See https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot#Plotting_positions
        k = np.arange(1, n+1)
        return (k-a) / (n + 1 - 2*a)

    def _cdf_plot(self, ax, fit_params):
        data = np.sort(self._data)
        ecdf = self._plotting_positions(len(self._data))
        ls = '--' if len(np.unique(data)) < 30 else '.'
        xlabel = 'k' if self.discrete else 'x'
        ax.step(data, ecdf, ls, label='Empirical CDF', color='C1', zorder=0)

        xlim = ax.get_xlim()
        q = np.linspace(*xlim, 300)
        tcdf = self._dist.cdf(q, *fit_params)

        ax.plot(q, tcdf, label='Fitted Distribution CDF', color='C0', zorder=1)
        ax.set_xlim(xlim)
        ax.set_ylim(0, 1)
        ax.set_xlabel(xlabel)
        ax.set_ylabel("CDF")
        ax.set_title(rf"Fitted $\tt {self._dist.name}$ and Empirical CDF")
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(handles[::-1], labels[::-1])
        return ax


def fit(dist, data, bounds=None, *, guess=None, method='mle',
        optimizer=optimize.differential_evolution):
    r"""Fit a discrete or continuous distribution to data

    Given a distribution, data, and bounds on the parameters of the
    distribution, return maximum likelihood estimates of the parameters.

    Parameters
    ----------
    dist : `scipy.stats.rv_continuous` or `scipy.stats.rv_discrete`
        The object representing the distribution to be fit to the data.
    data : 1D array_like
        The data to which the distribution is to be fit. If the data contain
        any of ``np.nan``, ``np.inf``, or -``np.inf``, the fit method will
        raise a ``ValueError``.
    bounds : dict or sequence of tuples, optional
        If a dictionary, each key is the name of a parameter of the
        distribution, and the corresponding value is a tuple containing the
        lower and upper bound on that parameter.  If the distribution is
        defined only for a finite range of values of that parameter, no entry
        for that parameter is required; e.g., some distributions have
        parameters which must be on the interval [0, 1]. Bounds for parameters
        location (``loc``) and scale (``scale``) are optional; by default,
        they are fixed to 0 and 1, respectively.

        If a sequence, element *i* is a tuple containing the lower and upper
        bound on the *i*\ th parameter of the distribution. In this case,
        bounds for *all* distribution shape parameters must be provided.
        Optionally, bounds for location and scale may follow the
        distribution shape parameters.

        If a shape is to be held fixed (e.g. if it is known), the
        lower and upper bounds may be equal. If a user-provided lower or upper
        bound is beyond a bound of the domain for which the distribution is
        defined, the bound of the distribution's domain will replace the
        user-provided value. Similarly, parameters which must be integral
        will be constrained to integral values within the user-provided bounds.
    guess : dict or array_like, optional
        If a dictionary, each key is the name of a parameter of the
        distribution, and the corresponding value is a guess for the value
        of the parameter.

        If a sequence, element *i* is a guess for the *i*\ th parameter of the
        distribution. In this case, guesses for *all* distribution shape
        parameters must be provided.

        If `guess` is not provided, guesses for the decision variables will
        not be passed to the optimizer. If `guess` is provided, guesses for
        any missing parameters will be set at the mean of the lower and
        upper bounds. Guesses for parameters which must be integral will be
        rounded to integral values, and guesses that lie outside the
        intersection of the user-provided bounds and the domain of the
        distribution will be clipped.
    method : {'mle', 'mse'}
        With ``method="mle"`` (default), the fit is computed by minimizing
        the negative log-likelihood function. A large, finite penalty
        (rather than infinite negative log-likelihood) is applied for
        observations beyond the support of the distribution.
        With ``method="mse"``, the fit is computed by minimizing
        the negative log-product spacing function. The same penalty is applied
        for observations beyond the support. We follow the approach of [1]_,
        which is generalized for samples with repeated observations.
    optimizer : callable, optional
        `optimizer` is a callable that accepts the following positional
        argument.

        fun : callable
            The objective function to be optimized. `fun` accepts one argument
            ``x``, candidate shape parameters of the distribution, and returns
            the objective function value given ``x``, `dist`, and the provided
            `data`.
            The job of `optimizer` is to find values of the decision variables
            that minimizes `fun`.

        `optimizer` must also accept the following keyword argument.

        bounds : sequence of tuples
            The bounds on values of the decision variables; each element will
            be a tuple containing the lower and upper bound on a decision
            variable.

        If `guess` is provided, `optimizer` must also accept the following
        keyword argument.

        x0 : array_like
            The guesses for each decision variable.

        If the distribution has any shape parameters that must be integral or
        if the distribution is discrete and the location parameter is not
        fixed, `optimizer` must also accept the following keyword argument.

        integrality : array_like of bools
            For each decision variable, True if the decision variable
            must be constrained to integer values and False if the decision
            variable is continuous.

        `optimizer` must return an object, such as an instance of
        `scipy.optimize.OptimizeResult`, which holds the optimal values of
        the decision variables in an attribute ``x``. If attributes
        ``fun``, ``status``, or ``message`` are provided, they will be
        included in the result object returned by `fit`.

