File size: 30,180 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
import importlib.resources
import numpy as np
from numpy.testing import suppress_warnings
import pytest
from scipy.special import (
lpn, lpmn, lpmv, lqn, lqmn, sph_harm, eval_legendre, eval_hermite,
eval_laguerre, eval_genlaguerre, binom, cbrt, expm1, log1p, zeta,
jn, jv, jvp, yn, yv, yvp, iv, ivp, kn, kv, kvp,
gamma, gammaln, gammainc, gammaincc, gammaincinv, gammainccinv, digamma,
beta, betainc, betaincinv, poch,
ellipe, ellipeinc, ellipk, ellipkm1, ellipkinc,
elliprc, elliprd, elliprf, elliprg, elliprj,
erf, erfc, erfinv, erfcinv, exp1, expi, expn,
bdtrik, btdtria, btdtrib, chndtr, gdtr, gdtrc, gdtrix, gdtrib,
nbdtrik, pdtrik, owens_t,
mathieu_a, mathieu_b, mathieu_cem, mathieu_sem, mathieu_modcem1,
mathieu_modsem1, mathieu_modcem2, mathieu_modsem2,
ellip_harm, ellip_harm_2, spherical_jn, spherical_yn, wright_bessel
)
from scipy.integrate import IntegrationWarning
from scipy.special._testutils import FuncData
# The npz files are generated, and hence may live in the build dir. We can only
# access them through `importlib.resources`, not an explicit path from `__file__`
_datadir = importlib.resources.files('scipy.special.tests.data')
_boost_npz = _datadir.joinpath('boost.npz')
with importlib.resources.as_file(_boost_npz) as f:
DATASETS_BOOST = np.load(f)
_gsl_npz = _datadir.joinpath('gsl.npz')
with importlib.resources.as_file(_gsl_npz) as f:
DATASETS_GSL = np.load(f)
_local_npz = _datadir.joinpath('local.npz')
with importlib.resources.as_file(_local_npz) as f:
DATASETS_LOCAL = np.load(f)
def data(func, dataname, *a, **kw):
kw.setdefault('dataname', dataname)
return FuncData(func, DATASETS_BOOST[dataname], *a, **kw)
def data_gsl(func, dataname, *a, **kw):
kw.setdefault('dataname', dataname)
return FuncData(func, DATASETS_GSL[dataname], *a, **kw)
def data_local(func, dataname, *a, **kw):
kw.setdefault('dataname', dataname)
return FuncData(func, DATASETS_LOCAL[dataname], *a, **kw)
# The functions lpn, lpmn, clpmn, and sph_harm appearing below are
# deprecated in favor of legendre_p_all, assoc_legendre_p_all,
# assoc_legendre_p_all (assoc_legendre_p_all covers lpmn and clpmn),
# and sph_harm_y respectively. The deprecated functions listed above are
# implemented as shims around their respective replacements. The replacements
# are tested separately, but tests for the deprecated functions remain to
# verify the correctness of the shims.
def ellipk_(k):
return ellipk(k*k)
def ellipkinc_(f, k):
return ellipkinc(f, k*k)
def ellipe_(k):
return ellipe(k*k)
def ellipeinc_(f, k):
return ellipeinc(f, k*k)
def zeta_(x):
return zeta(x, 1.)
def assoc_legendre_p_boost_(nu, mu, x):
# the boost test data is for integer orders only
return lpmv(mu, nu.astype(int), x)
def legendre_p_via_assoc_(nu, x):
return lpmv(0, nu, x)
def lpn_(n, x):
with suppress_warnings() as sup:
sup.filter(category=DeprecationWarning)
return lpn(n.astype('l'), x)[0][-1]
def lqn_(n, x):
return lqn(n.astype('l'), x)[0][-1]
def legendre_p_via_lpmn(n, x):
with suppress_warnings() as sup:
sup.filter(category=DeprecationWarning)
return lpmn(0, n, x)[0][0,-1]
def legendre_q_via_lqmn(n, x):
return lqmn(0, n, x)[0][0,-1]
def mathieu_ce_rad(m, q, x):
return mathieu_cem(m, q, x*180/np.pi)[0]
def mathieu_se_rad(m, q, x):
return mathieu_sem(m, q, x*180/np.pi)[0]
def mathieu_mc1_scaled(m, q, x):
