File size: 98,001 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 |
"""
Distance computations (:mod:`scipy.spatial.distance`)
=====================================================
.. sectionauthor:: Damian Eads
Function reference
------------------
Distance matrix computation from a collection of raw observation vectors
stored in a rectangular array.
.. autosummary::
:toctree: generated/
pdist -- pairwise distances between observation vectors.
cdist -- distances between two collections of observation vectors
squareform -- convert distance matrix to a condensed one and vice versa
directed_hausdorff -- directed Hausdorff distance between arrays
Predicates for checking the validity of distance matrices, both
condensed and redundant. Also contained in this module are functions
for computing the number of observations in a distance matrix.
.. autosummary::
:toctree: generated/
is_valid_dm -- checks for a valid distance matrix
is_valid_y -- checks for a valid condensed distance matrix
num_obs_dm -- # of observations in a distance matrix
num_obs_y -- # of observations in a condensed distance matrix
Distance functions between two numeric vectors ``u`` and ``v``. Computing
distances over a large collection of vectors is inefficient for these
functions. Use ``pdist`` for this purpose.
.. autosummary::
:toctree: generated/
braycurtis -- the Bray-Curtis distance.
canberra -- the Canberra distance.
chebyshev -- the Chebyshev distance.
cityblock -- the Manhattan distance.
correlation -- the Correlation distance.
cosine -- the Cosine distance.
euclidean -- the Euclidean distance.
jensenshannon -- the Jensen-Shannon distance.
mahalanobis -- the Mahalanobis distance.
minkowski -- the Minkowski distance.
seuclidean -- the normalized Euclidean distance.
sqeuclidean -- the squared Euclidean distance.
Distance functions between two boolean vectors (representing sets) ``u`` and
``v``. As in the case of numerical vectors, ``pdist`` is more efficient for
computing the distances between all pairs.
.. autosummary::
:toctree: generated/
dice -- the Dice dissimilarity.
hamming -- the Hamming distance.
jaccard -- the Jaccard distance.
kulczynski1 -- the Kulczynski 1 distance.
rogerstanimoto -- the Rogers-Tanimoto dissimilarity.
russellrao -- the Russell-Rao dissimilarity.
sokalmichener -- the Sokal-Michener dissimilarity.
sokalsneath -- the Sokal-Sneath dissimilarity.
yule -- the Yule dissimilarity.
:func:`hamming` also operates over discrete numerical vectors.
"""
# Copyright (C) Damian Eads, 2007-2008. New BSD License.
__all__ = [
'braycurtis',
'canberra',
'cdist',
'chebyshev',
'cityblock',
'correlation',
'cosine',
'dice',
'directed_hausdorff',
'euclidean',
'hamming',
'is_valid_dm',
'is_valid_y',
'jaccard',
'jensenshannon',
'kulczynski1',
'mahalanobis',
'minkowski',
'num_obs_dm',
'num_obs_y',
'pdist',
'rogerstanimoto',
'russellrao',
'seuclidean',
'sokalmichener',
'sokalsneath',
'sqeuclidean',
'squareform',
'yule'
]
import math
import warnings
import numpy as np
import dataclasses
from collections.abc import Callable
from functools import partial
from scipy._lib._util import _asarray_validated, _transition_to_rng
from scipy._lib.deprecation import _deprecated
from . import _distance_wrap
from . import _hausdorff
from ..linalg import norm
from ..special import rel_entr
from . import _distance_pybind
def _copy_array_if_base_present(a):
"""Copy the array if its base points to a parent array."""