    Returns
    -------
    result : `~scipy.stats._result_classes.FitResult`
        An object with the following fields.

        params : namedtuple
            A namedtuple containing the maximum likelihood estimates of the
            shape parameters, location, and (if applicable) scale of the
            distribution.
        success : bool or None
            Whether the optimizer considered the optimization to terminate
            successfully or not.
        message : str or None
            Any status message provided by the optimizer.

        The object has the following method:

        nllf(params=None, data=None)
            By default, the negative log-likelihood function at the fitted
            `params` for the given `data`. Accepts a tuple containing
            alternative shapes, location, and scale of the distribution and
            an array of alternative data.

        plot(ax=None)
            Superposes the PDF/PMF of the fitted distribution over a normalized
            histogram of the data.

    See Also
    --------
    rv_continuous,  rv_discrete

    Notes
    -----
    Optimization is more likely to converge to the maximum likelihood estimate
    when the user provides tight bounds containing the maximum likelihood
    estimate. For example, when fitting a binomial distribution to data, the
    number of experiments underlying each sample may be known, in which case
    the corresponding shape parameter ``n`` can be fixed.

    References
    ----------
    .. [1] Shao, Yongzhao, and Marjorie G. Hahn. "Maximum product of spacings
           method: a unified formulation with illustration of strong
           consistency." Illinois Journal of Mathematics 43.3 (1999): 489-499.

    Examples
    --------
    Suppose we wish to fit a distribution to the following data.

    >>> import numpy as np
    >>> from scipy import stats
    >>> rng = np.random.default_rng()
    >>> dist = stats.nbinom
    >>> shapes = (5, 0.5)
    >>> data = dist.rvs(*shapes, size=1000, random_state=rng)

    Suppose we do not know how the data were generated, but we suspect that
    it follows a negative binomial distribution with parameters *n* and *p*\.
    (See `scipy.stats.nbinom`.) We believe that the parameter *n* was fewer
    than 30, and we know that the parameter *p* must lie on the interval
    [0, 1]. We record this information in a variable `bounds` and pass
    this information to `fit`.

    >>> bounds = [(0, 30), (0, 1)]
    >>> res = stats.fit(dist, data, bounds)

    `fit` searches within the user-specified `bounds` for the
    values that best match the data (in the sense of maximum likelihood
    estimation). In this case, it found shape values similar to those
    from which the data were actually generated.

    >>> res.params
    FitParams(n=5.0, p=0.5028157644634368, loc=0.0)  # may vary

    We can visualize the results by superposing the probability mass function
    of the distribution (with the shapes fit to the data) over a normalized
    histogram of the data.

    >>> import matplotlib.pyplot as plt  # matplotlib must be installed to plot
    >>> res.plot()
    >>> plt.show()

    Note that the estimate for *n* was exactly integral; this is because
    the domain of the `nbinom` PMF includes only integral *n*, and the `nbinom`
    object "knows" that. `nbinom` also knows that the shape *p* must be a
    value between 0 and 1. In such a case - when the domain of the distribution
    with respect to a parameter is finite - we are not required to specify
    bounds for the parameter.

    >>> bounds = {'n': (0, 30)}  # omit parameter p using a `dict`
    >>> res2 = stats.fit(dist, data, bounds)
    >>> res2.params
    FitParams(n=5.0, p=0.5016492009232932, loc=0.0)  # may vary

    If we wish to force the distribution to be fit with *n* fixed at 6, we can
    set both the lower and upper bounds on *n* to 6. Note, however, that the
    value of the objective function being optimized is typically worse (higher)
    in this case.

    >>> bounds = {'n': (6, 6)}  # fix parameter `n`
    >>> res3 = stats.fit(dist, data, bounds)
    >>> res3.params
    FitParams(n=6.0, p=0.5486556076755706, loc=0.0)  # may vary
    >>> res3.nllf() > res.nllf()
    True  # may vary

    Note that the numerical results of the previous examples are typical, but
    they may vary because the default optimizer used by `fit`,
    `scipy.optimize.differential_evolution`, is stochastic. However, we can
    customize the settings used by the optimizer to ensure reproducibility -
    or even use a different optimizer entirely - using the `optimizer`
    parameter.

    >>> from scipy.optimize import differential_evolution
    >>> rng = np.random.default_rng(767585560716548)
    >>> def optimizer(fun, bounds, *, integrality):
    ...     return differential_evolution(fun, bounds, strategy='best2bin',
    ...                                   rng=rng, integrality=integrality)
    >>> bounds = [(0, 30), (0, 1)]
    >>> res4 = stats.fit(dist, data, bounds, optimizer=optimizer)
    >>> res4.params
    FitParams(n=5.0, p=0.5015183149259951, loc=0.0)

    """
    # --- Input Validation / Standardization --- #
    user_bounds = bounds
    user_guess = guess

    # distribution input validation and information collection
    if hasattr(dist, "pdf"):  # can't use isinstance for types
        default_bounds = {'loc': (0, 0), 'scale': (1, 1)}
        discrete = False
    elif hasattr(dist, "pmf"):
        default_bounds = {'loc': (0, 0)}
        discrete = True
    else:
        message = ("`dist` must be an instance of `rv_continuous` "
                   "or `rv_discrete.`")
        raise ValueError(message)

    try:
        param_info = dist._param_info()
    except AttributeError as e:
        message = (f"Distribution `{dist.name}` is not yet supported by "
                   "`scipy.stats.fit` because shape information has "
                   "not been defined.")
        raise ValueError(message) from e