# GSL follows a different normalization.
# We follow Abramowitz & Stegun, they apparently something else.
return mathieu_modcem1(m, q, x)[0] * np.sqrt(np.pi/2)
def mathieu_ms1_scaled(m, q, x):
return mathieu_modsem1(m, q, x)[0] * np.sqrt(np.pi/2)
def mathieu_mc2_scaled(m, q, x):
return mathieu_modcem2(m, q, x)[0] * np.sqrt(np.pi/2)
def mathieu_ms2_scaled(m, q, x):
return mathieu_modsem2(m, q, x)[0] * np.sqrt(np.pi/2)
def eval_legendre_ld(n, x):
return eval_legendre(n.astype('l'), x)
def eval_legendre_dd(n, x):
return eval_legendre(n.astype('d'), x)
def eval_hermite_ld(n, x):
return eval_hermite(n.astype('l'), x)
def eval_laguerre_ld(n, x):
return eval_laguerre(n.astype('l'), x)
def eval_laguerre_dd(n, x):
return eval_laguerre(n.astype('d'), x)
def eval_genlaguerre_ldd(n, a, x):
return eval_genlaguerre(n.astype('l'), a, x)
def eval_genlaguerre_ddd(n, a, x):
return eval_genlaguerre(n.astype('d'), a, x)
def bdtrik_comp(y, n, p):
return bdtrik(1-y, n, p)
def btdtria_comp(p, b, x):
return btdtria(1-p, b, x)
def btdtrib_comp(a, p, x):
return btdtrib(a, 1-p, x)
def gdtr_(p, x):
return gdtr(1.0, p, x)
def gdtrc_(p, x):
return gdtrc(1.0, p, x)
def gdtrix_(b, p):
return gdtrix(1.0, b, p)
def gdtrix_comp(b, p):
return gdtrix(1.0, b, 1-p)
def gdtrib_(p, x):
return gdtrib(1.0, p, x)
def gdtrib_comp(p, x):
return gdtrib(1.0, 1-p, x)
def nbdtrik_comp(y, n, p):
return nbdtrik(1-y, n, p)
def pdtrik_comp(p, m):
return pdtrik(1-p, m)
def poch_(z, m):
return 1.0 / poch(z, m)
def poch_minus(z, m):
return 1.0 / poch(z, -m)
def spherical_jn_(n, x):
return spherical_jn(n.astype('l'), x)
def spherical_yn_(n, x):
return spherical_yn(n.astype('l'), x)
def sph_harm_(m, n, theta, phi):
with suppress_warnings() as sup:
sup.filter(category=DeprecationWarning)
y = sph_harm(m, n, theta, phi)
return (y.real, y.imag)
def cexpm1(x, y):
z = expm1(x + 1j*y)
return z.real, z.imag
def clog1p(x, y):
z = log1p(x + 1j*y)
return z.real, z.imag
BOOST_TESTS = [
data(assoc_legendre_p_boost_, 'assoc_legendre_p_ipp-assoc_legendre_p',
(0,1,2), 3, rtol=1e-11),
data(legendre_p_via_assoc_, 'legendre_p_ipp-legendre_p',
(0,1), 2, rtol=1e-11),
data(legendre_p_via_assoc_, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 2, rtol=9.6e-14),
data(legendre_p_via_lpmn, 'legendre_p_ipp-legendre_p',
(0,1), 2, rtol=5e-14, vectorized=False),
data(legendre_p_via_lpmn, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 2, rtol=3e-13, vectorized=False),
data(lpn_, 'legendre_p_ipp-legendre_p',
(0,1), 2, rtol=5e-14, vectorized=False),
data(lpn_, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 2, rtol=3e-13, vectorized=False),
data(eval_legendre_ld, 'legendre_p_ipp-legendre_p',
(0,1), 2, rtol=6e-14),
data(eval_legendre_ld, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 2, rtol=2e-13),
data(eval_legendre_dd, 'legendre_p_ipp-legendre_p',
(0,1), 2, rtol=2e-14),
data(eval_legendre_dd, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 2, rtol=2e-13),
data(lqn_, 'legendre_p_ipp-legendre_p',
(0,1), 3, rtol=2e-14, vectorized=False),
