File size: 4,626 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
/* Translated into C++ by SciPy developers in 2024.
* Original header with Copyright information appears below.
*/
/* k1.c
*
* Modified Bessel function, third kind, order one
*
*
*
* SYNOPSIS:
*
* double x, y, k1();
*
* y = k1( x );
*
*
*
* DESCRIPTION:
*
* Computes the modified Bessel function of the third kind
* of order one of the argument.
*
* The range is partitioned into the two intervals [0,2] and
* (2, infinity). Chebyshev polynomial expansions are employed
* in each interval.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 1.2e-15 1.6e-16
*
* ERROR MESSAGES:
*
* message condition value returned
* k1 domain x <= 0 INFINITY
*
*/
/* k1e.c
*
* Modified Bessel function, third kind, order one,
* exponentially scaled
*
*
*
* SYNOPSIS:
*
* double x, y, k1e();
*
* y = k1e( x );
*
*
*
* DESCRIPTION:
*
* Returns exponentially scaled modified Bessel function
* of the third kind of order one of the argument:
*
* k1e(x) = exp(x) * k1(x).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 7.8e-16 1.2e-16
* See k1().
*
*/
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 2000 by Stephen L. Moshier
*/
#pragma once
#include "../config.h"
#include "../error.h"
#include "chbevl.h"
#include "const.h"
namespace xsf {
namespace cephes {
namespace detail {
/* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x))
* in the interval [0,2].
*
* lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1.
*/
constexpr double k1_A[] = {
-7.02386347938628759343E-18, -2.42744985051936593393E-15, -6.66690169419932900609E-13,
-1.41148839263352776110E-10, -2.21338763073472585583E-8, -2.43340614156596823496E-6,
-1.73028895751305206302E-4, -6.97572385963986435018E-3, -1.22611180822657148235E-1,
-3.53155960776544875667E-1, 1.52530022733894777053E0};
/* Chebyshev coefficients for exp(x) sqrt(x) K1(x)
* in the interval [2,infinity].
*
* lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2).
*/
constexpr double k1_B[] = {
-5.75674448366501715755E-18, 1.79405087314755922667E-17, -5.68946255844285935196E-17,
1.83809354436663880070E-16, -6.05704724837331885336E-16, 2.03870316562433424052E-15,
-7.01983709041831346144E-15, 2.47715442448130437068E-14, -8.97670518232499435011E-14,
3.34841966607842919884E-13, -1.28917396095102890680E-12, 5.13963967348173025100E-12,
-2.12996783842756842877E-11, 9.21831518760500529508E-11, -4.19035475934189648750E-10,
2.01504975519703286596E-9, -1.03457624656780970260E-8, 5.74108412545004946722E-8,
-3.50196060308781257119E-7, 2.40648494783721712015E-6, -1.93619797416608296024E-5,
1.95215518471351631108E-4, -2.85781685962277938680E-3, 1.03923736576817238437E-1,
2.72062619048444266945E0};
} // namespace detail
XSF_HOST_DEVICE inline double k1(double x) {
double y, z;
if (x == 0.0) {
set_error("k1", SF_ERROR_SINGULAR, NULL);
return std::numeric_limits<double>::infinity();
} else if (x < 0.0) {
set_error("k1", SF_ERROR_DOMAIN, NULL);
return std::numeric_limits<double>::quiet_NaN();
}
z = 0.5 * x;
if (x <= 2.0) {
y = x * x - 2.0;
y = std::log(z) * i1(x) + chbevl(y, detail::k1_A, 11) / x;
return (y);
}
return (std::exp(-x) * chbevl(8.0 / x - 2.0, detail::k1_B, 25) / std::sqrt(x));
}
XSF_HOST_DEVICE double k1e(double x) {
double y;
if (x == 0.0) {
set_error("k1e", SF_ERROR_SINGULAR, NULL);
return std::numeric_limits<double>::infinity();
} else if (x < 0.0) {
set_error("k1e", SF_ERROR_DOMAIN, NULL);
return std::numeric_limits<double>::quiet_NaN();
}
if (x <= 2.0) {
y = x * x - 2.0;
y = std::log(0.5 * x) * i1(x) + chbevl(y, detail::k1_A, 11) / x;
return (y * exp(x));
}
return (chbevl(8.0 / x - 2.0, detail::k1_B, 25) / std::sqrt(x));
}
} // namespace cephes
} // namespace xsf
|