if a.base is not None:
return a.copy()
return a
def _correlation_cdist_wrap(XA, XB, dm, **kwargs):
XA = XA - XA.mean(axis=1, keepdims=True)
XB = XB - XB.mean(axis=1, keepdims=True)
_distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs)
def _correlation_pdist_wrap(X, dm, **kwargs):
X2 = X - X.mean(axis=1, keepdims=True)
_distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs)
def _convert_to_type(X, out_type):
return np.ascontiguousarray(X, dtype=out_type)
def _nbool_correspond_all(u, v, w=None):
if u.dtype == v.dtype == bool and w is None:
not_u = ~u
not_v = ~v
nff = (not_u & not_v).sum()
nft = (not_u & v).sum()
ntf = (u & not_v).sum()
ntt = (u & v).sum()
else:
dtype = np.result_type(int, u.dtype, v.dtype)
u = u.astype(dtype)
v = v.astype(dtype)
not_u = 1.0 - u
not_v = 1.0 - v
if w is not None:
not_u = w * not_u
u = w * u
nff = (not_u * not_v).sum()
nft = (not_u * v).sum()
ntf = (u * not_v).sum()
ntt = (u * v).sum()
return (nff, nft, ntf, ntt)
def _nbool_correspond_ft_tf(u, v, w=None):
if u.dtype == v.dtype == bool and w is None:
not_u = ~u
not_v = ~v
nft = (not_u & v).sum()
ntf = (u & not_v).sum()
else:
dtype = np.result_type(int, u.dtype, v.dtype)
u = u.astype(dtype)
v = v.astype(dtype)
not_u = 1.0 - u
not_v = 1.0 - v
if w is not None:
not_u = w * not_u
u = w * u
nft = (not_u * v).sum()
ntf = (u * not_v).sum()
return (nft, ntf)
def _validate_cdist_input(XA, XB, mA, mB, n, metric_info, **kwargs):
# get supported types
types = metric_info.types
# choose best type
typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0]
# validate data
XA = _convert_to_type(XA, out_type=typ)
XB = _convert_to_type(XB, out_type=typ)
# validate kwargs
_validate_kwargs = metric_info.validator
if _validate_kwargs:
kwargs = _validate_kwargs((XA, XB), mA + mB, n, **kwargs)
return XA, XB, typ, kwargs
def _validate_weight_with_size(X, m, n, **kwargs):
w = kwargs.pop('w', None)
if w is None:
return kwargs
if w.ndim != 1 or w.shape[0] != n:
raise ValueError("Weights must have same size as input vector. "
f"{w.shape[0]} vs. {n}")
kwargs['w'] = _validate_weights(w)
return kwargs
def _validate_hamming_kwargs(X, m, n, **kwargs):
w = kwargs.get('w', np.ones((n,), dtype='double'))
if w.ndim != 1 or w.shape[0] != n:
raise ValueError(
"Weights must have same size as input vector. %d vs. %d" % (w.shape[0], n)
)
kwargs['w'] = _validate_weights(w)
return kwargs
def _validate_mahalanobis_kwargs(X, m, n, **kwargs):
VI = kwargs.pop('VI', None)
if VI is None:
if m <= n:
# There are fewer observations than the dimension of
# the observations.
raise ValueError("The number of observations (%d) is too "
"small; the covariance matrix is "
"singular. For observations with %d "
"dimensions, at least %d observations "
"are required." % (m, n, n + 1))
if isinstance(X, tuple):
X = np.vstack(X)
CV = np.atleast_2d(np.cov(X.astype(np.float64, copy=False).T))
VI = np.linalg.inv(CV).T.copy()
kwargs["VI"] = _convert_to_double(VI)
return kwargs
def _validate_minkowski_kwargs(X, m, n, **kwargs):
kwargs = _validate_weight_with_size(X, m, n, **kwargs)
if 'p' not in kwargs:
kwargs['p'] = 2.
else:
if kwargs['p'] <= 0:
raise ValueError("p must be greater than 0")
return kwargs
def _validate_pdist_input(X, m, n, metric_info, **kwargs):
# get supported types
types = metric_info.types
# choose best type
typ = types[types.index(X.dtype)] if X.dtype in types else types[0]
# validate data
X = _convert_to_type(X, out_type=typ)
# validate kwargs
_validate_kwargs = metric_info.validator
if _validate_kwargs:
kwargs = _validate_kwargs(X, m, n, **kwargs)
return X, typ, kwargs
def _validate_seuclidean_kwargs(X, m, n, **kwargs):
V = kwargs.pop('V', None)
if V is None:
if isinstance(X, tuple):
X = np.vstack(X)
V = np.var(X.astype(np.float64, copy=False), axis=0, ddof=1)
else:
V = np.asarray(V, order='c')
if len(V.shape) != 1:
raise ValueError('Variance vector V must '
'be one-dimensional.')
if V.shape[0] != n:
raise ValueError('Variance vector V must be of the same '
'dimension as the vectors on which the distances '
'are computed.')
kwargs['V'] = _convert_to_double(V)
return kwargs
def _validate_vector(u, dtype=None):
# XXX Is order='c' really necessary?
u = np.asarray(u, dtype=dtype, order='c')
if u.ndim == 1:
return u
raise ValueError("Input vector should be 1-D.")
def _validate_weights(w, dtype=np.float64):
w = _validate_vector(w, dtype=dtype)
if np.any(w < 0):
raise ValueError("Input weights should be all non-negative")
return w
@_transition_to_rng('seed', position_num=2, replace_doc=False)
def directed_hausdorff(u, v, rng=0):
"""
Compute the directed Hausdorff distance between two 2-D arrays.
