File size: 19,986 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                      hyp2f1.c
 *
 *      Gauss hypergeometric function   F
 *                                     2 1
 *
 *
 * SYNOPSIS:
 *
 * double a, b, c, x, y, hyp2f1();
 *
 * y = hyp2f1( a, b, c, x );
 *
 *
 * DESCRIPTION:
 *
 *
 *  hyp2f1( a, b, c, x )  =   F ( a, b; c; x )
 *                           2 1
 *
 *           inf.
 *            -   a(a+1)...(a+k) b(b+1)...(b+k)   k+1
 *   =  1 +   >   -----------------------------  x   .
 *            -         c(c+1)...(c+k) (k+1)!
 *          k = 0
 *
 *  Cases addressed are
 *      Tests and escapes for negative integer a, b, or c
 *      Linear transformation if c - a or c - b negative integer
 *      Special case c = a or c = b
 *      Linear transformation for  x near +1
 *      Transformation for x < -0.5
 *      Psi function expansion if x > 0.5 and c - a - b integer
 *      Conditionally, a recurrence on c to make c-a-b > 0
 *
 *      x < -1  AMS 15.3.7 transformation applied (Travis Oliphant)
 *         valid for b,a,c,(b-a) != integer and (c-a),(c-b) != negative integer
 *
 * x >= 1 is rejected (unless special cases are present)
 *
 * The parameters a, b, c are considered to be integer
 * valued if they are within 1.0e-14 of the nearest integer
 * (1.0e-13 for IEEE arithmetic).
 *
 * ACCURACY:
 *
 *
 *               Relative error (-1 < x < 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -1,7        230000      1.2e-11     5.2e-14
 *
 * Several special cases also tested with a, b, c in
 * the range -7 to 7.
 *
 * ERROR MESSAGES:
 *
 * A "partial loss of precision" message is printed if
 * the internally estimated relative error exceeds 1^-12.
 * A "singularity" message is printed on overflow or
 * in cases not addressed (such as x < -1).
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
 */

#pragma once

#include "../config.h"
#include "../error.h"

#include "const.h"
#include "gamma.h"
#include "rgamma.h"
#include "psi.h"

namespace xsf {
namespace cephes {

    namespace detail {
        constexpr double hyp2f1_EPS = 1.0e-13;

        constexpr double hyp2f1_ETHRESH = 1.0e-12;
        constexpr std::uint64_t hyp2f1_MAXITER = 10000;

        /* hys2f1 and hyp2f1ra depend on each other, so we need this prototype */
        XSF_HOST_DEVICE double hyp2f1ra(double a, double b, double c, double x, double *loss);

        /* Defining power series expansion of Gauss hypergeometric function */
        /* The `loss` parameter estimates loss of significance */
        XSF_HOST_DEVICE double hys2f1(double a, double b, double c, double x, double *loss) {
            double f, g, h, k, m, s, u, umax;
            std::uint64_t i;
            int ib, intflag = 0;

            if (std::abs(b) > std::abs(a)) {
                /* Ensure that |a| > |b| ... */
                f = b;
                b = a;
                a = f;
            }

            ib = std::round(b);

            if (std::abs(b - ib) < hyp2f1_EPS && ib <= 0 && std::abs(b) < std::abs(a)) {
                /* .. except when `b` is a smaller negative integer */
                f = b;
                b = a;
                a = f;
                intflag = 1;
            }

            if ((std::abs(a) > std::abs(c) + 1 || intflag) && std::abs(c - a) > 2 && std::abs(a) > 2) {
                /* |a| >> |c| implies that large cancellation error is to be expected.
                 *
                 * We try to reduce it with the recurrence relations
                 */
                return hyp2f1ra(a, b, c, x, loss);
            }

            i = 0;
            umax = 0.0;
            f = a;
            g = b;
            h = c;
            s = 1.0;
            u = 1.0;
            k = 0.0;
            do {
                if (std::abs(h) < hyp2f1_EPS) {
                    *loss = 1.0;
                    return std::numeric_limits<double>::infinity();
                }
                m = k + 1.0;
                u = u * ((f + k) * (g + k) * x / ((h + k) * m));
                s += u;
                k = std::abs(u); /* remember largest term summed */
                if (k > umax)
                    umax = k;
                k = m;
                if (++i > hyp2f1_MAXITER) { /* should never happen */
                    *loss = 1.0;
                    return (s);
                }
            } while (s == 0 || std::abs(u / s) > MACHEP);

