File size: 12,004 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*
 *     Gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, Gamma();
 *
 * y = Gamma( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Gamma function of the argument.  The result is
 * correctly signed.
 *
 * Arguments |x| <= 34 are reduced by recurrence and the function
 * approximated by a rational function of degree 6/7 in the
 * interval (2,3).  Large arguments are handled by Stirling's
 * formula. Large negative arguments are made positive using
 * a reflection formula.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE    -170,-33      20000       2.3e-15     3.3e-16
 *    IEEE     -33,  33     20000       9.4e-16     2.2e-16
 *    IEEE      33, 171.6   20000       2.3e-15     3.2e-16
 *
 * Error for arguments outside the test range will be larger
 * owing to error amplification by the exponential function.
 *
 */

/*                                                     lgam()
 *
 *     Natural logarithm of Gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, lgam();
 *
 * y = lgam( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base e (2.718...) logarithm of the absolute
 * value of the Gamma function of the argument.
 *
 * For arguments greater than 13, the logarithm of the Gamma
 * function is approximated by the logarithmic version of
 * Stirling's formula using a polynomial approximation of
 * degree 4. Arguments between -33 and +33 are reduced by
 * recurrence to the interval [2,3] of a rational approximation.
 * The cosecant reflection formula is employed for arguments
 * less than -33.
 *
 * Arguments greater than MAXLGM return INFINITY and an error
 * message.  MAXLGM = 2.556348e305 for IEEE arithmetic.
 *
 *
 *
 * ACCURACY:
 *
 *
 * arithmetic      domain        # trials     peak         rms
 *    IEEE    0, 3                 28000     5.4e-16     1.1e-16
 *    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
 * The error criterion was relative when the function magnitude
 * was greater than one but absolute when it was less than one.
 *
 * The following test used the relative error criterion, though
 * at certain points the relative error could be much higher than
 * indicated.
 *    IEEE    -200, -4             10000     4.8e-16     1.3e-16
 *
 */

/*
 * Cephes Math Library Release 2.2:  July, 1992
 * Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */
#pragma once

#include "../config.h"
#include "../error.h"
#include "const.h"
#include "polevl.h"
#include "trig.h"

namespace xsf {
namespace cephes {
    namespace detail {
        constexpr double gamma_P[] = {1.60119522476751861407E-4, 1.19135147006586384913E-3, 1.04213797561761569935E-2,
                                      4.76367800457137231464E-2, 2.07448227648435975150E-1, 4.94214826801497100753E-1,
                                      9.99999999999999996796E-1};

        constexpr double gamma_Q[] = {-2.31581873324120129819E-5, 5.39605580493303397842E-4, -4.45641913851797240494E-3,
                                      1.18139785222060435552E-2,  3.58236398605498653373E-2, -2.34591795718243348568E-1,
                                      7.14304917030273074085E-2,  1.00000000000000000320E0};

        /* Stirling's formula for the Gamma function */
        constexpr double gamma_STIR[5] = {
            7.87311395793093628397E-4, -2.29549961613378126380E-4, -2.68132617805781232825E-3,
            3.47222221605458667310E-3, 8.33333333333482257126E-2,
        };

        constexpr double MAXSTIR = 143.01608;

        /* Gamma function computed by Stirling's formula.
         * The polynomial STIR is valid for 33 <= x <= 172.
         */
        XSF_HOST_DEVICE inline double stirf(double x) {
            double y, w, v;

            if (x >= MAXGAM) {
                return (std::numeric_limits<double>::infinity());
            }
            w = 1.0 / x;
            w = 1.0 + w * xsf::cephes::polevl(w, gamma_STIR, 4);
            y = std::exp(x);
            if (x > MAXSTIR) { /* Avoid overflow in pow() */
                v = std::pow(x, 0.5 * x - 0.25);
                y = v * (v / y);
            } else {
                y = std::pow(x, x - 0.5) / y;
            }
            y = SQRTPI * y * w;
            return (y);
        }
    } // namespace detail

    XSF_HOST_DEVICE inline double Gamma(double x) {
        double p, q, z;
        int i;
        int sgngam = 1;

        if (!std::isfinite(x)) {
	    if (x > 0) {
		// gamma(+inf) = +inf
		return x;
	    }
	    // gamma(NaN) and gamma(-inf) both should equal NaN.
            return std::numeric_limits<double>::quiet_NaN();
        }

	if (x == 0) {
	    /* For pole at zero, value depends on sign of zero.
	     * +inf when approaching from right, -inf when approaching
	     * from left. */
	    return std::copysign(std::numeric_limits<double>::infinity(), x);
	}

        q = std::abs(x);

        if (q > 33.0) {
            if (x < 0.0) {
                p = std::floor(q);
                if (p == q) {
		    // x is a negative integer. This is a pole.
                    set_error("Gamma", SF_ERROR_SINGULAR, NULL);
                    return (std::numeric_limits<double>::quiet_NaN());
                }
                i = p;
                if ((i & 1) == 0) {
                    sgngam = -1;
                }
                z = q - p;
                if (z > 0.5) {
                    p += 1.0;
                    z = q - p;
                }
                z = q * sinpi(z);
                if (z == 0.0) {
                    return (sgngam * std::numeric_limits<double>::infinity());
                }
                z = std::abs(z);
                z = M_PI / (z * detail::stirf(q));
            } else {
                z = detail::stirf(x);
            }
            return (sgngam * z);
        }

        z = 1.0;
        while (x >= 3.0) {
            x -= 1.0;
            z *= x;
        }

        while (x < 0.0) {
            if (x > -1.E-9) {
                goto small;
            }
            z /= x;
            x += 1.0;
        }