Distances between pairs are calculated using a Euclidean metric.
Parameters
----------
u : (M,N) array_like
Input array with M points in N dimensions.
v : (O,N) array_like
Input array with O points in N dimensions.
rng : int or `numpy.random.Generator` or None, optional
Pseudorandom number generator state. Default is 0 so the
shuffling of `u` and `v` is reproducible.
If `rng` is passed by keyword, types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
If `rng` is already a ``Generator`` instance, then the provided instance is
used.
If this argument is passed by position or `seed` is passed by keyword,
legacy behavior for the argument `seed` applies:
- If `seed` is None, a new ``RandomState`` instance is used. The state is
initialized using data from ``/dev/urandom`` (or the Windows analogue)
if available or from the system clock otherwise.
- If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
- If `seed` is already a ``Generator`` or ``RandomState`` instance, then
that instance is used.
.. versionchanged:: 1.15.0
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
transition from use of `numpy.random.RandomState` to
`numpy.random.Generator`, this keyword was changed from `seed` to `rng`.
For an interim period, both keywords will continue to work, although only
one may be specified at a time. After the interim period, function calls
using the `seed` keyword will emit warnings. The behavior of both `seed`
and `rng` are outlined above, but only the `rng` keyword should be used in
new code.
Returns
-------
d : double
The directed Hausdorff distance between arrays `u` and `v`,
index_1 : int
index of point contributing to Hausdorff pair in `u`
index_2 : int
index of point contributing to Hausdorff pair in `v`
Raises
------
ValueError
An exception is thrown if `u` and `v` do not have
the same number of columns.
See Also
--------
scipy.spatial.procrustes : Another similarity test for two data sets
Notes
-----
Uses the early break technique and the random sampling approach
described by [1]_. Although worst-case performance is ``O(m * o)``
(as with the brute force algorithm), this is unlikely in practice
as the input data would have to require the algorithm to explore
every single point interaction, and after the algorithm shuffles
the input points at that. The best case performance is O(m), which
is satisfied by selecting an inner loop distance that is less than
cmax and leads to an early break as often as possible. The authors
have formally shown that the average runtime is closer to O(m).
.. versionadded:: 0.19.0
References
----------
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for
calculating the exact Hausdorff distance." IEEE Transactions On
Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63,
2015.
Examples
--------
Find the directed Hausdorff distance between two 2-D arrays of
coordinates:
>>> from scipy.spatial.distance import directed_hausdorff
>>> import numpy as np
>>> u = np.array([(1.0, 0.0),
... (0.0, 1.0),
... (-1.0, 0.0),
... (0.0, -1.0)])
>>> v = np.array([(2.0, 0.0),
... (0.0, 2.0),
... (-2.0, 0.0),
... (0.0, -4.0)])
>>> directed_hausdorff(u, v)[0]
2.23606797749979
>>> directed_hausdorff(v, u)[0]
3.0
Find the general (symmetric) Hausdorff distance between two 2-D
arrays of coordinates:
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
3.0
Find the indices of the points that generate the Hausdorff distance
(the Hausdorff pair):
>>> directed_hausdorff(v, u)[1:]
(3, 3)
"""
u = np.asarray(u, dtype=np.float64, order='c')
v = np.asarray(v, dtype=np.float64, order='c')
if u.shape[1] != v.shape[1]:
raise ValueError('u and v need to have the same '
'number of columns')
result = _hausdorff.directed_hausdorff(u, v, rng)
return result
def minkowski(u, v, p=2, w=None):
"""
Compute the Minkowski distance between two 1-D arrays.
The Minkowski distance between 1-D arrays `u` and `v`,
is defined as
.. math::
{\\|u-v\\|}_p = (\\sum{|u_i - v_i|^p})^{1/p}.
