File size: 12,467 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import math
import pytest

import numpy as np
from numpy.testing import assert_allclose

from scipy.conftest import array_api_compatible
from scipy._lib._array_api import array_namespace, is_array_api_strict
from scipy._lib._array_api_no_0d import (xp_assert_equal, xp_assert_close,
                                         xp_assert_less)

from scipy.special import logsumexp, softmax
from scipy.special._logsumexp import _wrap_radians


dtypes = ['float32', 'float64', 'int32', 'int64', 'complex64', 'complex128']
integral_dtypes = ['int32', 'int64']


@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('jax.numpy',
                              reason="JAX arrays do not support item assignment")
def test_wrap_radians(xp):
    x = xp.asarray([-math.pi-1, -math.pi, -1, -1e-300,
                    0, 1e-300, 1, math.pi, math.pi+1])
    ref = xp.asarray([math.pi-1, math.pi, -1, -1e-300,
                    0, 1e-300, 1, math.pi, -math.pi+1])
    res = _wrap_radians(x, xp)
    xp_assert_close(res, ref, atol=0)


@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('jax.numpy',
                              reason="JAX arrays do not support item assignment")
class TestLogSumExp:
    def test_logsumexp(self, xp):
        # Test with zero-size array
        a = xp.asarray([])
        desired = xp.asarray(-xp.inf)
        xp_assert_equal(logsumexp(a), desired)

        # Test whether logsumexp() function correctly handles large inputs.
        a = xp.arange(200., dtype=xp.float64)
        desired = xp.log(xp.sum(xp.exp(a)))
        xp_assert_close(logsumexp(a), desired)

        # Now test with large numbers
        b = xp.asarray([1000., 1000.])
        desired = xp.asarray(1000.0 + math.log(2.0))
        xp_assert_close(logsumexp(b), desired)

        n = 1000
        b = xp.full((n,), 10000)
        desired = xp.asarray(10000.0 + math.log(n))
        xp_assert_close(logsumexp(b), desired)

        x = xp.asarray([1e-40] * 1000000)
        logx = xp.log(x)
        X = xp.stack([x, x])
        logX = xp.stack([logx, logx])
        xp_assert_close(xp.exp(logsumexp(logX)), xp.sum(X))
        xp_assert_close(xp.exp(logsumexp(logX, axis=0)), xp.sum(X, axis=0))
        xp_assert_close(xp.exp(logsumexp(logX, axis=1)), xp.sum(X, axis=1))

        # Handling special values properly
        inf = xp.asarray([xp.inf])
        nan = xp.asarray([xp.nan])
        xp_assert_equal(logsumexp(inf), inf[0])
        xp_assert_equal(logsumexp(-inf), -inf[0])
        xp_assert_equal(logsumexp(nan), nan[0])
        xp_assert_equal(logsumexp(xp.asarray([-xp.inf, -xp.inf])), -inf[0])

        # Handling an array with different magnitudes on the axes
        a = xp.asarray([[1e10, 1e-10],
                        [-1e10, -np.inf]])
        ref = xp.asarray([1e10, -1e10])
        xp_assert_close(logsumexp(a, axis=-1), ref)

        # Test keeping dimensions
        xp_test = array_namespace(a) # `torch` needs `expand_dims`
        ref = xp_test.expand_dims(ref, axis=-1)
        xp_assert_close(logsumexp(a, axis=-1, keepdims=True), ref)

        # Test multiple axes
        xp_assert_close(logsumexp(a, axis=(-1, -2)), xp.asarray(1e10))

    def test_logsumexp_b(self, xp):
        a = xp.arange(200., dtype=xp.float64)
        b = xp.arange(200., 0., -1.)
        desired = xp.log(xp.sum(b*xp.exp(a)))
        xp_assert_close(logsumexp(a, b=b), desired)

        a = xp.asarray([1000, 1000])
        b = xp.asarray([1.2, 1.2])
        desired = xp.asarray(1000 + math.log(2 * 1.2))
        xp_assert_close(logsumexp(a, b=b), desired)

        x = xp.asarray([1e-40] * 100000)
        b = xp.linspace(1, 1000, 100000)
        logx = xp.log(x)
        X = xp.stack((x, x))
        logX = xp.stack((logx, logx))
        B = xp.stack((b, b))
        xp_assert_close(xp.exp(logsumexp(logX, b=B)), xp.sum(B * X))
        xp_assert_close(xp.exp(logsumexp(logX, b=B, axis=0)), xp.sum(B * X, axis=0))
        xp_assert_close(xp.exp(logsumexp(logX, b=B, axis=1)), xp.sum(B * X, axis=1))

    def test_logsumexp_sign(self, xp):
        a = xp.asarray([1, 1, 1])
        b = xp.asarray([1, -1, -1])

        r, s = logsumexp(a, b=b, return_sign=True)
        xp_assert_close(r, xp.asarray(1.))
        xp_assert_equal(s, xp.asarray(-1.))