            /* return estimated relative error */
            *loss = (MACHEP * umax) / fabs(s) + (MACHEP * i);

            return (s);
        }

        /* Apply transformations for |x| near 1 then call the power series */
        XSF_HOST_DEVICE double hyt2f1(double a, double b, double c, double x, double *loss) {
            double p, q, r, s, t, y, w, d, err, err1;
            double ax, id, d1, d2, e, y1;
            int i, aid, sign;

            int ia, ib, neg_int_a = 0, neg_int_b = 0;

            ia = std::round(a);
            ib = std::round(b);

            if (a <= 0 && std::abs(a - ia) < hyp2f1_EPS) { /* a is a negative integer */
                neg_int_a = 1;
            }

            if (b <= 0 && std::abs(b - ib) < hyp2f1_EPS) { /* b is a negative integer */
                neg_int_b = 1;
            }

            err = 0.0;
            s = 1.0 - x;
            if (x < -0.5 && !(neg_int_a || neg_int_b)) {
                if (b > a)
                    y = std::pow(s, -a) * hys2f1(a, c - b, c, -x / s, &err);

                else
                    y = std::pow(s, -b) * hys2f1(c - a, b, c, -x / s, &err);

                goto done;
            }

            d = c - a - b;
            id = std::round(d); /* nearest integer to d */

            if (x > 0.9 && !(neg_int_a || neg_int_b)) {
                if (std::abs(d - id) > MACHEP) {
                    int sgngam;

                    /* test for integer c-a-b */
                    /* Try the power series first */
                    y = hys2f1(a, b, c, x, &err);
                    if (err < hyp2f1_ETHRESH) {
                        goto done;
                    }
                    /* If power series fails, then apply AMS55 #15.3.6 */
                    q = hys2f1(a, b, 1.0 - d, s, &err);
                    sign = 1;
                    w = lgam_sgn(d, &sgngam);
                    sign *= sgngam;
                    w -= lgam_sgn(c - a, &sgngam);
                    sign *= sgngam;
                    w -= lgam_sgn(c - b, &sgngam);
                    sign *= sgngam;
                    q *= sign * std::exp(w);
                    r = std::pow(s, d) * hys2f1(c - a, c - b, d + 1.0, s, &err1);
                    sign = 1;
                    w = lgam_sgn(-d, &sgngam);
                    sign *= sgngam;
                    w -= lgam_sgn(a, &sgngam);
                    sign *= sgngam;
                    w -= lgam_sgn(b, &sgngam);
                    sign *= sgngam;
                    r *= sign * std::exp(w);
                    y = q + r;

                    q = std::abs(q); /* estimate cancellation error */
                    r = std::abs(r);
                    if (q > r) {
                        r = q;
                    }
                    err += err1 + (MACHEP * r) / y;

                    y *= xsf::cephes::Gamma(c);
                    goto done;
                } else {
                    /* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12
                     *
                     * Although AMS55 does not explicitly state it, this expansion fails
                     * for negative integer a or b, since the psi and Gamma functions
                     * involved have poles.
                     */

                    if (id >= 0.0) {
                        e = d;
                        d1 = d;
                        d2 = 0.0;
                        aid = id;
                    } else {
                        e = -d;
                        d1 = 0.0;
                        d2 = d;
                        aid = -id;
                    }

                    ax = std::log(s);