data(lqn_, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 3, rtol=2e-12, vectorized=False),
data(legendre_q_via_lqmn, 'legendre_p_ipp-legendre_p',
(0,1), 3, rtol=2e-14, vectorized=False),
data(legendre_q_via_lqmn, 'legendre_p_large_ipp-legendre_p_large',
(0,1), 3, rtol=2e-12, vectorized=False),
data(beta, 'beta_exp_data_ipp-beta_exp_data',
(0,1), 2, rtol=1e-13),
data(beta, 'beta_exp_data_ipp-beta_exp_data',
(0,1), 2, rtol=1e-13),
data(beta, 'beta_med_data_ipp-beta_med_data',
(0,1), 2, rtol=5e-13),
data(betainc, 'ibeta_small_data_ipp-ibeta_small_data',
(0,1,2), 5, rtol=6e-15),
data(betainc, 'ibeta_data_ipp-ibeta_data',
(0,1,2), 5, rtol=5e-13),
data(betainc, 'ibeta_int_data_ipp-ibeta_int_data',
(0,1,2), 5, rtol=2e-14),
data(betainc, 'ibeta_large_data_ipp-ibeta_large_data',
(0,1,2), 5, rtol=4e-10),
data(betaincinv, 'ibeta_inv_data_ipp-ibeta_inv_data',
(0,1,2), 3, rtol=1e-5),
data(btdtria, 'ibeta_inva_data_ipp-ibeta_inva_data',
(2,0,1), 3, rtol=5e-9),
data(btdtria_comp, 'ibeta_inva_data_ipp-ibeta_inva_data',
(2,0,1), 4, rtol=5e-9),
data(btdtrib, 'ibeta_inva_data_ipp-ibeta_inva_data',
(0,2,1), 5, rtol=5e-9),
data(btdtrib_comp, 'ibeta_inva_data_ipp-ibeta_inva_data',
(0,2,1), 6, rtol=5e-9),
data(binom, 'binomial_data_ipp-binomial_data',
(0,1), 2, rtol=1e-13),
data(binom, 'binomial_large_data_ipp-binomial_large_data',
(0,1), 2, rtol=5e-13),
data(bdtrik, 'binomial_quantile_ipp-binomial_quantile_data',
(2,0,1), 3, rtol=5e-9),
data(bdtrik_comp, 'binomial_quantile_ipp-binomial_quantile_data',
(2,0,1), 4, rtol=5e-9),
data(nbdtrik, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data',
(2,0,1), 3, rtol=4e-9),
data(nbdtrik_comp,
'negative_binomial_quantile_ipp-negative_binomial_quantile_data',
(2,0,1), 4, rtol=4e-9),
data(pdtrik, 'poisson_quantile_ipp-poisson_quantile_data',
(1,0), 2, rtol=3e-9),
data(pdtrik_comp, 'poisson_quantile_ipp-poisson_quantile_data',
(1,0), 3, rtol=4e-9),
data(cbrt, 'cbrt_data_ipp-cbrt_data', 1, 0),
data(digamma, 'digamma_data_ipp-digamma_data', 0, 1),
data(digamma, 'digamma_data_ipp-digamma_data', 0j, 1),
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0, 1, rtol=2e-13),
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0j, 1, rtol=1e-13),
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0, 1, rtol=1e-15),
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0j, 1, rtol=1e-15),
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0, 1, rtol=1e-15),
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0j, 1, rtol=1e-14),
data(ellipk_, 'ellint_k_data_ipp-ellint_k_data', 0, 1),
data(ellipkinc_, 'ellint_f_data_ipp-ellint_f_data', (0,1), 2, rtol=1e-14),
data(ellipe_, 'ellint_e_data_ipp-ellint_e_data', 0, 1),
data(ellipeinc_, 'ellint_e2_data_ipp-ellint_e2_data', (0,1), 2, rtol=1e-14),
data(erf, 'erf_data_ipp-erf_data', 0, 1),
data(erf, 'erf_data_ipp-erf_data', 0j, 1, rtol=1e-13),
data(erfc, 'erf_data_ipp-erf_data', 0, 2, rtol=6e-15),
data(erf, 'erf_large_data_ipp-erf_large_data', 0, 1),
data(erf, 'erf_large_data_ipp-erf_large_data', 0j, 1),
data(erfc, 'erf_large_data_ipp-erf_large_data', 0, 2, rtol=4e-14),
data(erf, 'erf_small_data_ipp-erf_small_data', 0, 1),
