File size: 5,674 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Numerically stable computation of iv(v+1, x) / iv(v, x)

#pragma once

#include "config.h"
#include "tools.h"
#include "error.h"
#include "cephes/dd_real.h"

namespace xsf {

/* Generates the "tail" of Perron's continued fraction for iv(v,x)/iv(v-1,x).
 *
 * The Perron continued fraction is studied in [1].  It is given by
 *
 *         iv(v, x)      x    -(2v+1)x   -(2v+3)x   -(2v+5)x
 *   R := --------- = ------ ---------- ---------- ---------- ...
 *        iv(v-1,x)   x+2v + 2(v+x)+1 + 2(v+x)+2 + 2(v+x)+3 +
 *
 * Given a suitable constant c, the continued fraction may be rearranged
 * into the following form to avoid premature floating point overflow:
 *
 *        xc                -(2vc+c)(xc) -(2vc+3c)(xc) -(2vc+5c)(xc)
 *   R = -----,  fc = 2vc + ------------ ------------- ------------- ...
 *       xc+fc              2(vc+xc)+c + 2(vc+xc)+2c + 2(vc+xc)+3c +
 *
 * This class generates the fractions of fc after 2vc.
 *
 * [1] Gautschi, W. and Slavik, J. (1978). "On the computation of modified
 *     Bessel function ratios." Mathematics of Computation, 32(143):865-875.
 */
template <class T>
struct IvRatioCFTailGenerator {

    XSF_HOST_DEVICE IvRatioCFTailGenerator(T vc, T xc, T c) noexcept {
        a0_ = -(2*vc-c)*xc;
        as_ = -2*c*xc;
        b0_ = 2*(vc+xc);
        bs_ = c;
        k_ = 0;
    }

    XSF_HOST_DEVICE std::pair<T, T> operator()() noexcept {
        using std::fma;
        ++k_;
        return {fma(static_cast<T>(k_), as_, a0_),
                fma(static_cast<T>(k_), bs_, b0_)};
    }

private:
    T a0_, as_;  // a[k] == a0 + as*k, k >= 1
    T b0_, bs_;  // b[k] == b0 + bs*k, k >= 1
    std::uint64_t k_; // current index
};

// Computes f(v, x) using Perron's continued fraction.
//
// T specifies the working type.  This allows the function to perform
// calculations in a higher precision, such as double-double, even if
// the return type is hardcoded to be double.
template <class T>
XSF_HOST_DEVICE inline std::pair<double, std::uint64_t>
_iv_ratio_cf(double v, double x, bool complement) {

    int e;
    std::frexp(std::fmax(v, x), &e);
    T c = T(std::ldexp(1, 2-e)); // rescaling multiplier
    T vc = v * c;
    T xc = x * c;

    IvRatioCFTailGenerator<T> cf(vc, xc, c);
    auto [fc, terms] = detail::series_eval_kahan(
        detail::continued_fraction_series(cf),
        T(std::numeric_limits<double>::epsilon()),
        1000,
        2*vc);

    T ret = (complement ? fc : xc) / (xc + fc);
    return {static_cast<double>(ret), terms};
}

XSF_HOST_DEVICE inline double iv_ratio(double v, double x) {

    if (std::isnan(v) || std::isnan(x)) {
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (v < 0.5 || x < 0) {
        set_error("iv_ratio", SF_ERROR_DOMAIN, NULL);
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (std::isinf(v) && std::isinf(x)) {
        // There is not a unique limit as both v and x tends to infinity.
        set_error("iv_ratio", SF_ERROR_DOMAIN, NULL);
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (x == 0.0) {
        return x; // keep sign of x because iv_ratio is an odd function
    }
    if (std::isinf(v)) {
        return 0.0;
    }
    if (std::isinf(x)) {
        return 1.0;
    }

    auto [ret, terms] = _iv_ratio_cf<double>(v, x, false);
    if (terms == 0) { // failed to converge; should not happen
        set_error("iv_ratio", SF_ERROR_NO_RESULT, NULL);
        return std::numeric_limits<double>::quiet_NaN();
    }
    return ret;
}

XSF_HOST_DEVICE inline float iv_ratio(float v, float x) {
    return iv_ratio(static_cast<double>(v), static_cast<double>(x));
}

XSF_HOST_DEVICE inline double iv_ratio_c(double v, double x) {

    if (std::isnan(v) || std::isnan(x)) {
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (v < 0.5 || x < 0) {
        set_error("iv_ratio_c", SF_ERROR_DOMAIN, NULL);
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (std::isinf(v) && std::isinf(x)) {
        // There is not a unique limit as both v and x tends to infinity.
        set_error("iv_ratio_c", SF_ERROR_DOMAIN, NULL);
        return std::numeric_limits<double>::quiet_NaN();
    }
    if (x == 0.0) {
        return 1.0;
    }
    if (std::isinf(v)) {
        return 1.0;
    }
    if (std::isinf(x)) {
        return 0.0;
    }

    if (v >= 1) {
        // Numerical experiments show that evaluating the Perron c.f.
        // in double precision is sufficiently accurate if v >= 1.
        auto [ret, terms] = _iv_ratio_cf<double>(v, x, true);
        if (terms == 0) { // failed to converge; should not happen
            set_error("iv_ratio_c", SF_ERROR_NO_RESULT, NULL);
            return std::numeric_limits<double>::quiet_NaN();
        }
        return ret;
    } else if (v > 0.5) {
        // double-double arithmetic is needed for 0.5 < v < 1 to
        // achieve relative error on the scale of machine precision.
        using cephes::detail::double_double;
        auto [ret, terms] = _iv_ratio_cf<double_double>(v, x, true);
        if (terms == 0) { // failed to converge; should not happen
            set_error("iv_ratio_c", SF_ERROR_NO_RESULT, NULL);
            return std::numeric_limits<double>::quiet_NaN();
        }
        return ret;
    } else {
        // The previous branch (v > 0.5) also works for v == 0.5, but
        // the closed-form formula "1 - tanh(x)" is more efficient.
        double t = std::exp(-2*x);
        return (2 * t) / (1 + t);
    }
}

XSF_HOST_DEVICE inline float iv_ratio_c(float v, float x) {
    return iv_ratio_c(static_cast<double>(v), static_cast<double>(x));
}

} // namespace xsf