    def test_logsumexp_sign_zero(self, xp):
        a = xp.asarray([1, 1])
        b = xp.asarray([1, -1])

        r, s = logsumexp(a, b=b, return_sign=True)
        assert not xp.isfinite(r)
        assert not xp.isnan(r)
        assert r < 0
        assert s == 0

    def test_logsumexp_sign_shape(self, xp):
        a = xp.ones((1, 2, 3, 4))
        b = xp.ones_like(a)

        r, s = logsumexp(a, axis=2, b=b, return_sign=True)
        assert r.shape == s.shape == (1, 2, 4)

        r, s = logsumexp(a, axis=(1, 3), b=b, return_sign=True)
        assert r.shape == s.shape == (1,3)

    def test_logsumexp_complex_sign(self, xp):
        a = xp.asarray([1 + 1j, 2 - 1j, -2 + 3j])

        r, s = logsumexp(a, return_sign=True)

        expected_sumexp = xp.sum(xp.exp(a))
        # This is the numpy>=2.0 convention for np.sign
        expected_sign = expected_sumexp / xp.abs(expected_sumexp)

        xp_assert_close(s, expected_sign)
        xp_assert_close(s * xp.exp(r), expected_sumexp)

    def test_logsumexp_shape(self, xp):
        a = xp.ones((1, 2, 3, 4))
        b = xp.ones_like(a)

        r = logsumexp(a, axis=2, b=b)
        assert r.shape == (1, 2, 4)

        r = logsumexp(a, axis=(1, 3), b=b)
        assert r.shape == (1, 3)

    def test_logsumexp_b_zero(self, xp):
        a = xp.asarray([1, 10000])
        b = xp.asarray([1, 0])

        xp_assert_close(logsumexp(a, b=b), xp.asarray(1.))

    def test_logsumexp_b_shape(self, xp):
        a = xp.zeros((4, 1, 2, 1))
        b = xp.ones((3, 1, 5))

        logsumexp(a, b=b)

    @pytest.mark.parametrize('arg', (1, [1, 2, 3]))
    @pytest.mark.skip_xp_backends(np_only=True)
    def test_xp_invalid_input(self, arg, xp):
        assert logsumexp(arg) == logsumexp(np.asarray(np.atleast_1d(arg)))

    @pytest.mark.skip_xp_backends(np_only=True,
                                  reason="Lists correspond with NumPy backend")
    def test_list(self, xp):
        a = [1000, 1000]
        desired = xp.asarray(1000.0 + math.log(2.0), dtype=np.float64)
        xp_assert_close(logsumexp(a), desired)

    @pytest.mark.parametrize('dtype', dtypes)
    def test_dtypes_a(self, dtype, xp):
        dtype = getattr(xp, dtype)
        a = xp.asarray([1000., 1000.], dtype=dtype)
        xp_test = array_namespace(a)  # torch needs compatible `isdtype`
        desired_dtype = (xp.asarray(1.).dtype if xp_test.isdtype(dtype, 'integral')
                         else dtype)  # true for all libraries tested
        desired = xp.asarray(1000.0 + math.log(2.0), dtype=desired_dtype)
        xp_assert_close(logsumexp(a), desired)

    @pytest.mark.parametrize('dtype_a', dtypes)
    @pytest.mark.parametrize('dtype_b', dtypes)
    def test_dtypes_ab(self, dtype_a, dtype_b, xp):
        xp_dtype_a = getattr(xp, dtype_a)
        xp_dtype_b = getattr(xp, dtype_b)
        a = xp.asarray([2, 1], dtype=xp_dtype_a)
        b = xp.asarray([1, -1], dtype=xp_dtype_b)
        xp_test = array_namespace(a, b)  # torch needs compatible result_type
        if is_array_api_strict(xp):
            xp_float_dtypes = [dtype for dtype in [xp_dtype_a, xp_dtype_b]
                               if not xp_test.isdtype(dtype, 'integral')]
            if len(xp_float_dtypes) < 2:  # at least one is integral
                xp_float_dtypes.append(xp.asarray(1.).dtype)
            desired_dtype = xp_test.result_type(*xp_float_dtypes)
        else:
            # True for all libraries tested
            desired_dtype = xp_test.result_type(xp_dtype_a, xp_dtype_b, xp.float32)
        desired = xp.asarray(math.log(math.exp(2) - math.exp(1)), dtype=desired_dtype)
        xp_assert_close(logsumexp(a, b=b), desired)

    def test_gh18295(self, xp):
        # gh-18295 noted loss of precision when real part of one element is much
        # larger than the rest. Check that this is resolved.
        a = xp.asarray([0.0, -40.0])
        res = logsumexp(a)
        ref = xp.logaddexp(a[0], a[1])
        xp_assert_close(res, ref)