    # data input validation
    data = np.asarray(data)
    if data.ndim != 1:
        message = "`data` must be exactly one-dimensional."
        raise ValueError(message)
    if not (np.issubdtype(data.dtype, np.number)
            and np.all(np.isfinite(data))):
        message = "All elements of `data` must be finite numbers."
        raise ValueError(message)

    # bounds input validation and information collection
    n_params = len(param_info)
    n_shapes = n_params - (1 if discrete else 2)
    param_list = [param.name for param in param_info]
    param_names = ", ".join(param_list)
    shape_names = ", ".join(param_list[:n_shapes])

    if user_bounds is None:
        user_bounds = {}

    if isinstance(user_bounds, dict):
        default_bounds.update(user_bounds)
        user_bounds = default_bounds
        user_bounds_array = np.empty((n_params, 2))
        for i in range(n_params):
            param_name = param_info[i].name
            user_bound = user_bounds.pop(param_name, None)
            if user_bound is None:
                user_bound = param_info[i].domain
            user_bounds_array[i] = user_bound
        if user_bounds:
            message = ("Bounds provided for the following unrecognized "
                       f"parameters will be ignored: {set(user_bounds)}")
            warnings.warn(message, RuntimeWarning, stacklevel=2)

    else:
        try:
            user_bounds = np.asarray(user_bounds, dtype=float)
            if user_bounds.size == 0:
                user_bounds = np.empty((0, 2))
        except ValueError as e:
            message = ("Each element of a `bounds` sequence must be a tuple "
                       "containing two elements: the lower and upper bound of "
                       "a distribution parameter.")
            raise ValueError(message) from e
        if (user_bounds.ndim != 2 or user_bounds.shape[1] != 2):
            message = ("Each element of `bounds` must be a tuple specifying "
                       "the lower and upper bounds of a shape parameter")
            raise ValueError(message)
        if user_bounds.shape[0] < n_shapes:
            message = (f"A `bounds` sequence must contain at least {n_shapes} "
                       "elements: tuples specifying the lower and upper "
                       f"bounds of all shape parameters {shape_names}.")
            raise ValueError(message)
        if user_bounds.shape[0] > n_params:
            message = ("A `bounds` sequence may not contain more than "
                       f"{n_params} elements: tuples specifying the lower and "
                       "upper bounds of distribution parameters "
                       f"{param_names}.")
            raise ValueError(message)

        user_bounds_array = np.empty((n_params, 2))
        user_bounds_array[n_shapes:] = list(default_bounds.values())
        user_bounds_array[:len(user_bounds)] = user_bounds

    user_bounds = user_bounds_array
    validated_bounds = []
    for i in range(n_params):
        name = param_info[i].name
        user_bound = user_bounds_array[i]
        param_domain = param_info[i].domain
        integral = param_info[i].integrality
        combined = _combine_bounds(name, user_bound, param_domain, integral)
        validated_bounds.append(combined)

    bounds = np.asarray(validated_bounds)
    integrality = [param.integrality for param in param_info]

    # guess input validation

    if user_guess is None:
        guess_array = None
    elif isinstance(user_guess, dict):
        default_guess = {param.name: np.mean(bound)
                         for param, bound in zip(param_info, bounds)}
        unrecognized = set(user_guess) - set(default_guess)
        if unrecognized:
            message = ("Guesses provided for the following unrecognized "
                       f"parameters will be ignored: {unrecognized}")
            warnings.warn(message, RuntimeWarning, stacklevel=2)
        default_guess.update(user_guess)

        message = ("Each element of `guess` must be a scalar "
                   "guess for a distribution parameter.")
        try:
            guess_array = np.asarray([default_guess[param.name]
                                      for param in param_info], dtype=float)
        except ValueError as e:
            raise ValueError(message) from e

    else:
        message = ("Each element of `guess` must be a scalar "
                   "guess for a distribution parameter.")
        try:
            user_guess = np.asarray(user_guess, dtype=float)
        except ValueError as e:
            raise ValueError(message) from e
        if user_guess.ndim != 1:
            raise ValueError(message)
        if user_guess.shape[0] < n_shapes:
            message = (f"A `guess` sequence must contain at least {n_shapes} "
                       "elements: scalar guesses for the distribution shape "
                       f"parameters {shape_names}.")
            raise ValueError(message)
        if user_guess.shape[0] > n_params:
            message = ("A `guess` sequence may not contain more than "
                       f"{n_params} elements: scalar guesses for the "
                       f"distribution parameters {param_names}.")
            raise ValueError(message)

        guess_array = np.mean(bounds, axis=1)
        guess_array[:len(user_guess)] = user_guess

    if guess_array is not None:
        guess_rounded = guess_array.copy()

        guess_rounded[integrality] = np.round(guess_rounded[integrality])
        rounded = np.where(guess_rounded != guess_array)[0]
        for i in rounded:
            message = (f"Guess for parameter `{param_info[i].name}` "
                       f"rounded from {guess_array[i]} to {guess_rounded[i]}.")
            warnings.warn(message, RuntimeWarning, stacklevel=2)

        guess_clipped = np.clip(guess_rounded, bounds[:, 0], bounds[:, 1])
        clipped = np.where(guess_clipped != guess_rounded)[0]
        for i in clipped:
            message = (f"Guess for parameter `{param_info[i].name}` "
                       f"clipped from {guess_rounded[i]} to "
                       f"{guess_clipped[i]}.")
            warnings.warn(message, RuntimeWarning, stacklevel=2)