                    /* sum for t = 0 */
                    y = xsf::cephes::psi(1.0) + xsf::cephes::psi(1.0 + e) - xsf::cephes::psi(a + d1) -
                        xsf::cephes::psi(b + d1) - ax;
                    y *= xsf::cephes::rgamma(e + 1.0);

                    p = (a + d1) * (b + d1) * s * xsf::cephes::rgamma(e + 2.0); /* Poch for t=1 */
                    t = 1.0;
                    do {
                        r = xsf::cephes::psi(1.0 + t) + xsf::cephes::psi(1.0 + t + e) -
                            xsf::cephes::psi(a + t + d1) - xsf::cephes::psi(b + t + d1) - ax;
                        q = p * r;
                        y += q;
                        p *= s * (a + t + d1) / (t + 1.0);
                        p *= (b + t + d1) / (t + 1.0 + e);
                        t += 1.0;
                        if (t > hyp2f1_MAXITER) { /* should never happen */
                            set_error("hyp2f1", SF_ERROR_SLOW, NULL);
                            *loss = 1.0;
                            return std::numeric_limits<double>::quiet_NaN();
                        }
                    } while (y == 0 || std::abs(q / y) > hyp2f1_EPS);

                    if (id == 0.0) {
                        y *= xsf::cephes::Gamma(c) / (xsf::cephes::Gamma(a) * xsf::cephes::Gamma(b));
                        goto psidon;
                    }

                    y1 = 1.0;

                    if (aid == 1)
                        goto nosum;

                    t = 0.0;
                    p = 1.0;
                    for (i = 1; i < aid; i++) {
                        r = 1.0 - e + t;
                        p *= s * (a + t + d2) * (b + t + d2) / r;
                        t += 1.0;
                        p /= t;
                        y1 += p;
                    }
                nosum:
                    p = xsf::cephes::Gamma(c);
                    y1 *= xsf::cephes::Gamma(e) * p *
                          (xsf::cephes::rgamma(a + d1) * xsf::cephes::rgamma(b + d1));

                    y *= p * (xsf::cephes::rgamma(a + d2) * xsf::cephes::rgamma(b + d2));
                    if ((aid & 1) != 0)
                        y = -y;

                    q = std::pow(s, id); /* s to the id power */
                    if (id > 0.0)
                        y *= q;
                    else
                        y1 *= q;

                    y += y1;
                psidon:
                    goto done;
                }
            }

            /* Use defining power series if no special cases */
            y = hys2f1(a, b, c, x, &err);

        done:
            *loss = err;
            return (y);
        }

        /*
          15.4.2 Abramowitz & Stegun.
        */
        XSF_HOST_DEVICE double hyp2f1_neg_c_equal_bc(double a, double b, double x) {
            double k;
            double collector = 1;
            double sum = 1;
            double collector_max = 1;

            if (!(std::abs(b) < 1e5)) {
                return std::numeric_limits<double>::quiet_NaN();
            }

            for (k = 1; k <= -b; k++) {
                collector *= (a + k - 1) * x / k;
                collector_max = std::fmax(std::abs(collector), collector_max);
                sum += collector;
            }

            if (1e-16 * (1 + collector_max / std::abs(sum)) > 1e-7) {
                return std::numeric_limits<double>::quiet_NaN();
            }

            return sum;
        }

        /*
         * Evaluate hypergeometric function by two-term recurrence in `a`.
         *
         * This avoids some of the loss of precision in the strongly alternating
         * hypergeometric series, and can be used to reduce the `a` and `b` parameters
         * to smaller values.
         *
         * AMS55 #15.2.10
         */
        XSF_HOST_DEVICE double hyp2f1ra(double a, double b, double c, double x, double *loss) {
            double f2, f1, f0;
            int n;
            double t, err, da;

            /* Don't cross c or zero */
            if ((c < 0 && a <= c) || (c >= 0 && a >= c)) {
                da = std::round(a - c);
            } else {
                da = std::round(a);
            }
            t = a - da;

            *loss = 0;