    @pytest.mark.parametrize('dtype', ['complex64', 'complex128'])
    def test_gh21610(self, xp, dtype):
        # gh-21610 noted that `logsumexp` could return imaginary components
        # outside the range (-pi, pi]. Check that this is resolved.
        # While working on this, I noticed that all other tests passed even
        # when the imaginary component of the result was zero. This suggested
        # the need of a stronger test with imaginary dtype.
        rng = np.random.default_rng(324984329582349862)
        dtype = getattr(xp, dtype)
        shape = (10, 100)
        x = rng.uniform(1, 40, shape) + 1.j * rng.uniform(1, 40, shape)
        x = xp.asarray(x, dtype=dtype)

        res = logsumexp(x, axis=1)
        ref = xp.log(xp.sum(xp.exp(x), axis=1))
        max = xp.full_like(xp.imag(res), xp.asarray(xp.pi))
        xp_assert_less(xp.abs(xp.imag(res)), max)
        xp_assert_close(res, ref)

        out, sgn = logsumexp(x, return_sign=True, axis=1)
        ref = xp.sum(xp.exp(x), axis=1)
        xp_assert_less(xp.abs(xp.imag(sgn)), max)
        xp_assert_close(out, xp.real(xp.log(ref)))
        xp_assert_close(sgn, ref/xp.abs(ref))

    def test_gh21709_small_imaginary(self, xp):
        # Test that `logsumexp` does not lose relative precision of
        # small imaginary components
        x = xp.asarray([0, 0.+2.2204460492503132e-17j])
        res = logsumexp(x)
        # from mpmath import mp
        # mp.dps = 100
        # x, y = mp.mpc(0), mp.mpc('0', '2.2204460492503132e-17')
        # ref = complex(mp.log(mp.exp(x) + mp.exp(y)))
        ref = xp.asarray(0.6931471805599453+1.1102230246251566e-17j)
        xp_assert_close(xp.real(res), xp.real(ref))
        xp_assert_close(xp.imag(res), xp.imag(ref), atol=0, rtol=1e-15)


class TestSoftmax:
    def test_softmax_fixtures(self):
        assert_allclose(softmax([1000, 0, 0, 0]), np.array([1, 0, 0, 0]),
                        rtol=1e-13)
        assert_allclose(softmax([1, 1]), np.array([.5, .5]), rtol=1e-13)
        assert_allclose(softmax([0, 1]), np.array([1, np.e])/(1 + np.e),
                        rtol=1e-13)

        # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
        # converted to float.
        x = np.arange(4)
        expected = np.array([0.03205860328008499,
                            0.08714431874203256,
                            0.23688281808991013,
                            0.6439142598879722])

        assert_allclose(softmax(x), expected, rtol=1e-13)

        # Translation property.  If all the values are changed by the same amount,
        # the softmax result does not change.
        assert_allclose(softmax(x + 100), expected, rtol=1e-13)

        # When axis=None, softmax operates on the entire array, and preserves
        # the shape.
        assert_allclose(softmax(x.reshape(2, 2)), expected.reshape(2, 2),
                        rtol=1e-13)


    def test_softmax_multi_axes(self):
        assert_allclose(softmax([[1000, 0], [1000, 0]], axis=0),
                        np.array([[.5, .5], [.5, .5]]), rtol=1e-13)
        assert_allclose(softmax([[1000, 0], [1000, 0]], axis=1),
                        np.array([[1, 0], [1, 0]]), rtol=1e-13)

        # Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
        # converted to float.
        x = np.array([[-25, 0, 25, 50],
                    [1, 325, 749, 750]])
        expected = np.array([[2.678636961770877e-33,
                            1.9287498479371314e-22,
                            1.3887943864771144e-11,
                            0.999999999986112],
                            [0.0,
                            1.9444526359919372e-185,
                            0.2689414213699951,
                            0.7310585786300048]])
        assert_allclose(softmax(x, axis=1), expected, rtol=1e-13)
        assert_allclose(softmax(x.T, axis=0), expected.T, rtol=1e-13)

        # 3-d input, with a tuple for the axis.
        x3d = x.reshape(2, 2, 2)
        assert_allclose(softmax(x3d, axis=(1, 2)), expected.reshape(2, 2, 2),
                        rtol=1e-13)