File size: 7,325 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     sici.c
 *
 *     Sine and cosine integrals
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, Ci, Si, sici();
 *
 * sici( x, &Si, &Ci );
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the integrals
 *
 *                          x
 *                          -
 *                         |  cos t - 1
 *   Ci(x) = eul + ln x +  |  --------- dt,
 *                         |      t
 *                        -
 *                         0
 *             x
 *             -
 *            |  sin t
 *   Si(x) =  |  ----- dt
 *            |    t
 *           -
 *            0
 *
 * where eul = 0.57721566490153286061 is Euler's constant.
 * The integrals are approximated by rational functions.
 * For x > 8 auxiliary functions f(x) and g(x) are employed
 * such that
 *
 * Ci(x) = f(x) sin(x) - g(x) cos(x)
 * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
 *
 *
 * ACCURACY:
 *    Test interval = [0,50].
 * Absolute error, except relative when > 1:
 * arithmetic   function   # trials      peak         rms
 *    IEEE        Si        30000       4.4e-16     7.3e-17
 *    IEEE        Ci        30000       6.9e-16     5.1e-17
 */

/*
 * Cephes Math Library Release 2.1:  January, 1989
 * Copyright 1984, 1987, 1989 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */
#pragma once

#include "../config.h"

#include "const.h"
#include "polevl.h"

namespace xsf {
namespace cephes {

    namespace detail {

        constexpr double sici_SN[] = {
            -8.39167827910303881427E-11, 4.62591714427012837309E-8,  -9.75759303843632795789E-6,
            9.76945438170435310816E-4,   -4.13470316229406538752E-2, 1.00000000000000000302E0,
        };

        constexpr double sici_SD[] = {
            2.03269266195951942049E-12, 1.27997891179943299903E-9, 4.41827842801218905784E-7,
            9.96412122043875552487E-5,  1.42085239326149893930E-2, 9.99999999999999996984E-1,
        };

        constexpr double sici_CN[] = {
            2.02524002389102268789E-11, -1.35249504915790756375E-8, 3.59325051419993077021E-6,
            -4.74007206873407909465E-4, 2.89159652607555242092E-2,  -1.00000000000000000080E0,
        };

        constexpr double sici_CD[] = {
            4.07746040061880559506E-12, 3.06780997581887812692E-9, 1.23210355685883423679E-6,
            3.17442024775032769882E-4,  5.10028056236446052392E-2, 4.00000000000000000080E0,
        };

        constexpr double sici_FN4[] = {
            4.23612862892216586994E0,  5.45937717161812843388E0,  1.62083287701538329132E0,  1.67006611831323023771E-1,
            6.81020132472518137426E-3, 1.08936580650328664411E-4, 5.48900223421373614008E-7,
        };

        constexpr double sici_FD4[] = {
            /*  1.00000000000000000000E0, */
            8.16496634205391016773E0,  7.30828822505564552187E0,  1.86792257950184183883E0,  1.78792052963149907262E-1,
            7.01710668322789753610E-3, 1.10034357153915731354E-4, 5.48900252756255700982E-7,
        };

        constexpr double sici_FN8[] = {
            4.55880873470465315206E-1, 7.13715274100146711374E-1,  1.60300158222319456320E-1,
            1.16064229408124407915E-2, 3.49556442447859055605E-4,  4.86215430826454749482E-6,
            3.20092790091004902806E-8, 9.41779576128512936592E-11, 9.70507110881952024631E-14,
        };

        constexpr double sici_FD8[] = {
            /*  1.00000000000000000000E0, */
            9.17463611873684053703E-1,  1.78685545332074536321E-1,  1.22253594771971293032E-2,
            3.58696481881851580297E-4,  4.92435064317881464393E-6,  3.21956939101046018377E-8,
            9.43720590350276732376E-11, 9.70507110881952025725E-14,
        };

        constexpr double sici_GN4[] = {
            8.71001698973114191777E-2, 6.11379109952219284151E-1, 3.97180296392337498885E-1, 7.48527737628469092119E-2,
            5.38868681462177273157E-3, 1.61999794598934024525E-4, 1.97963874140963632189E-6, 7.82579040744090311069E-9,
        };

        constexpr double sici_GD4[] = {
            /*  1.00000000000000000000E0, */
            1.64402202413355338886E0,  6.66296701268987968381E-1, 9.88771761277688796203E-2, 6.22396345441768420760E-3,
            1.73221081474177119497E-4, 2.02659182086343991969E-6, 7.82579218933534490868E-9,
        };

        constexpr double sici_GN8[] = {
            6.97359953443276214934E-1, 3.30410979305632063225E-1,  3.84878767649974295920E-2,
            1.71718239052347903558E-3, 3.48941165502279436777E-5,  3.47131167084116673800E-7,
            1.70404452782044526189E-9, 3.85945925430276600453E-12, 3.14040098946363334640E-15,
        };

        constexpr double sici_GD8[] = {
            /*  1.00000000000000000000E0, */
            1.68548898811011640017E0,  4.87852258695304967486E-1,  4.67913194259625806320E-2,
            1.90284426674399523638E-3, 3.68475504442561108162E-5,  3.57043223443740838771E-7,
            1.72693748966316146736E-9, 3.87830166023954706752E-12, 3.14040098946363335242E-15,
        };

    } // namespace detail

    XSF_HOST_DEVICE inline int sici(double x, double *si, double *ci) {
        double z, c, s, f, g;
        short sign;

        if (x < 0.0) {
            sign = -1;
            x = -x;
        } else {
            sign = 0;
        }

        if (x == 0.0) {
            *si = 0.0;
            *ci = -std::numeric_limits<double>::infinity();
            return (0);
        }

        if (x > 1.0e9) {
            if (std::isinf(x)) {
                if (sign == -1) {
                    *si = -M_PI_2;
                    *ci = std::numeric_limits<double>::quiet_NaN();
                } else {
                    *si = M_PI_2;
                    *ci = 0;
                }
                return 0;
            }
            *si = M_PI_2 - std::cos(x) / x;
            *ci = std::sin(x) / x;
        }

        if (x > 4.0) {
            goto asympt;
        }

        z = x * x;
        s = x * polevl(z, detail::sici_SN, 5) / polevl(z, detail::sici_SD, 5);
        c = z * polevl(z, detail::sici_CN, 5) / polevl(z, detail::sici_CD, 5);

        if (sign) {
            s = -s;
        }
        *si = s;
        *ci = detail::SCIPY_EULER + std::log(x) + c; /* real part if x < 0 */
        return (0);

        /* The auxiliary functions are:
         *
         *
         * *si = *si - M_PI_2;
         * c = cos(x);
         * s = sin(x);
         *
         * t = *ci * s - *si * c;
         * a = *ci * c + *si * s;
         *
         * *si = t;
         * *ci = -a;
         */

    asympt:

        s = std::sin(x);
        c = std::cos(x);
        z = 1.0 / (x * x);
        if (x < 8.0) {
            f = polevl(z, detail::sici_FN4, 6) / (x * p1evl(z, detail::sici_FD4, 7));
            g = z * polevl(z, detail::sici_GN4, 7) / p1evl(z, detail::sici_GD4, 7);
        } else {
            f = polevl(z, detail::sici_FN8, 8) / (x * p1evl(z, detail::sici_FD8, 8));
            g = z * polevl(z, detail::sici_GN8, 8) / p1evl(z, detail::sici_GD8, 9);
        }
        *si = M_PI_2 - f * c - g * s;
        if (sign) {
            *si = -(*si);
        }
        *ci = f * s - g * c;

        return (0);
    }

} // namespace cephes
} // namespace xsf