        guess = guess_clipped
    else:
        guess = None

    # --- Fitting --- #
    def nllf(free_params, data=data):  # bind data NOW
        with np.errstate(invalid='ignore', divide='ignore'):
            return dist._penalized_nnlf(free_params, data)

    def nlpsf(free_params, data=data):  # bind data NOW
        with np.errstate(invalid='ignore', divide='ignore'):
            return dist._penalized_nlpsf(free_params, data)

    methods = {'mle': nllf, 'mse': nlpsf}
    objective = methods[method.lower()]

    with np.errstate(invalid='ignore', divide='ignore'):
        kwds = {}
        if bounds is not None:
            kwds['bounds'] = bounds
        if np.any(integrality):
            kwds['integrality'] = integrality
        if guess is not None:
            kwds['x0'] = guess
        res = optimizer(objective, **kwds)

    return FitResult(dist, data, discrete, res)


GoodnessOfFitResult = namedtuple('GoodnessOfFitResult',
                                 ('fit_result', 'statistic', 'pvalue',
                                  'null_distribution'))


@_transition_to_rng('random_state')
def goodness_of_fit(dist, data, *, known_params=None, fit_params=None,
                    guessed_params=None, statistic='ad', n_mc_samples=9999,
                    rng=None):
    r"""
    Perform a goodness of fit test comparing data to a distribution family.

    Given a distribution family and data, perform a test of the null hypothesis
    that the data were drawn from a distribution in that family. Any known
    parameters of the distribution may be specified. Remaining parameters of
    the distribution will be fit to the data, and the p-value of the test
    is computed accordingly. Several statistics for comparing the distribution
    to data are available.

    Parameters
    ----------
    dist : `scipy.stats.rv_continuous`
        The object representing the distribution family under the null
        hypothesis.
    data : 1D array_like
        Finite, uncensored data to be tested.
    known_params : dict, optional
        A dictionary containing name-value pairs of known distribution
        parameters. Monte Carlo samples are randomly drawn from the
        null-hypothesized distribution with these values of the parameters.
        Before the statistic is evaluated for the observed `data` and each
        Monte Carlo sample, only remaining unknown parameters of the
        null-hypothesized distribution family are fit to the samples; the
        known parameters are held fixed. If all parameters of the distribution
        family are known, then the step of fitting the distribution family to
        each sample is omitted.
    fit_params : dict, optional
        A dictionary containing name-value pairs of distribution parameters
        that have already been fit to the data, e.g. using `scipy.stats.fit`
        or the ``fit`` method of `dist`. Monte Carlo samples are drawn from the
        null-hypothesized distribution with these specified values of the
        parameter. However, these and all other unknown parameters of the
        null-hypothesized distribution family are always fit to the sample,
        whether that is the observed `data` or a Monte Carlo sample, before
        the statistic is evaluated.
    guessed_params : dict, optional
        A dictionary containing name-value pairs of distribution parameters
        which have been guessed. These parameters are always considered as
        free parameters and are fit both to the provided `data` as well as
        to the Monte Carlo samples drawn from the null-hypothesized
        distribution. The purpose of these `guessed_params` is to be used as
        initial values for the numerical fitting procedure.
    statistic : {"ad", "ks", "cvm", "filliben"} or callable, optional
        The statistic used to compare data to a distribution after fitting
        unknown parameters of the distribution family to the data. The
        Anderson-Darling ("ad") [1]_, Kolmogorov-Smirnov ("ks") [1]_,
        Cramer-von Mises ("cvm") [1]_, and Filliben ("filliben") [7]_
        statistics are available.  Alternatively, a callable with signature
        ``(dist, data, axis)`` may be supplied to compute the statistic. Here
        ``dist`` is a frozen distribution object (potentially with array
        parameters), ``data`` is an array of Monte Carlo samples (of
        compatible shape), and ``axis`` is the axis of ``data`` along which
        the statistic must be computed.
    n_mc_samples : int, default: 9999
        The number of Monte Carlo samples drawn from the null hypothesized
        distribution to form the null distribution of the statistic. The
        sample size of each is the same as the given `data`.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.

    Returns
    -------
    res : GoodnessOfFitResult
        An object with the following attributes.

        fit_result : `~scipy.stats._result_classes.FitResult`
            An object representing the fit of the provided `dist` to `data`.
            This  object includes the values of distribution family parameters
            that fully define the null-hypothesized distribution, that is,
            the distribution from which Monte Carlo samples are drawn.
        statistic : float
            The value of the statistic comparing provided `data` to the
            null-hypothesized distribution.
        pvalue : float
            The proportion of elements in the null distribution with
            statistic values at least as extreme as the statistic value of the
            provided `data`.
        null_distribution : ndarray
            The value of the statistic for each Monte Carlo sample
            drawn from the null-hypothesized distribution.

    Notes
    -----
    This is a generalized Monte Carlo goodness-of-fit procedure, special cases
    of which correspond with various Anderson-Darling tests, Lilliefors' test,
    etc. The test is described in [2]_, [3]_, and [4]_ as a parametric
    bootstrap test. This is a Monte Carlo test in which parameters that
    specify the distribution from which samples are drawn have been estimated
    from the data. We describe the test using "Monte Carlo" rather than
    "parametric bootstrap" throughout to avoid confusion with the more familiar
    nonparametric bootstrap, and describe how the test is performed below.