            XSF_ASSERT(da != 0);

            if (std::abs(da) > hyp2f1_MAXITER) {
                /* Too expensive to compute this value, so give up */
                set_error("hyp2f1", SF_ERROR_NO_RESULT, NULL);
                *loss = 1.0;
                return std::numeric_limits<double>::quiet_NaN();
            }

            if (da < 0) {
                /* Recurse down */
                f2 = 0;
                f1 = hys2f1(t, b, c, x, &err);
                *loss += err;
                f0 = hys2f1(t - 1, b, c, x, &err);
                *loss += err;
                t -= 1;
                for (n = 1; n < -da; ++n) {
                    f2 = f1;
                    f1 = f0;
                    f0 = -(2 * t - c - t * x + b * x) / (c - t) * f1 - t * (x - 1) / (c - t) * f2;
                    t -= 1;
                }
            } else {
                /* Recurse up */
                f2 = 0;
                f1 = hys2f1(t, b, c, x, &err);
                *loss += err;
                f0 = hys2f1(t + 1, b, c, x, &err);
                *loss += err;
                t += 1;
                for (n = 1; n < da; ++n) {
                    f2 = f1;
                    f1 = f0;
                    f0 = -((2 * t - c - t * x + b * x) * f1 + (c - t) * f2) / (t * (x - 1));
                    t += 1;
                }
            }

            return f0;
        }
    } // namespace detail

    XSF_HOST_DEVICE double hyp2f1(double a, double b, double c, double x) {
        double d, d1, d2, e;
        double p, q, r, s, y, ax;
        double ia, ib, ic, id, err;
        double t1;
        int i, aid;
        int neg_int_a = 0, neg_int_b = 0;
        int neg_int_ca_or_cb = 0;

        err = 0.0;
        ax = std::abs(x);
        s = 1.0 - x;
        ia = std::round(a); /* nearest integer to a */
        ib = std::round(b);

        if (x == 0.0) {
            return 1.0;
        }

        d = c - a - b;
        id = std::round(d);

        if ((a == 0 || b == 0) && c != 0) {
            return 1.0;
        }

        if (a <= 0 && std::abs(a - ia) < detail::hyp2f1_EPS) { /* a is a negative integer */
            neg_int_a = 1;
        }

        if (b <= 0 && std::abs(b - ib) < detail::hyp2f1_EPS) { /* b is a negative integer */
            neg_int_b = 1;
        }

        if (d <= -1 && !(std::abs(d - id) > detail::hyp2f1_EPS && s < 0) && !(neg_int_a || neg_int_b)) {
            return std::pow(s, d) * hyp2f1(c - a, c - b, c, x);
        }
        if (d <= 0 && x == 1 && !(neg_int_a || neg_int_b))
            goto hypdiv;

        if (ax < 1.0 || x == -1.0) {
            /* 2F1(a,b;b;x) = (1-x)**(-a) */
            if (std::abs(b - c) < detail::hyp2f1_EPS) { /* b = c */
                if (neg_int_b) {
                    y = detail::hyp2f1_neg_c_equal_bc(a, b, x);
                } else {
                    y = std::pow(s, -a); /* s to the -a power */
                }
                goto hypdon;
            }
            if (std::abs(a - c) < detail::hyp2f1_EPS) { /* a = c */
                y = std::pow(s, -b);                    /* s to the -b power */
                goto hypdon;
            }
        }

        if (c <= 0.0) {
            ic = std::round(c);                          /* nearest integer to c */
            if (std::abs(c - ic) < detail::hyp2f1_EPS) { /* c is a negative integer */
                /* check if termination before explosion */
                if (neg_int_a && (ia > ic))
                    goto hypok;
                if (neg_int_b && (ib > ic))
                    goto hypok;
                goto hypdiv;
            }
        }

        if (neg_int_a || neg_int_b) /* function is a polynomial */
            goto hypok;