\\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
p : scalar
The order of the norm of the difference :math:`{\\|u-v\\|}_p`. Note
that for :math:`0 < p < 1`, the triangle inequality only holds with
an additional multiplicative factor, i.e. it is only a quasi-metric.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
minkowski : double
The Minkowski distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
2.0
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
1.4142135623730951
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
1.2599210498948732
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
1.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if p <= 0:
raise ValueError("p must be greater than 0")
u_v = u - v
if w is not None:
w = _validate_weights(w)
if p == 1:
root_w = w
elif p == 2:
# better precision and speed
root_w = np.sqrt(w)
elif p == np.inf:
root_w = (w != 0)
else:
root_w = np.power(w, 1/p)
u_v = root_w * u_v
dist = norm(u_v, ord=p)
return dist
def euclidean(u, v, w=None):
"""
Computes the Euclidean distance between two 1-D arrays.
The Euclidean distance between 1-D arrays `u` and `v`, is defined as
.. math::
{\\|u-v\\|}_2
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2}
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
euclidean : double
The Euclidean distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
1.4142135623730951
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
1.0
"""
return minkowski(u, v, p=2, w=w)
def sqeuclidean(u, v, w=None):
"""
Compute the squared Euclidean distance between two 1-D arrays.
The squared Euclidean distance between `u` and `v` is defined as
.. math::
\\sum_i{w_i |u_i - v_i|^2}
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
sqeuclidean : double
The squared Euclidean distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
2.0
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
1.0
"""
# Preserve float dtypes, but convert everything else to np.float64
# for stability.
utype, vtype = None, None
if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)):
utype = np.float64
if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)):
vtype = np.float64
u = _validate_vector(u, dtype=utype)
v = _validate_vector(v, dtype=vtype)
u_v = u - v
u_v_w = u_v # only want weights applied once
if w is not None:
w = _validate_weights(w)
u_v_w = w * u_v
return np.dot(u_v, u_v_w)
def correlation(u, v, w=None, centered=True):
"""
Compute the correlation distance between two 1-D arrays.
The correlation distance between `u` and `v`, is
defined as
.. math::
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
where :math:`\\bar{u}` is the mean of the elements of `u`
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
Parameters
----------
u : (N,) array_like of floats
Input array.
.. deprecated:: 1.15.0
Complex `u` is deprecated and will raise an error in SciPy 1.17.0
v : (N,) array_like of floats
Input array.
.. deprecated:: 1.15.0
Complex `v` is deprecated and will raise an error in SciPy 1.17.0
w : (N,) array_like of floats, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
centered : bool, optional
If True, `u` and `v` will be centered. Default is True.
Returns
-------
correlation : double
The correlation distance between 1-D array `u` and `v`.
Examples
--------
Find the correlation between two arrays.
>>> from scipy.spatial.distance import correlation
>>> correlation([1, 0, 1], [1, 1, 0])
1.5
Using a weighting array, the correlation can be calculated as:
>>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1])
1.1
If centering is not needed, the correlation can be calculated as:
>>> correlation([1, 0, 1], [1, 1, 0], centered=False)
0.5
"""
u = _validate_vector(u)
v = _validate_vector(v)
if np.iscomplexobj(u) or np.iscomplexobj(v):
message = (
"Complex `u` and `v` are deprecated and will raise an error in "
"SciPy 1.17.0.")
warnings.warn(message, DeprecationWarning, stacklevel=2)
if w is not None:
w = _validate_weights(w)
w = w / w.sum()
if centered:
if w is not None:
umu = np.dot(u, w)
vmu = np.dot(v, w)
else:
umu = np.mean(u)
vmu = np.mean(v)
u = u - umu
v = v - vmu
if w is not None:
vw = v * w
uw = u * w
else:
vw, uw = v, u
uv = np.dot(u, vw)
uu = np.dot(u, uw)
vv = np.dot(v, vw)
dist = 1.0 - uv / math.sqrt(uu * vv)
# Clip the result to avoid rounding error
return np.clip(dist, 0.0, 2.0)
def cosine(u, v, w=None):
"""
Compute the Cosine distance between 1-D arrays.
The Cosine distance between `u` and `v`, is defined as
.. math::
1 - \\frac{u \\cdot v}
{\\|u\\|_2 \\|v\\|_2}.
where :math:`u \\cdot v` is the dot product of :math:`u` and
:math:`v`.
Parameters
----------
u : (N,) array_like of floats
Input array.
.. deprecated:: 1.15.0
Complex `u` is deprecated and will raise an error in SciPy 1.17.0
v : (N,) array_like of floats
Input array.