        while (x < 2.0) {
            if (x < 1.e-9) {
                goto small;
            }
            z /= x;
            x += 1.0;
        }

        if (x == 2.0) {
            return (z);
        }

        x -= 2.0;
        p = polevl(x, detail::gamma_P, 6);
        q = polevl(x, detail::gamma_Q, 7);
        return (z * p / q);

    small:
        if (x == 0.0) {
	    /* For this to have happened, x must have started as a negative integer. */
	    set_error("Gamma", SF_ERROR_SINGULAR, NULL);
	    return (std::numeric_limits<double>::quiet_NaN());
        } else
            return (z / ((1.0 + 0.5772156649015329 * x) * x));
    }

    namespace detail {
        /* A[]: Stirling's formula expansion of log Gamma
         * B[], C[]: log Gamma function between 2 and 3
         */
        constexpr double gamma_A[] = {8.11614167470508450300E-4, -5.95061904284301438324E-4, 7.93650340457716943945E-4,
                                      -2.77777777730099687205E-3, 8.33333333333331927722E-2};

        constexpr double gamma_B[] = {-1.37825152569120859100E3, -3.88016315134637840924E4, -3.31612992738871184744E5,
                                      -1.16237097492762307383E6, -1.72173700820839662146E6, -8.53555664245765465627E5};

        constexpr double gamma_C[] = {
            /* 1.00000000000000000000E0, */
            -3.51815701436523470549E2, -1.70642106651881159223E4, -2.20528590553854454839E5,
            -1.13933444367982507207E6, -2.53252307177582951285E6, -2.01889141433532773231E6};

        /* log( sqrt( 2*pi ) ) */
        constexpr double LS2PI = 0.91893853320467274178;

        constexpr double MAXLGM = 2.556348e305;

        /* Disable optimizations for this function on 32 bit systems when compiling with GCC.
         * We've found that enabling optimizations can result in degraded precision
         * for this asymptotic approximation in that case. */
#if defined(__GNUC__) && defined(__i386__)
#pragma GCC push_options
#pragma GCC optimize("00")
#endif
        XSF_HOST_DEVICE inline double lgam_large_x(double x) {
            double q = (x - 0.5) * std::log(x) - x + LS2PI;
            if (x > 1.0e8) {
                return (q);
            }
            double p = 1.0 / (x * x);
            p = ((7.9365079365079365079365e-4 * p - 2.7777777777777777777778e-3) * p + 0.0833333333333333333333) / x;
            return q + p;
        }
#if defined(__GNUC__) && defined(__i386__)
#pragma GCC pop_options
#endif

        XSF_HOST_DEVICE inline double lgam_sgn(double x, int *sign) {
            double p, q, u, w, z;
            int i;

            *sign = 1;

            if (!std::isfinite(x)) {
                return x;
            }

            if (x < -34.0) {
                q = -x;
                w = lgam_sgn(q, sign);
                p = std::floor(q);
                if (p == q) {
                lgsing:
                    set_error("lgam", SF_ERROR_SINGULAR, NULL);
                    return (std::numeric_limits<double>::infinity());
                }
                i = p;
                if ((i & 1) == 0) {
                    *sign = -1;
                } else {
                    *sign = 1;
                }
                z = q - p;
                if (z > 0.5) {
                    p += 1.0;
                    z = p - q;
                }
                z = q * sinpi(z);
                if (z == 0.0) {
                    goto lgsing;
                }
                /*     z = log(M_PI) - log( z ) - w; */
                z = LOGPI - std::log(z) - w;
                return (z);
            }

            if (x < 13.0) {
                z = 1.0;
                p = 0.0;
                u = x;
                while (u >= 3.0) {
                    p -= 1.0;
                    u = x + p;
                    z *= u;
                }
                while (u < 2.0) {
                    if (u == 0.0) {
                        goto lgsing;
                    }
                    z /= u;
                    p += 1.0;
                    u = x + p;
                }
                if (z < 0.0) {
                    *sign = -1;
                    z = -z;
                } else {
                    *sign = 1;
                }
                if (u == 2.0) {
                    return (std::log(z));
                }
                p -= 2.0;
                x = x + p;
                p = x * polevl(x, gamma_B, 5) / p1evl(x, gamma_C, 6);
                return (std::log(z) + p);
            }

            if (x > MAXLGM) {
                return (*sign * std::numeric_limits<double>::infinity());
            }

            if (x >= 1000.0) {
                return lgam_large_x(x);
            }

            q = (x - 0.5) * std::log(x) - x + LS2PI;
            p = 1.0 / (x * x);
            return q + polevl(p, gamma_A, 4) / x;
        }
    } // namespace detail

    /* Logarithm of Gamma function */
    XSF_HOST_DEVICE inline double lgam(double x) {
        int sign;
        return detail::lgam_sgn(x, &sign);
    }

    /* Sign of the Gamma function */
    XSF_HOST_DEVICE inline double gammasgn(double x) {
        double fx;

        if (std::isnan(x)) {
            return x;
        }
        if (x > 0) {
            return 1.0;
	}
	if (x == 0) {
	    return std::copysign(1.0, x);
	}
	if (std::isinf(x)) {
	    // x > 0 case handled, so x must be negative infinity.
	    return std::numeric_limits<double>::quiet_NaN();
	}
	fx = std::floor(x);
	if (x - fx == 0.0) {
	    return std::numeric_limits<double>::quiet_NaN();
	}
	// sign of gamma for x in (-n, -n+1) for positive integer n is (-1)^n.
	if (static_cast<int>(fx) % 2) {
	    return -1.0;
	}
	return 1.0;
    }

} // namespace cephes
} // namespace xsf