File size: 4,381 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
/* Translated into C++ by SciPy developers in 2024.
* Original header with Copyright information appears below.
*/
/* zeta.c
*
* Riemann zeta function of two arguments
*
*
*
* SYNOPSIS:
*
* double x, q, y, zeta();
*
* y = zeta( x, q );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zeta(x,q) = > (k+q)
* -
* k=0
*
* where x > 1 and q is not a negative integer or zero.
* The Euler-Maclaurin summation formula is used to obtain
* the expansion
*
* n
* - -x
* zeta(x,q) = > (k+q)
* -
* k=1
*
* 1-x inf. B x(x+1)...(x+2j)
* (n+q) 1 - 2j
* + --------- - ------- + > --------------------
* x-1 x - x+2j+1
* 2(n+q) j=1 (2j)! (n+q)
*
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
* zeta(x,1) = zetac(x) + 1.
*
*
*
* ACCURACY:
*
*
*
* REFERENCE:
*
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
* Series, and Products, p. 1073; Academic Press, 1980.
*
*/
/*
* Cephes Math Library Release 2.0: April, 1987
* Copyright 1984, 1987 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#pragma once
#include "../config.h"
#include "../error.h"
#include "const.h"
namespace xsf {
namespace cephes {
namespace detail {
/* Expansion coefficients
* for Euler-Maclaurin summation formula
* (2k)! / B2k
* where B2k are Bernoulli numbers
*/
constexpr double zeta_A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691 */
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617 */
1.1646782814350067249e14, /*5.109094217170944e18/43867 */
-4.5979787224074726105e15, /*8.028576626982912e20/174611 */
1.8152105401943546773e17, /*1.5511210043330985984e23/854513 */
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091 */
};
/* 30 Nov 86 -- error in third coefficient fixed */
} // namespace detail
XSF_HOST_DEVICE double inline zeta(double x, double q) {
int i;
double a, b, k, s, t, w;
if (x == 1.0)
goto retinf;
if (x < 1.0) {
domerr:
set_error("zeta", SF_ERROR_DOMAIN, NULL);
return (std::numeric_limits<double>::quiet_NaN());
}
if (q <= 0.0) {
if (q == floor(q)) {
set_error("zeta", SF_ERROR_SINGULAR, NULL);
retinf:
return (std::numeric_limits<double>::infinity());
}
if (x != std::floor(x))
goto domerr; /* because q^-x not defined */
}
/* Asymptotic expansion
* https://dlmf.nist.gov/25.11#E43
*/
if (q > 1e8) {
return (1 / (x - 1) + 1 / (2 * q)) * std::pow(q, 1 - x);
}
/* Euler-Maclaurin summation formula */
/* Permit negative q but continue sum until n+q > +9 .
* This case should be handled by a reflection formula.
* If q<0 and x is an integer, there is a relation to
* the polyGamma function.
*/
s = std::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while ((i < 9) || (a <= 9.0)) {
i += 1;
a += 1.0;
b = std::pow(a, -x);
s += b;
if (std::abs(b / s) < detail::MACHEP)
goto done;
}
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for (i = 0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / detail::zeta_A[i];
s = s + t;
t = std::abs(t / s);
if (t < detail::MACHEP)
goto done;
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
done:
return (s);
}
} // namespace cephes
} // namespace xsf
|