File size: 12,687 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*
 * (C) Copyright John Maddock 2006.
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 *  LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
 */
#pragma once

#include "../config.h"
#include "../error.h"

#include "const.h"
#include "gamma.h"
#include "igam.h"
#include "polevl.h"

namespace xsf {
namespace cephes {

    namespace detail {

        XSF_HOST_DEVICE double find_inverse_s(double p, double q) {
            /*
             * Computation of the Incomplete Gamma Function Ratios and their Inverse
             * ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
             * ACM Transactions on Mathematical Software, Vol. 12, No. 4,
             * December 1986, Pages 377-393.
             *
             * See equation 32.
             */
            double s, t;
            constexpr double a[4] = {0.213623493715853, 4.28342155967104, 11.6616720288968, 3.31125922108741};
            constexpr double b[5] = {0.3611708101884203e-1, 1.27364489782223, 6.40691597760039, 6.61053765625462, 1};

            if (p < 0.5) {
                t = std::sqrt(-2 * std::log(p));
            } else {
                t = std::sqrt(-2 * std::log(q));
            }
            s = t - polevl(t, a, 3) / polevl(t, b, 4);
            if (p < 0.5)
                s = -s;
            return s;
        }

        XSF_HOST_DEVICE inline double didonato_SN(double a, double x, unsigned N, double tolerance) {
            /*
             * Computation of the Incomplete Gamma Function Ratios and their Inverse
             * ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
             * ACM Transactions on Mathematical Software, Vol. 12, No. 4,
             * December 1986, Pages 377-393.
             *
             * See equation 34.
             */
            double sum = 1.0;

            if (N >= 1) {
                unsigned i;
                double partial = x / (a + 1);

                sum += partial;
                for (i = 2; i <= N; ++i) {
                    partial *= x / (a + i);
                    sum += partial;
                    if (partial < tolerance) {
                        break;
                    }
                }
            }
            return sum;
        }

        XSF_HOST_DEVICE inline double find_inverse_gamma(double a, double p, double q) {
            /*
             * In order to understand what's going on here, you will
             * need to refer to:
             *
             * Computation of the Incomplete Gamma Function Ratios and their Inverse
             * ARMIDO R. DIDONATO and ALFRED H. MORRIS, JR.
             * ACM Transactions on Mathematical Software, Vol. 12, No. 4,
             * December 1986, Pages 377-393.
             */
            double result;

            if (a == 1) {
                if (q > 0.9) {
                    result = -std::log1p(-p);
                } else {
                    result = -std::log(q);
                }
            } else if (a < 1) {
                double g = xsf::cephes::Gamma(a);
                double b = q * g;

                if ((b > 0.6) || ((b >= 0.45) && (a >= 0.3))) {
                    /* DiDonato & Morris Eq 21:
                     *
                     * There is a slight variation from DiDonato and Morris here:
                     * the first form given here is unstable when p is close to 1,
                     * making it impossible to compute the inverse of Q(a,x) for small
                     * q. Fortunately the second form works perfectly well in this case.
                     */
                    double u;
                    if ((b * q > 1e-8) && (q > 1e-5)) {
                        u = std::pow(p * g * a, 1 / a);
                    } else {
                        u = std::exp((-q / a) - SCIPY_EULER);
                    }
                    result = u / (1 - (u / (a + 1)));
                } else if ((a < 0.3) && (b >= 0.35)) {
                    /* DiDonato & Morris Eq 22: */
                    double t = std::exp(-SCIPY_EULER - b);
                    double u = t * std::exp(t);
                    result = t * std::exp(u);
                } else if ((b > 0.15) || (a >= 0.3)) {
                    /* DiDonato & Morris Eq 23: */
                    double y = -std::log(b);
                    double u = y - (1 - a) * std::log(y);
                    result = y - (1 - a) * std::log(u) - std::log(1 + (1 - a) / (1 + u));
                } else if (b > 0.1) {
                    /* DiDonato & Morris Eq 24: */
                    double y = -std::log(b);
                    double u = y - (1 - a) * std::log(y);
                    result = y - (1 - a) * std::log(u) -
                             std::log((u * u + 2 * (3 - a) * u + (2 - a) * (3 - a)) / (u * u + (5 - a) * u + 2));
                } else {
                    /* DiDonato & Morris Eq 25: */
                    double y = -std::log(b);
                    double c1 = (a - 1) * std::log(y);
                    double c1_2 = c1 * c1;
                    double c1_3 = c1_2 * c1;
                    double c1_4 = c1_2 * c1_2;
                    double a_2 = a * a;
                    double a_3 = a_2 * a;

                    double c2 = (a - 1) * (1 + c1);
                    double c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2);
                    double c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 +
                                           (11 * a_2 - 46 * a + 47) / 6);
                    double c5 = (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 + (-3 * a_2 + 13 * a - 13) * c1_2 +
                                           (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 +
                                           (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12);

                    double y_2 = y * y;
                    double y_3 = y_2 * y;
                    double y_4 = y_2 * y_2;
                    result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4);
                }
            } else {
                /* DiDonato and Morris Eq 31: */
                double s = find_inverse_s(p, q);

                double s_2 = s * s;
                double s_3 = s_2 * s;
                double s_4 = s_2 * s_2;
                double s_5 = s_4 * s;
                double ra = std::sqrt(a);

                double w = a + s * ra + (s_2 - 1) / 3;
                w += (s_3 - 7 * s) / (36 * ra);
                w -= (3 * s_4 + 7 * s_2 - 16) / (810 * a);
                w += (9 * s_5 + 256 * s_3 - 433 * s) / (38880 * a * ra);

                if ((a >= 500) && (std::abs(1 - w / a) < 1e-6)) {
                    result = w;
                } else if (p > 0.5) {
                    if (w < 3 * a) {
                        result = w;
                    } else {
                        double D = std::fmax(2, a * (a - 1));
                        double lg = xsf::cephes::lgam(a);
                        double lb = std::log(q) + lg;
                        if (lb < -D * 2.3) {
                            /* DiDonato and Morris Eq 25: */
                            double y = -lb;
                            double c1 = (a - 1) * std::log(y);
                            double c1_2 = c1 * c1;
                            double c1_3 = c1_2 * c1;
                            double c1_4 = c1_2 * c1_2;
                            double a_2 = a * a;
                            double a_3 = a_2 * a;