        t1 = std::abs(b - a);
        if (x < -2.0 && std::abs(t1 - round(t1)) > detail::hyp2f1_EPS) {
            /* This transform has a pole for b-a integer, and
             * may produce large cancellation errors for |1/x| close 1
             */
            p = hyp2f1(a, 1 - c + a, 1 - b + a, 1.0 / x);
            q = hyp2f1(b, 1 - c + b, 1 - a + b, 1.0 / x);
            p *= std::pow(-x, -a);
            q *= std::pow(-x, -b);
            t1 = Gamma(c);
            s = t1 * Gamma(b - a) * (rgamma(b) * rgamma(c - a));
            y = t1 * Gamma(a - b) * (rgamma(a) * rgamma(c - b));
            return s * p + y * q;
        } else if (x < -1.0) {
            if (std::abs(a) < std::abs(b)) {
                return std::pow(s, -a) * hyp2f1(a, c - b, c, x / (x - 1));
            } else {
                return std::pow(s, -b) * hyp2f1(b, c - a, c, x / (x - 1));
            }
        }

        if (ax > 1.0) /* series diverges  */
            goto hypdiv;

        p = c - a;
        ia = std::round(p);                                         /* nearest integer to c-a */
        if ((ia <= 0.0) && (std::abs(p - ia) < detail::hyp2f1_EPS)) /* negative int c - a */
            neg_int_ca_or_cb = 1;

        r = c - b;
        ib = std::round(r);                                         /* nearest integer to c-b */
        if ((ib <= 0.0) && (std::abs(r - ib) < detail::hyp2f1_EPS)) /* negative int c - b */
            neg_int_ca_or_cb = 1;

        id = std::round(d); /* nearest integer to d */
        q = std::abs(d - id);

        /* Thanks to Christian Burger <[email protected]>
         * for reporting a bug here.  */
        if (std::abs(ax - 1.0) < detail::hyp2f1_EPS) { /* |x| == 1.0   */
            if (x > 0.0) {
                if (neg_int_ca_or_cb) {
                    if (d >= 0.0)
                        goto hypf;
                    else
                        goto hypdiv;
                }
                if (d <= 0.0)
                    goto hypdiv;
                y = Gamma(c) * Gamma(d) * (rgamma(p) * rgamma(r));
                goto hypdon;
            }
            if (d <= -1.0)
                goto hypdiv;
        }

        /* Conditionally make d > 0 by recurrence on c
         * AMS55 #15.2.27
         */
        if (d < 0.0) {
            /* Try the power series first */
            y = detail::hyt2f1(a, b, c, x, &err);
            if (err < detail::hyp2f1_ETHRESH)
                goto hypdon;
            /* Apply the recurrence if power series fails */
            err = 0.0;
            aid = 2 - id;
            e = c + aid;
            d2 = hyp2f1(a, b, e, x);
            d1 = hyp2f1(a, b, e + 1.0, x);
            q = a + b + 1.0;
            for (i = 0; i < aid; i++) {
                r = e - 1.0;
                y = (e * (r - (2.0 * e - q) * x) * d2 + (e - a) * (e - b) * x * d1) / (e * r * s);
                e = r;
                d1 = d2;
                d2 = y;
            }
            goto hypdon;
        }

        if (neg_int_ca_or_cb) {
            goto hypf; /* negative integer c-a or c-b */
        }

    hypok:
        y = detail::hyt2f1(a, b, c, x, &err);

    hypdon:
        if (err > detail::hyp2f1_ETHRESH) {
            set_error("hyp2f1", SF_ERROR_LOSS, NULL);
            /*      printf( "Estimated err = %.2e\n", err ); */
        }
        return (y);

        /* The transformation for c-a or c-b negative integer
         * AMS55 #15.3.3
         */
    hypf:
        y = std::pow(s, d) * detail::hys2f1(c - a, c - b, c, x, &err);
        goto hypdon;

        /* The alarm exit */
    hypdiv:
        set_error("hyp2f1", SF_ERROR_OVERFLOW, NULL);
        return std::numeric_limits<double>::infinity();
    }

} // namespace cephes
} // namespace xsf