    *Traditional goodness of fit tests*

    Traditionally, critical values corresponding with a fixed set of
    significance levels are pre-calculated using Monte Carlo methods. Users
    perform the test by calculating the value of the test statistic only for
    their observed `data` and comparing this value to tabulated critical
    values. This practice is not very flexible, as tables are not available for
    all distributions and combinations of known and unknown parameter values.
    Also, results can be inaccurate when critical values are interpolated from
    limited tabulated data to correspond with the user's sample size and
    fitted parameter values. To overcome these shortcomings, this function
    allows the user to perform the Monte Carlo trials adapted to their
    particular data.

    *Algorithmic overview*

    In brief, this routine executes the following steps:

      1. Fit unknown parameters to the given `data`, thereby forming the
         "null-hypothesized" distribution, and compute the statistic of
         this pair of data and distribution.
      2. Draw random samples from this null-hypothesized distribution.
      3. Fit the unknown parameters to each random sample.
      4. Calculate the statistic between each sample and the distribution that
         has been fit to the sample.
      5. Compare the value of the statistic corresponding with `data` from (1)
         against the values of the statistic corresponding with the random
         samples from (4). The p-value is the proportion of samples with a
         statistic value greater than or equal to the statistic of the observed
         data.

    In more detail, the steps are as follows.

    First, any unknown parameters of the distribution family specified by
    `dist` are fit to the provided `data` using maximum likelihood estimation.
    (One exception is the normal distribution with unknown location and scale:
    we use the bias-corrected standard deviation ``np.std(data, ddof=1)`` for
    the scale as recommended in [1]_.)
    These values of the parameters specify a particular member of the
    distribution family referred to as the "null-hypothesized distribution",
    that is, the distribution from which the data were sampled under the null
    hypothesis. The `statistic`, which compares data to a distribution, is
    computed between `data` and the null-hypothesized distribution.

    Next, many (specifically `n_mc_samples`) new samples, each containing the
    same number of observations as `data`, are drawn from the
    null-hypothesized distribution. All unknown parameters of the distribution
    family `dist` are fit to *each resample*, and the `statistic` is computed
    between each sample and its corresponding fitted distribution. These
    values of the statistic form the Monte Carlo null distribution (not to be
    confused with the "null-hypothesized distribution" above).

    The p-value of the test is the proportion of statistic values in the Monte
    Carlo null distribution that are at least as extreme as the statistic value
    of the provided `data`. More precisely, the p-value is given by

    .. math::

        p = \frac{b + 1}
                 {m + 1}

    where :math:`b` is the number of statistic values in the Monte Carlo null
    distribution that are greater than or equal to the statistic value
    calculated for `data`, and :math:`m` is the number of elements in the
    Monte Carlo null distribution (`n_mc_samples`). The addition of :math:`1`
    to the numerator and denominator can be thought of as including the
    value of the statistic corresponding with `data` in the null distribution,
    but a more formal explanation is given in [5]_.

    *Limitations*

    The test can be very slow for some distribution families because unknown
    parameters of the distribution family must be fit to each of the Monte
    Carlo samples, and for most distributions in SciPy, distribution fitting
    performed via numerical optimization.

    *Anti-Pattern*

    For this reason, it may be tempting
    to treat parameters of the distribution pre-fit to `data` (by the user)
    as though they were `known_params`, as specification of all parameters of
    the distribution precludes the need to fit the distribution to each Monte
    Carlo sample. (This is essentially how the original Kilmogorov-Smirnov
    test is performed.) Although such a test can provide evidence against the
    null hypothesis, the test is conservative in the sense that small p-values
    will tend to (greatly) *overestimate* the probability of making a type I
    error (that is, rejecting the null hypothesis although it is true), and the
    power of the test is low (that is, it is less likely to reject the null
    hypothesis even when the null hypothesis is false).
    This is because the Monte Carlo samples are less likely to agree with the
    null-hypothesized distribution as well as `data`. This tends to increase
    the values of the statistic recorded in the null distribution, so that a
    larger number of them exceed the value of statistic for `data`, thereby
    inflating the p-value.

    References
    ----------
    .. [1] M. A. Stephens (1974). "EDF Statistics for Goodness of Fit and
           Some Comparisons." Journal of the American Statistical Association,
           Vol. 69, pp. 730-737.
    .. [2] W. Stute, W. G. Manteiga, and M. P. Quindimil (1993).
           "Bootstrap based goodness-of-fit-tests." Metrika 40.1: 243-256.
    .. [3] C. Genest, & B Rémillard. (2008). "Validity of the parametric
           bootstrap for goodness-of-fit testing in semiparametric models."
           Annales de l'IHP Probabilités et statistiques. Vol. 44. No. 6.
    .. [4] I. Kojadinovic and J. Yan (2012). "Goodness-of-fit testing based on
           a weighted bootstrap: A fast large-sample alternative to the
           parametric bootstrap." Canadian Journal of Statistics 40.3: 480-500.
    .. [5] B. Phipson and G. K. Smyth (2010). "Permutation P-values Should
           Never Be Zero: Calculating Exact P-values When Permutations Are
           Randomly Drawn." Statistical Applications in Genetics and Molecular
           Biology 9.1.
    .. [6] H. W. Lilliefors (1967). "On the Kolmogorov-Smirnov test for
           normality with mean and variance unknown." Journal of the American
           statistical Association 62.318: 399-402.
    .. [7] Filliben, James J. "The probability plot correlation coefficient
           test for normality." Technometrics 17.1 (1975): 111-117.