data(erf, 'erf_small_data_ipp-erf_small_data', 0j, 1, rtol=1e-13),
data(erfc, 'erf_small_data_ipp-erf_small_data', 0, 2),
data(erfinv, 'erf_inv_data_ipp-erf_inv_data', 0, 1),
data(erfcinv, 'erfc_inv_data_ipp-erfc_inv_data', 0, 1),
data(erfcinv, 'erfc_inv_big_data_ipp-erfc_inv_big_data', 0, 1,
param_filter=(lambda s: s > 0)),
data(exp1, 'expint_1_data_ipp-expint_1_data', 1, 2, rtol=1e-13),
data(exp1, 'expint_1_data_ipp-expint_1_data', 1j, 2, rtol=5e-9),
data(expi, 'expinti_data_ipp-expinti_data', 0, 1, rtol=1e-13),
data(expi, 'expinti_data_double_ipp-expinti_data_double', 0, 1, rtol=1e-13),
data(expi, 'expinti_data_long_ipp-expinti_data_long', 0, 1),
data(expn, 'expint_small_data_ipp-expint_small_data', (0,1), 2),
data(expn, 'expint_data_ipp-expint_data', (0,1), 2, rtol=1e-14),
data(gamma, 'test_gamma_data_ipp-near_0', 0, 1),
data(gamma, 'test_gamma_data_ipp-near_1', 0, 1),
data(gamma, 'test_gamma_data_ipp-near_2', 0, 1),
data(gamma, 'test_gamma_data_ipp-near_m10', 0, 1),
data(gamma, 'test_gamma_data_ipp-near_m55', 0, 1, rtol=7e-12),
data(gamma, 'test_gamma_data_ipp-factorials', 0, 1, rtol=4e-14),
data(gamma, 'test_gamma_data_ipp-near_0', 0j, 1, rtol=2e-9),
data(gamma, 'test_gamma_data_ipp-near_1', 0j, 1, rtol=2e-9),
data(gamma, 'test_gamma_data_ipp-near_2', 0j, 1, rtol=2e-9),
data(gamma, 'test_gamma_data_ipp-near_m10', 0j, 1, rtol=2e-9),
data(gamma, 'test_gamma_data_ipp-near_m55', 0j, 1, rtol=2e-9),
data(gamma, 'test_gamma_data_ipp-factorials', 0j, 1, rtol=2e-13),
data(gammaln, 'test_gamma_data_ipp-near_0', 0, 2, rtol=5e-11),
data(gammaln, 'test_gamma_data_ipp-near_1', 0, 2, rtol=5e-11),
data(gammaln, 'test_gamma_data_ipp-near_2', 0, 2, rtol=2e-10),
data(gammaln, 'test_gamma_data_ipp-near_m10', 0, 2, rtol=5e-11),
data(gammaln, 'test_gamma_data_ipp-near_m55', 0, 2, rtol=5e-11),
data(gammaln, 'test_gamma_data_ipp-factorials', 0, 2),
data(gammainc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=5e-15),
data(gammainc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
data(gammainc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
data(gammainc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=1e-12),
data(gdtr_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=1e-13),
data(gdtr_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
data(gdtr_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
data(gdtr_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=2e-9),
data(gammaincc, 'igamma_small_data_ipp-igamma_small_data',
(0,1), 3, rtol=1e-13),
data(gammaincc, 'igamma_med_data_ipp-igamma_med_data',
(0,1), 3, rtol=2e-13),
data(gammaincc, 'igamma_int_data_ipp-igamma_int_data',
(0,1), 3, rtol=4e-14),
data(gammaincc, 'igamma_big_data_ipp-igamma_big_data',
(0,1), 3, rtol=1e-11),
data(gdtrc_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
data(gdtrc_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
data(gdtrc_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
data(gdtrc_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
data(gdtrib_, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 2, rtol=5e-9),