.. deprecated:: 1.15.0
Complex `v` is deprecated and will raise an error in SciPy 1.17.0
w : (N,) array_like of floats, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
cosine : double
The Cosine distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.cosine([1, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([100, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([1, 1, 0], [0, 1, 0])
0.29289321881345254
"""
# cosine distance is also referred to as 'uncentered correlation',
# or 'reflective correlation'
return correlation(u, v, w=w, centered=False)
def hamming(u, v, w=None):
"""
Compute the Hamming distance between two 1-D arrays.
The Hamming distance between 1-D arrays `u` and `v`, is simply the
proportion of disagreeing components in `u` and `v`. If `u` and `v` are
boolean vectors, the Hamming distance is
.. math::
\\frac{c_{01} + c_{10}}{n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
hamming : double
The Hamming distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.hamming([1, 0, 0], [0, 1, 0])
0.66666666666666663
>>> distance.hamming([1, 0, 0], [1, 1, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [2, 0, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [3, 0, 0])
0.33333333333333331
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.shape != v.shape:
raise ValueError('The 1d arrays must have equal lengths.')
u_ne_v = u != v
if w is not None:
w = _validate_weights(w)
if w.shape != u.shape:
raise ValueError("'w' should have the same length as 'u' and 'v'.")
w = w / w.sum()
return np.dot(u_ne_v, w)
return np.mean(u_ne_v)
def jaccard(u, v, w=None):
r"""
Compute the Jaccard dissimilarity between two boolean vectors.
Given boolean vectors :math:`u \equiv (u_1, \cdots, u_n)`
and :math:`v \equiv (v_1, \cdots, v_n)` that are not both zero,
their *Jaccard dissimilarity* is defined as ([1]_, p. 26)
.. math::
d_\textrm{jaccard}(u, v) := \frac{c_{10} + c_{01}}
{c_{11} + c_{10} + c_{01}}
where
.. math::
c_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} 1
for :math:`i, j \in \{ 0, 1\}`. If :math:`u` and :math:`v` are both zero,
their Jaccard dissimilarity is defined to be zero. [2]_
If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
is supplied, the *weighted Jaccard dissimilarity* is defined similarly
but with :math:`c_{ij}` replaced by
.. math::
\tilde{c}_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} w_k
Parameters
----------
u : (N,) array_like of bools
Input vector.
v : (N,) array_like of bools
Input vector.
w : (N,) array_like of floats, optional
Weights for each pair of :math:`(u_k, v_k)`. Default is ``None``,
which gives each pair a weight of ``1.0``.
Returns
-------
jaccard : float
The Jaccard dissimilarity between vectors `u` and `v`, optionally
weighted by `w` if supplied.
Notes
-----
The Jaccard dissimilarity satisfies the triangle inequality and is
qualified as a metric. [2]_
The *Jaccard index*, or *Jaccard similarity coefficient*, is equal to
one minus the Jaccard dissimilarity. [3]_
The dissimilarity between general (finite) sets may be computed by
encoding them as boolean vectors and computing the dissimilarity
between the encoded vectors.
For example, subsets :math:`A,B` of :math:`\{ 1, 2, ..., n \}` may be
encoded into boolean vectors :math:`u, v` by setting
:math:`u_k := 1_{k \in A}`, :math:`v_k := 1_{k \in B}`
for :math:`k = 1,2,\cdots,n`.
.. versionchanged:: 1.2.0
Previously, if all (positively weighted) elements in `u` and `v` are
zero, the function would return ``nan``. This was changed to return
``0`` instead.
.. versionchanged:: 1.15.0
Non-0/1 numeric input used to produce an ad hoc result. Since 1.15.0,
numeric input is converted to Boolean before computation.
References
----------
.. [1] Kaufman, L. and Rousseeuw, P. J. (1990). "Finding Groups in Data:
An Introduction to Cluster Analysis." John Wiley & Sons, Inc.
.. [2] Kosub, S. (2019). "A note on the triangle inequality for the
Jaccard distance." *Pattern Recognition Letters*, 120:36-38.