    Examples
    --------
    A well-known test of the null hypothesis that data were drawn from a
    given distribution is the Kolmogorov-Smirnov (KS) test, available in SciPy
    as `scipy.stats.ks_1samp`. Suppose we wish to test whether the following
    data:

    >>> import numpy as np
    >>> from scipy import stats
    >>> rng = np.random.default_rng()
    >>> x = stats.uniform.rvs(size=75, random_state=rng)

    were sampled from a normal distribution. To perform a KS test, the
    empirical distribution function of the observed data will be compared
    against the (theoretical) cumulative distribution function of a normal
    distribution. Of course, to do this, the normal distribution under the null
    hypothesis must be fully specified. This is commonly done by first fitting
    the ``loc`` and ``scale`` parameters of the distribution to the observed
    data, then performing the test.

    >>> loc, scale = np.mean(x), np.std(x, ddof=1)
    >>> cdf = stats.norm(loc, scale).cdf
    >>> stats.ks_1samp(x, cdf)
    KstestResult(statistic=0.1119257570456813,
                 pvalue=0.2827756409939257,
                 statistic_location=0.7751845155861765,
                 statistic_sign=-1)

    An advantage of the KS-test is that the p-value - the probability of
    obtaining a value of the test statistic under the null hypothesis as
    extreme as the value obtained from the observed data - can be calculated
    exactly and efficiently. `goodness_of_fit` can only approximate these
    results.

    >>> known_params = {'loc': loc, 'scale': scale}
    >>> res = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
    ...                             statistic='ks', rng=rng)
    >>> res.statistic, res.pvalue
    (0.1119257570456813, 0.2788)

    The statistic matches exactly, but the p-value is estimated by forming
    a "Monte Carlo null distribution", that is, by explicitly drawing random
    samples from `scipy.stats.norm` with the provided parameters and
    calculating the stastic for each. The fraction of these statistic values
    at least as extreme as ``res.statistic`` approximates the exact p-value
    calculated by `scipy.stats.ks_1samp`.

    However, in many cases, we would prefer to test only that the data were
    sampled from one of *any* member of the normal distribution family, not
    specifically from the normal distribution with the location and scale
    fitted to the observed sample. In this case, Lilliefors [6]_ argued that
    the KS test is far too conservative (that is, the p-value overstates
    the actual probability of rejecting a true null hypothesis) and thus lacks
    power - the ability to reject the null hypothesis when the null hypothesis
    is actually false.
    Indeed, our p-value above is approximately 0.28, which is far too large
    to reject the null hypothesis at any common significance level.

    Consider why this might be. Note that in the KS test above, the statistic
    always compares data against the CDF of a normal distribution fitted to the
    *observed data*. This tends to reduce the value of the statistic for the
    observed data, but it is "unfair" when computing the statistic for other
    samples, such as those we randomly draw to form the Monte Carlo null
    distribution. It is easy to correct for this: whenever we compute the KS
    statistic of a sample, we use the CDF of a normal distribution fitted
    to *that sample*. The null distribution in this case has not been
    calculated exactly and is tyically approximated using Monte Carlo methods
    as described above. This is where `goodness_of_fit` excels.

    >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ks',
    ...                             rng=rng)
    >>> res.statistic, res.pvalue
    (0.1119257570456813, 0.0196)

    Indeed, this p-value is much smaller, and small enough to (correctly)
    reject the null hypothesis at common significance levels, including 5% and
    2.5%.

    However, the KS statistic is not very sensitive to all deviations from
    normality. The original advantage of the KS statistic was the ability
    to compute the null distribution theoretically, but a more sensitive
    statistic - resulting in a higher test power - can be used now that we can
    approximate the null distribution
    computationally. The Anderson-Darling statistic [1]_ tends to be more
    sensitive, and critical values of the this statistic have been tabulated
    for various significance levels and sample sizes using Monte Carlo methods.

    >>> res = stats.anderson(x, 'norm')
    >>> print(res.statistic)
    1.2139573337497467
    >>> print(res.critical_values)
    [0.549 0.625 0.75  0.875 1.041]
    >>> print(res.significance_level)
    [15.  10.   5.   2.5  1. ]

    Here, the observed value of the statistic exceeds the critical value
    corresponding with a 1% significance level. This tells us that the p-value
    of the observed data is less than 1%, but what is it? We could interpolate
    from these (already-interpolated) values, but `goodness_of_fit` can
    estimate it directly.

    >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ad',
    ...                             rng=rng)
    >>> res.statistic, res.pvalue
    (1.2139573337497467, 0.0034)

    A further advantage is that use of `goodness_of_fit` is not limited to
    a particular set of distributions or conditions on which parameters
    are known versus which must be estimated from data. Instead,
    `goodness_of_fit` can estimate p-values relatively quickly for any
    distribution with a sufficiently fast and reliable ``fit`` method. For
    instance, here we perform a goodness of fit test using the Cramer-von Mises
    statistic against the Rayleigh distribution with known location and unknown
    scale.