data(gdtrib_comp, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 3, rtol=5e-9),
data(poch_, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data',
(0,1), 2, rtol=2e-13),
data(poch_, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int',
(0,1), 2,),
data(poch_, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2',
(0,1), 2,),
data(poch_minus, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data',
(0,1), 3, rtol=2e-13),
data(poch_minus, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int',
(0,1), 3),
data(poch_minus, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2',
(0,1), 3),
data(eval_hermite_ld, 'hermite_ipp-hermite',
(0,1), 2, rtol=2e-14),
data(eval_laguerre_ld, 'laguerre2_ipp-laguerre2',
(0,1), 2, rtol=7e-12),
data(eval_laguerre_dd, 'laguerre2_ipp-laguerre2',
(0,1), 2, knownfailure='hyp2f1 insufficiently accurate.'),
data(eval_genlaguerre_ldd, 'laguerre3_ipp-laguerre3',
(0,1,2), 3, rtol=2e-13),
data(eval_genlaguerre_ddd, 'laguerre3_ipp-laguerre3',
(0,1,2), 3, knownfailure='hyp2f1 insufficiently accurate.'),
data(log1p, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 1),
data(expm1, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 2),
data(iv, 'bessel_i_data_ipp-bessel_i_data',
(0,1), 2, rtol=1e-12),
data(iv, 'bessel_i_data_ipp-bessel_i_data',
(0,1j), 2, rtol=2e-10, atol=1e-306),
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data',
(0,1), 2, rtol=1e-9),
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data',
(0,1j), 2, rtol=2e-10),
data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data',
(0,1), 2, rtol=1.2e-13),
data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data',
(0,1j), 2, rtol=1.2e-13, atol=1e-300),
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1), 2, rtol=6e-11),
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1j), 2, rtol=6e-11),
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1), 2, rtol=1e-12),
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1j), 2, rtol=1e-12),
data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data',
(0,1), 2, rtol=1e-13),
data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data',
(0,1j), 2, rtol=1e-13),
data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data',
(0,1), 2, rtol=1e-11),
data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data',
(0,1j), 2, rtol=2e-11),
data(kn, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1j), 2, rtol=1e-12),
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1), 2, rtol=1e-12),
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1j), 2, rtol=1e-12),
data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data',
(0,1), 2, rtol=3e-14),
data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data',
(0,1j), 2, rtol=3e-14),
data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1), 2, rtol=7e-14),
data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1j), 2, rtol=7e-14),
data(yn, 'bessel_y01_data_ipp-bessel_y01_data', (0,1), 2, rtol=1e-12),
data(yn, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1j), 2, rtol=1e-12),