.. [3] https://en.wikipedia.org/wiki/Jaccard_index
Examples
--------
>>> from scipy.spatial import distance
Non-zero vectors with no matching 1s have dissimilarity of 1.0:
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
1.0
Vectors with some matching 1s have dissimilarity less than 1.0:
>>> distance.jaccard([1, 0, 0, 0], [1, 1, 1, 0])
0.6666666666666666
Identical vectors, including zero vectors, have dissimilarity of 0.0:
>>> distance.jaccard([1, 0, 0], [1, 0, 0])
0.0
>>> distance.jaccard([0, 0, 0], [0, 0, 0])
0.0
The following example computes the dissimilarity from a confusion matrix
directly by setting the weight vector to the frequency of True Positive,
False Negative, False Positive, and True Negative:
>>> distance.jaccard([1, 1, 0, 0], [1, 0, 1, 0], [31, 41, 59, 26])
0.7633587786259542 # (41+59)/(31+41+59)
"""
u = _validate_vector(u)
v = _validate_vector(v)
unequal = np.bitwise_xor(u != 0, v != 0)
nonzero = np.bitwise_or(u != 0, v != 0)
if w is not None:
w = _validate_weights(w)
unequal = w * unequal
nonzero = w * nonzero
a = np.float64(unequal.sum())
b = np.float64(nonzero.sum())
return (a / b) if b != 0 else np.float64(0)
_deprecated_kulczynski1 = _deprecated(
"The kulczynski1 metric is deprecated since SciPy 1.15.0 and will be "
"removed in SciPy 1.17.0. Replace usage of 'kulczynski1(u, v)' with "
"'1/jaccard(u, v) - 1'."
)
@_deprecated_kulczynski1
def kulczynski1(u, v, *, w=None):
"""
Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.
.. deprecated:: 1.15.0
This function is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``kulczynski1(u, v)`` with ``1/jaccard(u, v) - 1``.
The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v`
of length ``n``, is defined as
.. math::
\\frac{c_{11}}
{c_{01} + c_{10}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k \\in {0, 1, ..., n-1}`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
kulczynski1 : float
The Kulczynski 1 distance between vectors `u` and `v`.
Notes
-----
This measure has a minimum value of 0 and no upper limit.
It is un-defined when there are no non-matches.
.. versionadded:: 1.8.0
References
----------
.. [1] Kulczynski S. et al. Bulletin
International de l'Academie Polonaise des Sciences
et des Lettres, Classe des Sciences Mathematiques
et Naturelles, Serie B (Sciences Naturelles). 1927;
Supplement II: 57-203.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0])
0.0
>>> distance.kulczynski1([True, False, False], [True, True, False])
1.0
>>> distance.kulczynski1([True, False, False], [True])
0.5
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0])
-3.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
(_, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
return ntt / (ntf + nft)
def seuclidean(u, v, V):
"""
Return the standardized Euclidean distance between two 1-D arrays.
The standardized Euclidean distance between two n-vectors `u` and `v` is
.. math::
\\sqrt{\\sum\\limits_i \\frac{1}{V_i} \\left(u_i-v_i \\right)^2}
``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th
components of the points. If not passed, it is automatically computed.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
V : (N,) array_like
`V` is an 1-D array of component variances. It is usually computed
among a larger collection of vectors.
Returns
-------
seuclidean : double
The standardized Euclidean distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
4.4721359549995796
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
3.3166247903553998
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
3.1780497164141406
"""
u = _validate_vector(u)
v = _validate_vector(v)
V = _validate_vector(V, dtype=np.float64)
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
raise TypeError('V must be a 1-D array of the same dimension '
'as u and v.')
return euclidean(u, v, w=1/V)
def cityblock(u, v, w=None):
"""
Compute the City Block (Manhattan) distance.
Computes the Manhattan distance between two 1-D arrays `u` and `v`,
which is defined as
.. math::
\\sum_i {\\left| u_i - v_i \\right|}.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
cityblock : double
The City Block (Manhattan) distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
2
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
3
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
1
"""
u = _validate_vector(u)
v = _validate_vector(v)
l1_diff = abs(u - v)
if w is not None:
w = _validate_weights(w)
l1_diff = w * l1_diff
return l1_diff.sum()
def mahalanobis(u, v, VI):
"""
Compute the Mahalanobis distance between two 1-D arrays.
The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as
.. math::
\\sqrt{ (u-v) V^{-1} (u-v)^T }
where ``V`` is the covariance matrix. Note that the argument `VI`
is the inverse of ``V``.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
VI : array_like
The inverse of the covariance matrix.
Returns
-------
mahalanobis : double
The Mahalanobis distance between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
1.7320508075688772
"""
u = _validate_vector(u)
v = _validate_vector(v)
VI = np.atleast_2d(VI)
delta = u - v
m = np.dot(np.dot(delta, VI), delta)
return np.sqrt(m)
def chebyshev(u, v, w=None):
r"""
Compute the Chebyshev distance.