    >>> rng = np.random.default_rng()
    >>> x = stats.chi(df=2.2, loc=0, scale=2).rvs(size=1000, random_state=rng)
    >>> res = stats.goodness_of_fit(stats.rayleigh, x, statistic='cvm',
    ...                             known_params={'loc': 0}, rng=rng)

    This executes fairly quickly, but to check the reliability of the ``fit``
    method, we should inspect the fit result.

    >>> res.fit_result  # location is as specified, and scale is reasonable
      params: FitParams(loc=0.0, scale=2.1026719844231243)
     success: True
     message: 'The fit was performed successfully.'
    >>> import matplotlib.pyplot as plt  # matplotlib must be installed to plot
    >>> res.fit_result.plot()
    >>> plt.show()

    If the distribution is not fit to the observed data as well as possible,
    the test may not control the type I error rate, that is, the chance of
    rejecting the null hypothesis even when it is true.

    We should also look for extreme outliers in the null distribution that
    may be caused by unreliable fitting. These do not necessarily invalidate
    the result, but they tend to reduce the test's power.

    >>> _, ax = plt.subplots()
    >>> ax.hist(np.log10(res.null_distribution))
    >>> ax.set_xlabel("log10 of CVM statistic under the null hypothesis")
    >>> ax.set_ylabel("Frequency")
    >>> ax.set_title("Histogram of the Monte Carlo null distribution")
    >>> plt.show()

    This plot seems reassuring.

    If ``fit`` method is working reliably, and if the distribution of the test
    statistic is not particularly sensitive to the values of the fitted
    parameters, then the p-value provided by `goodness_of_fit` is expected to
    be a good approximation.

    >>> res.statistic, res.pvalue
    (0.2231991510248692, 0.0525)

    """
    args = _gof_iv(dist, data, known_params, fit_params, guessed_params,
                   statistic, n_mc_samples, rng)
    (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
     guessed_rfd_params, statistic, n_mc_samples_int, rng) = args

    # Fit null hypothesis distribution to data
    nhd_fit_fun = _get_fit_fun(dist, data, guessed_nhd_params,
                               fixed_nhd_params)
    nhd_vals = nhd_fit_fun(data)
    nhd_dist = dist(*nhd_vals)

    def rvs(size):
        return nhd_dist.rvs(size=size, random_state=rng)

    # Define statistic
    fit_fun = _get_fit_fun(dist, data, guessed_rfd_params, fixed_rfd_params)
    if callable(statistic):
        compare_fun = statistic
    else:
        compare_fun = _compare_dict[statistic]
    alternative = getattr(compare_fun, 'alternative', 'greater')

    def statistic_fun(data, axis):
        # Make things simple by always working along the last axis.
        data = np.moveaxis(data, axis, -1)
        rfd_vals = fit_fun(data)
        rfd_dist = dist(*rfd_vals)
        return compare_fun(rfd_dist, data, axis=-1)

    res = stats.monte_carlo_test(data, rvs, statistic_fun, vectorized=True,
                                 n_resamples=n_mc_samples, axis=-1,
                                 alternative=alternative)
    opt_res = optimize.OptimizeResult()
    opt_res.success = True
    opt_res.message = "The fit was performed successfully."
    opt_res.x = nhd_vals
    # Only continuous distributions for now, hence discrete=False
    # There's no fundamental limitation; it's just that we're not using
    # stats.fit, discrete distributions don't have `fit` method, and
    # we haven't written any vectorized fit functions for a discrete
    # distribution yet.
    return GoodnessOfFitResult(FitResult(dist, data, False, opt_res),
                               res.statistic, res.pvalue,
                               res.null_distribution)


def _get_fit_fun(dist, data, guessed_params, fixed_params):

    shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
    param_names = shape_names + ['loc', 'scale']
    fparam_names = ['f'+name for name in param_names]
    all_fixed = not set(fparam_names).difference(fixed_params)
    guessed_shapes = [guessed_params.pop(x, None)
                      for x in shape_names if x in guessed_params]

    if all_fixed:
        def fit_fun(data):
            return [fixed_params[name] for name in fparam_names]
    # Define statistic, including fitting distribution to data
    elif dist in _fit_funs:
        def fit_fun(data):
            params = _fit_funs[dist](data, **fixed_params)
            params = np.asarray(np.broadcast_arrays(*params))
            if params.ndim > 1:
                params = params[..., np.newaxis]
            return params
    else:
        def fit_fun_1d(data):
            return dist.fit(data, *guessed_shapes, **guessed_params,
                            **fixed_params)

        def fit_fun(data):
            params = np.apply_along_axis(fit_fun_1d, axis=-1, arr=data)
            if params.ndim > 1:
                params = params.T[..., np.newaxis]
            return params

    return fit_fun


# Vectorized fitting functions. These are to accept ND `data` in which each
# row (slice along last axis) is a sample to fit and scalar fixed parameters.
# They return a tuple of shape parameter arrays, each of shape data.shape[:-1].
def _fit_norm(data, floc=None, fscale=None):
    loc = floc
    scale = fscale
    if loc is None and scale is None:
        loc = np.mean(data, axis=-1)
        scale = np.std(data, ddof=1, axis=-1)
    elif loc is None:
        loc = np.mean(data, axis=-1)
    elif scale is None:
        scale = np.sqrt(((data - loc)**2).mean(axis=-1))
    return loc, scale