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1), 2, rtol=1e-10),
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1j), 2, rtol=1e-10),
data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data',
(0, 1), 2, rtol=4e-9),
data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data',
(0, 1j), 2, rtol=4e-9),
data(zeta_, 'zeta_data_ipp-zeta_data', 0, 1,
param_filter=(lambda s: s > 1)),
data(zeta_, 'zeta_neg_data_ipp-zeta_neg_data', 0, 1,
param_filter=(lambda s: s > 1)),
data(zeta_, 'zeta_1_up_data_ipp-zeta_1_up_data', 0, 1,
param_filter=(lambda s: s > 1)),
data(zeta_, 'zeta_1_below_data_ipp-zeta_1_below_data', 0, 1,
param_filter=(lambda s: s > 1)),
data(gammaincinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
(0,1), 2, rtol=1e-11),
data(gammaincinv, 'gamma_inv_data_ipp-gamma_inv_data',
(0,1), 2, rtol=1e-14),
data(gammaincinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
(0,1), 2, rtol=1e-11),
data(gammainccinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
(0,1), 3, rtol=1e-12),
data(gammainccinv, 'gamma_inv_data_ipp-gamma_inv_data',
(0,1), 3, rtol=1e-14),
data(gammainccinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
(0,1), 3, rtol=1e-14),
data(gdtrix_, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
(0,1), 2, rtol=3e-13, knownfailure='gdtrix unflow some points'),
data(gdtrix_, 'gamma_inv_data_ipp-gamma_inv_data',
(0,1), 2, rtol=3e-15),
data(gdtrix_, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
(0,1), 2),
data(gdtrix_comp, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
(0,1), 2, knownfailure='gdtrix bad some points'),
data(gdtrix_comp, 'gamma_inv_data_ipp-gamma_inv_data',
(0,1), 3, rtol=6e-15),
data(gdtrix_comp, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
(0,1), 3),
data(chndtr, 'nccs_ipp-nccs',
(2,0,1), 3, rtol=3e-5),
data(chndtr, 'nccs_big_ipp-nccs_big',
(2,0,1), 3, rtol=5e-4, knownfailure='chndtr inaccurate some points'),
data(sph_harm_, 'spherical_harmonic_ipp-spherical_harmonic',
(1,0,3,2), (4,5), rtol=5e-11,
param_filter=(lambda p: np.ones(p.shape, '?'),
lambda p: np.ones(p.shape, '?'),
lambda p: np.logical_and(p < 2*np.pi, p >= 0),
lambda p: np.logical_and(p < np.pi, p >= 0))),
data(spherical_jn_, 'sph_bessel_data_ipp-sph_bessel_data',
(0,1), 2, rtol=1e-13),
data(spherical_yn_, 'sph_neumann_data_ipp-sph_neumann_data',
(0,1), 2, rtol=8e-15),
data(owens_t, 'owens_t_ipp-owens_t',
(0, 1), 2, rtol=5e-14),
data(owens_t, 'owens_t_large_data_ipp-owens_t_large_data',
(0, 1), 2, rtol=8e-12),
# -- test data exists in boost but is not used in scipy --
# ibeta_derivative_data_ipp/ibeta_derivative_data.txt
# ibeta_derivative_int_data_ipp/ibeta_derivative_int_data.txt
# ibeta_derivative_large_data_ipp/ibeta_derivative_large_data.txt
# ibeta_derivative_small_data_ipp/ibeta_derivative_small_data.txt
# bessel_y01_prime_data_ipp/bessel_y01_prime_data.txt
# bessel_yn_prime_data_ipp/bessel_yn_prime_data.txt
# sph_bessel_prime_data_ipp/sph_bessel_prime_data.txt
# sph_neumann_prime_data_ipp/sph_neumann_prime_data.txt
# ellint_d2_data_ipp/ellint_d2_data.txt
# ellint_d_data_ipp/ellint_d_data.txt
# ellint_pi2_data_ipp/ellint_pi2_data.txt
# ellint_pi3_data_ipp/ellint_pi3_data.txt
# ellint_pi3_large_data_ipp/ellint_pi3_large_data.txt
data(elliprc, 'ellint_rc_data_ipp-ellint_rc_data', (0, 1), 2,