The *Chebyshev distance* between real vectors
:math:`u \equiv (u_1, \cdots, u_n)` and
:math:`v \equiv (v_1, \cdots, v_n)` is defined as [1]_
.. math::
d_\textrm{chebyshev}(u,v) := \max_{1 \le i \le n} |u_i-v_i|
If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
is supplied, the *weighted Chebyshev distance* is defined to be the
weighted Minkowski distance of infinite order; that is,
.. math::
\begin{align}
d_\textrm{chebyshev}(u,v;w) &:= \lim_{p\rightarrow \infty}
\left( \sum_{i=1}^n w_i | u_i-v_i |^p \right)^\frac{1}{p} \\
&= \max_{1 \le i \le n} 1_{w_i > 0} | u_i - v_i |
\end{align}
Parameters
----------
u : (N,) array_like of floats
Input vector.
v : (N,) array_like of floats
Input vector.
w : (N,) array_like of floats, optional
Weight vector. Default is ``None``, which gives all pairs
:math:`(u_i, v_i)` the same weight ``1.0``.
Returns
-------
chebyshev : float
The Chebyshev distance between vectors `u` and `v`, optionally weighted
by `w`.
References
----------
.. [1] https://en.wikipedia.org/wiki/Chebyshev_distance
Examples
--------
>>> from scipy.spatial import distance
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
1
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
1
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
return max((w > 0) * abs(u - v))
return max(abs(u - v))
def braycurtis(u, v, w=None):
"""
Compute the Bray-Curtis distance between two 1-D arrays.
Bray-Curtis distance is defined as
.. math::
\\sum{|u_i-v_i|} / \\sum{|u_i+v_i|}
The Bray-Curtis distance is in the range [0, 1] if all coordinates are
positive, and is undefined if the inputs are of length zero.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
braycurtis : double
The Bray-Curtis distance between 1-D arrays `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
1.0
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
0.33333333333333331
"""
u = _validate_vector(u)
v = _validate_vector(v, dtype=np.float64)
l1_diff = abs(u - v)
l1_sum = abs(u + v)
if w is not None:
w = _validate_weights(w)
l1_diff = w * l1_diff
l1_sum = w * l1_sum
return l1_diff.sum() / l1_sum.sum()
def canberra(u, v, w=None):
"""
Compute the Canberra distance between two 1-D arrays.
The Canberra distance is defined as
.. math::
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
{|u_i|+|v_i|}.
Parameters
----------
u : (N,) array_like
Input array.
v : (N,) array_like
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
canberra : double
The Canberra distance between vectors `u` and `v`.
Notes
-----
When ``u[i]`` and ``v[i]`` are 0 for given i, then the fraction 0/0 = 0 is
used in the calculation.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.canberra([1, 0, 0], [0, 1, 0])
2.0
>>> distance.canberra([1, 1, 0], [0, 1, 0])
1.0
"""
u = _validate_vector(u)
v = _validate_vector(v, dtype=np.float64)
if w is not None:
w = _validate_weights(w)
with np.errstate(invalid='ignore'):
abs_uv = abs(u - v)
abs_u = abs(u)
abs_v = abs(v)
d = abs_uv / (abs_u + abs_v)
if w is not None:
d = w * d
d = np.nansum(d)
return d
def jensenshannon(p, q, base=None, *, axis=0, keepdims=False):
"""
Compute the Jensen-Shannon distance (metric) between
two probability arrays. This is the square root
of the Jensen-Shannon divergence.
The Jensen-Shannon distance between two probability
vectors `p` and `q` is defined as,
.. math::
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
and :math:`D` is the Kullback-Leibler divergence.
This routine will normalize `p` and `q` if they don't sum to 1.0.
Parameters
----------
p : (N,) array_like
left probability vector
q : (N,) array_like
right probability vector
base : double, optional
the base of the logarithm used to compute the output
if not given, then the routine uses the default base of
scipy.stats.entropy.
axis : int, optional
Axis along which the Jensen-Shannon distances are computed. The default
is 0.
.. versionadded:: 1.7.0
keepdims : bool, optional
If this is set to `True`, the reduced axes are left in the
result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
Default is False.
.. versionadded:: 1.7.0
Returns
-------
js : double or ndarray
The Jensen-Shannon distances between `p` and `q` along the `axis`.