_fit_funs = {stats.norm: _fit_norm}  # type: ignore[attr-defined]


# Vectorized goodness of fit statistic functions. These accept a frozen
# distribution object and `data` in which each row (slice along last axis) is
# a sample.


def _anderson_darling(dist, data, axis):
    x = np.sort(data, axis=-1)
    n = data.shape[-1]
    i = np.arange(1, n+1)
    Si = (2*i - 1)/n * (dist.logcdf(x) + dist.logsf(x[..., ::-1]))
    S = np.sum(Si, axis=-1)
    return -n - S


def _compute_dplus(cdfvals):  # adapted from _stats_py before gh-17062
    n = cdfvals.shape[-1]
    return (np.arange(1.0, n + 1) / n - cdfvals).max(axis=-1)


def _compute_dminus(cdfvals):
    n = cdfvals.shape[-1]
    return (cdfvals - np.arange(0.0, n)/n).max(axis=-1)


def _kolmogorov_smirnov(dist, data, axis=-1):
    x = np.sort(data, axis=axis)
    cdfvals = dist.cdf(x)
    cdfvals = np.moveaxis(cdfvals, axis, -1)
    Dplus = _compute_dplus(cdfvals)  # always works along last axis
    Dminus = _compute_dminus(cdfvals)
    return np.maximum(Dplus, Dminus)


def _corr(X, M):
    # Correlation coefficient r, simplified and vectorized as we need it.
    # See [7] Equation (2). Lemma 1/2 are only for distributions symmetric
    # about 0.
    Xm = X.mean(axis=-1, keepdims=True)
    Mm = M.mean(axis=-1, keepdims=True)
    num = np.sum((X - Xm) * (M - Mm), axis=-1)
    den = np.sqrt(np.sum((X - Xm)**2, axis=-1) * np.sum((M - Mm)**2, axis=-1))
    return num/den


def _filliben(dist, data, axis):
    # [7] Section 8 # 1
    X = np.sort(data, axis=-1)

    # [7] Section 8 # 2
    n = data.shape[-1]
    k = np.arange(1, n+1)
    # Filliben used an approximation for the uniform distribution order
    # statistic medians.
    # m = (k - .3175)/(n + 0.365)
    # m[-1] = 0.5**(1/n)
    # m[0] = 1 - m[-1]
    # We can just as easily use the (theoretically) exact values. See e.g.
    # https://en.wikipedia.org/wiki/Order_statistic
    # "Order statistics sampled from a uniform distribution"
    m = stats.beta(k, n + 1 - k).median()

    # [7] Section 8 # 3
    M = dist.ppf(m)

    # [7] Section 8 # 4
    return _corr(X, M)
_filliben.alternative = 'less'  # type: ignore[attr-defined]


def _cramer_von_mises(dist, data, axis):
    x = np.sort(data, axis=-1)
    n = data.shape[-1]
    cdfvals = dist.cdf(x)
    u = (2*np.arange(1, n+1) - 1)/(2*n)
    w = 1 / (12*n) + np.sum((u - cdfvals)**2, axis=-1)
    return w


_compare_dict = {"ad": _anderson_darling, "ks": _kolmogorov_smirnov,
                 "cvm": _cramer_von_mises, "filliben": _filliben}


def _gof_iv(dist, data, known_params, fit_params, guessed_params, statistic,
            n_mc_samples, rng):

    if not isinstance(dist, stats.rv_continuous):
        message = ("`dist` must be a (non-frozen) instance of "
                   "`stats.rv_continuous`.")
        raise TypeError(message)

    data = np.asarray(data, dtype=float)
    if not data.ndim == 1:
        message = "`data` must be a one-dimensional array of numbers."
        raise ValueError(message)

    # Leave validation of these key/value pairs to the `fit` method,
    # but collect these into dictionaries that will be used
    known_params = known_params or dict()
    fit_params = fit_params or dict()
    guessed_params = guessed_params or dict()

    known_params_f = {("f"+key): val for key, val in known_params.items()}
    fit_params_f = {("f"+key): val for key, val in fit_params.items()}

    # These are the values of parameters of the null distribution family
    # with which resamples are drawn
    fixed_nhd_params = known_params_f.copy()
    fixed_nhd_params.update(fit_params_f)

    # These are fixed when fitting the distribution family to resamples
    fixed_rfd_params = known_params_f.copy()

    # These are used as guesses when fitting the distribution family to
    # the original data
    guessed_nhd_params = guessed_params.copy()

    # These are used as guesses when fitting the distribution family to
    # resamples
    guessed_rfd_params = fit_params.copy()
    guessed_rfd_params.update(guessed_params)

    if not callable(statistic):
        statistic = statistic.lower()
        statistics = {'ad', 'ks', 'cvm', 'filliben'}
        if statistic not in statistics:
            message = f"`statistic` must be one of {statistics}."
            raise ValueError(message)

    n_mc_samples_int = int(n_mc_samples)
    if n_mc_samples_int != n_mc_samples:
        message = "`n_mc_samples` must be an integer."
        raise TypeError(message)

    rng = check_random_state(rng)

    return (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
            guessed_rfd_params, statistic, n_mc_samples_int, rng)