rtol=5e-16),
data(elliprd, 'ellint_rd_data_ipp-ellint_rd_data', (0, 1, 2), 3,
rtol=5e-16),
data(elliprd, 'ellint_rd_0xy_ipp-ellint_rd_0xy', (0, 1, 2), 3,
rtol=5e-16),
data(elliprd, 'ellint_rd_0yy_ipp-ellint_rd_0yy', (0, 1, 2), 3,
rtol=5e-16),
data(elliprd, 'ellint_rd_xxx_ipp-ellint_rd_xxx', (0, 1, 2), 3,
rtol=5e-16),
# Some of the following rtol for elliprd may be larger than 5e-16 to
# work around some hard cases in the Boost test where we get slightly
# larger error than the ideal bound when the x (==y) input is close to
# zero.
# Also the accuracy on 32-bit builds with g++ may suffer from excess
# loss of precision; see GCC bugzilla 323
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
data(elliprd, 'ellint_rd_xxz_ipp-ellint_rd_xxz', (0, 1, 2), 3,
rtol=6.5e-16),
data(elliprd, 'ellint_rd_xyy_ipp-ellint_rd_xyy', (0, 1, 2), 3,
rtol=6e-16),
data(elliprf, 'ellint_rf_data_ipp-ellint_rf_data', (0, 1, 2), 3,
rtol=5e-16),
data(elliprf, 'ellint_rf_xxx_ipp-ellint_rf_xxx', (0, 1, 2), 3,
rtol=5e-16),
data(elliprf, 'ellint_rf_xyy_ipp-ellint_rf_xyy', (0, 1, 2), 3,
rtol=5e-16),
data(elliprf, 'ellint_rf_xy0_ipp-ellint_rf_xy0', (0, 1, 2), 3,
rtol=5e-16),
data(elliprf, 'ellint_rf_0yy_ipp-ellint_rf_0yy', (0, 1, 2), 3,
rtol=5e-16),
# The accuracy of R_G is primarily limited by R_D that is used
# internally. It is generally worse than R_D. Notice that we increased
# the rtol for R_G here. The cases with duplicate arguments are
# slightly less likely to be unbalanced (at least two arguments are
# already balanced) so the error bound is slightly better. Again,
# precision with g++ 32-bit is even worse.
data(elliprg, 'ellint_rg_ipp-ellint_rg', (0, 1, 2), 3,
rtol=8.0e-16),
data(elliprg, 'ellint_rg_xxx_ipp-ellint_rg_xxx', (0, 1, 2), 3,
rtol=6e-16),
data(elliprg, 'ellint_rg_xyy_ipp-ellint_rg_xyy', (0, 1, 2), 3,
rtol=7.5e-16),
data(elliprg, 'ellint_rg_xy0_ipp-ellint_rg_xy0', (0, 1, 2), 3,
rtol=5e-16),
data(elliprg, 'ellint_rg_00x_ipp-ellint_rg_00x', (0, 1, 2), 3,
rtol=5e-16),
data(elliprj, 'ellint_rj_data_ipp-ellint_rj_data', (0, 1, 2, 3), 4,
rtol=5e-16, atol=1e-25,
param_filter=(lambda s: s <= 5e-26,)),
# ellint_rc_data_ipp/ellint_rc_data.txt
# ellint_rd_0xy_ipp/ellint_rd_0xy.txt
# ellint_rd_0yy_ipp/ellint_rd_0yy.txt
# ellint_rd_data_ipp/ellint_rd_data.txt
# ellint_rd_xxx_ipp/ellint_rd_xxx.txt
# ellint_rd_xxz_ipp/ellint_rd_xxz.txt
# ellint_rd_xyy_ipp/ellint_rd_xyy.txt
# ellint_rf_0yy_ipp/ellint_rf_0yy.txt
# ellint_rf_data_ipp/ellint_rf_data.txt
# ellint_rf_xxx_ipp/ellint_rf_xxx.txt
# ellint_rf_xy0_ipp/ellint_rf_xy0.txt
# ellint_rf_xyy_ipp/ellint_rf_xyy.txt
# ellint_rg_00x_ipp/ellint_rg_00x.txt
# ellint_rg_ipp/ellint_rg.txt
# ellint_rg_xxx_ipp/ellint_rg_xxx.txt
# ellint_rg_xy0_ipp/ellint_rg_xy0.txt
# ellint_rg_xyy_ipp/ellint_rg_xyy.txt
# ellint_rj_data_ipp/ellint_rj_data.txt
# ellint_rj_e2_ipp/ellint_rj_e2.txt
# ellint_rj_e3_ipp/ellint_rj_e3.txt
# ellint_rj_e4_ipp/ellint_rj_e4.txt
# ellint_rj_zp_ipp/ellint_rj_zp.txt
# jacobi_elliptic_ipp/jacobi_elliptic.txt
# jacobi_elliptic_small_ipp/jacobi_elliptic_small.txt
# jacobi_large_phi_ipp/jacobi_large_phi.txt
# jacobi_near_1_ipp/jacobi_near_1.txt
# jacobi_zeta_big_phi_ipp/jacobi_zeta_big_phi.txt