                            double c2 = (a - 1) * (1 + c1);
                            double c3 = (a - 1) * (-(c1_2 / 2) + (a - 2) * c1 + (3 * a - 5) / 2);
                            double c4 = (a - 1) * ((c1_3 / 3) - (3 * a - 5) * c1_2 / 2 + (a_2 - 6 * a + 7) * c1 +
                                                   (11 * a_2 - 46 * a + 47) / 6);
                            double c5 =
                                (a - 1) * (-(c1_4 / 4) + (11 * a - 17) * c1_3 / 6 + (-3 * a_2 + 13 * a - 13) * c1_2 +
                                           (2 * a_3 - 25 * a_2 + 72 * a - 61) * c1 / 2 +
                                           (25 * a_3 - 195 * a_2 + 477 * a - 379) / 12);

                            double y_2 = y * y;
                            double y_3 = y_2 * y;
                            double y_4 = y_2 * y_2;
                            result = y + c1 + (c2 / y) + (c3 / y_2) + (c4 / y_3) + (c5 / y_4);
                        } else {
                            /* DiDonato and Morris Eq 33: */
                            double u = -lb + (a - 1) * std::log(w) - std::log(1 + (1 - a) / (1 + w));
                            result = -lb + (a - 1) * std::log(u) - std::log(1 + (1 - a) / (1 + u));
                        }
                    }
                } else {
                    double z = w;
                    double ap1 = a + 1;
                    double ap2 = a + 2;
                    if (w < 0.15 * ap1) {
                        /* DiDonato and Morris Eq 35: */
                        double v = std::log(p) + xsf::cephes::lgam(ap1);
                        z = std::exp((v + w) / a);
                        s = std::log1p(z / ap1 * (1 + z / ap2));
                        z = std::exp((v + z - s) / a);
                        s = std::log1p(z / ap1 * (1 + z / ap2));
                        z = std::exp((v + z - s) / a);
                        s = std::log1p(z / ap1 * (1 + z / ap2 * (1 + z / (a + 3))));
                        z = std::exp((v + z - s) / a);
                    }

                    if ((z <= 0.01 * ap1) || (z > 0.7 * ap1)) {
                        result = z;
                    } else {
                        /* DiDonato and Morris Eq 36: */
                        double ls = std::log(didonato_SN(a, z, 100, 1e-4));
                        double v = std::log(p) + xsf::cephes::lgam(ap1);
                        z = std::exp((v + z - ls) / a);
                        result = z * (1 - (a * std::log(z) - z - v + ls) / (a - z));
                    }
                }
            }
            return result;
        }

    } // namespace detail

    XSF_HOST_DEVICE inline double igamci(double a, double q);

    XSF_HOST_DEVICE inline double igami(double a, double p) {
        int i;
        double x, fac, f_fp, fpp_fp;

        if (std::isnan(a) || std::isnan(p)) {
            return std::numeric_limits<double>::quiet_NaN();
            ;
        } else if ((a < 0) || (p < 0) || (p > 1)) {
            set_error("gammaincinv", SF_ERROR_DOMAIN, NULL);
        } else if (p == 0.0) {
            return 0.0;
        } else if (p == 1.0) {
            return std::numeric_limits<double>::infinity();
        } else if (p > 0.9) {
            return igamci(a, 1 - p);
        }

        x = detail::find_inverse_gamma(a, p, 1 - p);
        /* Halley's method */
        for (i = 0; i < 3; i++) {
            fac = detail::igam_fac(a, x);
            if (fac == 0.0) {
                return x;
            }
            f_fp = (igam(a, x) - p) * x / fac;
            /* The ratio of the first and second derivatives simplifies */
            fpp_fp = -1.0 + (a - 1) / x;
            if (std::isinf(fpp_fp)) {
                /* Resort to Newton's method in the case of overflow */
                x = x - f_fp;
            } else {
                x = x - f_fp / (1.0 - 0.5 * f_fp * fpp_fp);
            }
        }

        return x;
    }

    XSF_HOST_DEVICE inline double igamci(double a, double q) {
        int i;
        double x, fac, f_fp, fpp_fp;

        if (std::isnan(a) || std::isnan(q)) {
            return std::numeric_limits<double>::quiet_NaN();
        } else if ((a < 0.0) || (q < 0.0) || (q > 1.0)) {
            set_error("gammainccinv", SF_ERROR_DOMAIN, NULL);
        } else if (q == 0.0) {
            return std::numeric_limits<double>::infinity();
        } else if (q == 1.0) {
            return 0.0;
        } else if (q > 0.9) {
            return igami(a, 1 - q);
        }

        x = detail::find_inverse_gamma(a, 1 - q, q);
        for (i = 0; i < 3; i++) {
            fac = detail::igam_fac(a, x);
            if (fac == 0.0) {
                return x;
            }
            f_fp = (igamc(a, x) - q) * x / (-fac);
            fpp_fp = -1.0 + (a - 1) / x;
            if (std::isinf(fpp_fp)) {
                x = x - f_fp;
            } else {
                x = x - f_fp / (1.0 - 0.5 * f_fp * fpp_fp);
            }
        }

        return x;
    }

} // namespace cephes
} // namespace xsf