# jacobi_zeta_data_ipp/jacobi_zeta_data.txt
# heuman_lambda_data_ipp/heuman_lambda_data.txt
# hypergeometric_0F2_ipp/hypergeometric_0F2.txt
# hypergeometric_1F1_big_ipp/hypergeometric_1F1_big.txt
# hypergeometric_1F1_ipp/hypergeometric_1F1.txt
# hypergeometric_1F1_small_random_ipp/hypergeometric_1F1_small_random.txt
# hypergeometric_1F2_ipp/hypergeometric_1F2.txt
# hypergeometric_1f1_large_regularized_ipp/hypergeometric_1f1_large_regularized.txt # noqa: E501
# hypergeometric_1f1_log_large_unsolved_ipp/hypergeometric_1f1_log_large_unsolved.txt # noqa: E501
# hypergeometric_2F0_half_ipp/hypergeometric_2F0_half.txt
# hypergeometric_2F0_integer_a2_ipp/hypergeometric_2F0_integer_a2.txt
# hypergeometric_2F0_ipp/hypergeometric_2F0.txt
# hypergeometric_2F0_large_z_ipp/hypergeometric_2F0_large_z.txt
# hypergeometric_2F1_ipp/hypergeometric_2F1.txt
# hypergeometric_2F2_ipp/hypergeometric_2F2.txt
# ncbeta_big_ipp/ncbeta_big.txt
# nct_small_delta_ipp/nct_small_delta.txt
# nct_asym_ipp/nct_asym.txt
# ncbeta_ipp/ncbeta.txt
# powm1_data_ipp/powm1_big_data.txt
# powm1_sqrtp1m1_test_hpp/sqrtp1m1_data.txt
# sinc_data_ipp/sinc_data.txt
# test_gamma_data_ipp/gammap1m1_data.txt
# tgamma_ratio_data_ipp/tgamma_ratio_data.txt
# trig_data_ipp/trig_data.txt
# trig_data2_ipp/trig_data2.txt
]
@pytest.mark.thread_unsafe
@pytest.mark.parametrize('test', BOOST_TESTS, ids=repr)
def test_boost(test):
_test_factory(test)
GSL_TESTS = [
data_gsl(mathieu_a, 'mathieu_ab', (0, 1), 2, rtol=1e-13, atol=1e-13),
data_gsl(mathieu_b, 'mathieu_ab', (0, 1), 3, rtol=1e-13, atol=1e-13),
# Also the GSL output has limited accuracy...
data_gsl(mathieu_ce_rad, 'mathieu_ce_se', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
data_gsl(mathieu_se_rad, 'mathieu_ce_se', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
data_gsl(mathieu_mc1_scaled, 'mathieu_mc_ms',
(0, 1, 2), 3, rtol=1e-7, atol=1e-13),
data_gsl(mathieu_ms1_scaled, 'mathieu_mc_ms',
(0, 1, 2), 4, rtol=1e-7, atol=1e-13),
data_gsl(mathieu_mc2_scaled, 'mathieu_mc_ms',
(0, 1, 2), 5, rtol=1e-7, atol=1e-13),
data_gsl(mathieu_ms2_scaled, 'mathieu_mc_ms',
(0, 1, 2), 6, rtol=1e-7, atol=1e-13),
]
@pytest.mark.parametrize('test', GSL_TESTS, ids=repr)
def test_gsl(test):
_test_factory(test)
LOCAL_TESTS = [
data_local(ellipkinc, 'ellipkinc_neg_m', (0, 1), 2),
data_local(ellipkm1, 'ellipkm1', 0, 1),
data_local(ellipeinc, 'ellipeinc_neg_m', (0, 1), 2),
data_local(clog1p, 'log1p_expm1_complex', (0,1), (2,3), rtol=1e-14),
data_local(cexpm1, 'log1p_expm1_complex', (0,1), (4,5), rtol=1e-14),
data_local(gammainc, 'gammainc', (0, 1), 2, rtol=1e-12),
data_local(gammaincc, 'gammaincc', (0, 1), 2, rtol=1e-11),
data_local(ellip_harm_2, 'ellip',(0, 1, 2, 3, 4), 6, rtol=1e-10, atol=1e-13),
data_local(ellip_harm, 'ellip',(0, 1, 2, 3, 4), 5, rtol=1e-10, atol=1e-13),
data_local(wright_bessel, 'wright_bessel', (0, 1, 2), 3, rtol=1e-11),
]
@pytest.mark.parametrize('test', LOCAL_TESTS, ids=repr)
def test_local(test):
_test_factory(test)
def _test_factory(test, dtype=np.float64):
"""Boost test"""
with suppress_warnings() as sup:
sup.filter(IntegrationWarning, "The occurrence of roundoff error is detected")
with np.errstate(all='ignore'):
test.check(dtype=dtype)
|