Notes
-----
.. versionadded:: 1.2.0
Examples
--------
>>> from scipy.spatial import distance
>>> import numpy as np
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
1.0
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
0.46450140402245893
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
0.0
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]])
>>> b = np.array([[13, 14, 15, 16],
... [17, 18, 19, 20],
... [21, 22, 23, 24]])
>>> distance.jensenshannon(a, b, axis=0)
array([0.1954288, 0.1447697, 0.1138377, 0.0927636])
>>> distance.jensenshannon(a, b, axis=1)
array([0.1402339, 0.0399106, 0.0201815])
"""
p = np.asarray(p)
q = np.asarray(q)
p = p / np.sum(p, axis=axis, keepdims=True)
q = q / np.sum(q, axis=axis, keepdims=True)
m = (p + q) / 2.0
left = rel_entr(p, m)
right = rel_entr(q, m)
left_sum = np.sum(left, axis=axis, keepdims=keepdims)
right_sum = np.sum(right, axis=axis, keepdims=keepdims)
js = left_sum + right_sum
if base is not None:
js /= np.log(base)
return np.sqrt(js / 2.0)
def yule(u, v, w=None):
"""
Compute the Yule dissimilarity between two boolean 1-D arrays.
The Yule dissimilarity is defined as
.. math::
\\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
yule : double
The Yule dissimilarity between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.yule([1, 0, 0], [0, 1, 0])
2.0
>>> distance.yule([1, 1, 0], [0, 1, 0])
0.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
half_R = ntf * nft
if half_R == 0:
return 0.0
else:
return float(2.0 * half_R / (ntt * nff + half_R))
def dice(u, v, w=None):
"""
Compute the Dice dissimilarity between two boolean 1-D arrays.
The Dice dissimilarity between `u` and `v`, is
.. math::
\\frac{c_{TF} + c_{FT}}
{2c_{TT} + c_{FT} + c_{TF}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : (N,) array_like, bool
Input 1-D array.
v : (N,) array_like, bool
Input 1-D array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
dice : double
The Dice dissimilarity between 1-D arrays `u` and `v`.
Notes
-----
This function computes the Dice dissimilarity index. To compute the
Dice similarity index, convert one to the other with similarity =
1 - dissimilarity.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.dice([1, 0, 0], [0, 1, 0])
1.0
>>> distance.dice([1, 0, 0], [1, 1, 0])
0.3333333333333333
>>> distance.dice([1, 0, 0], [2, 0, 0])
-0.3333333333333333
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
if u.dtype == v.dtype == bool and w is None:
ntt = (u & v).sum()
else:
dtype = np.result_type(int, u.dtype, v.dtype)
u = u.astype(dtype)
v = v.astype(dtype)
if w is None:
ntt = (u * v).sum()
else:
ntt = (u * v * w).sum()
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft))
def rogerstanimoto(u, v, w=None):
"""
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
`u` and `v`, is defined as
.. math::
\\frac{R}
{c_{TT} + c_{FF} + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
rogerstanimoto : double
The Rogers-Tanimoto dissimilarity between vectors
`u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
0.8
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
0.5
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
-1.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))
def russellrao(u, v, w=None):
"""
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.
The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
`v`, is defined as
.. math::
\\frac{n - c_{TT}}
{n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
russellrao : double
The Russell-Rao dissimilarity between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
1.0
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
0.6666666666666666
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
0.3333333333333333
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == v.dtype == bool and w is None:
ntt = (u & v).sum()
n = float(len(u))
elif w is None:
ntt = (u * v).sum()
n = float(len(u))
else:
w = _validate_weights(w)
ntt = (u * v * w).sum()
n = w.sum()
return float(n - ntt) / n
_deprecated_sokalmichener = _deprecated(
"The sokalmichener metric is deprecated since SciPy 1.15.0 and will be "
"removed in SciPy 1.17.0. Replace usage of 'sokalmichener(u, v)' with "
"'rogerstanimoto(u, v)'."
)
@_deprecated_sokalmichener
def sokalmichener(u, v, w=None):
"""
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.
.. deprecated:: 1.15.0
This function is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``sokalmichener(u, v)`` with ``rogerstanimoto(u, v)``.
The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
is defined as
.. math::
\\frac{R}
{S + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
:math:`S = c_{FF} + c_{TT}`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
sokalmichener : double
The Sokal-Michener dissimilarity between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
0.8
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
0.5
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
-1.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if w is not None:
w = _validate_weights(w)
nff, nft, ntf, ntt = _nbool_correspond_all(u, v, w=w)
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
def sokalsneath(u, v, w=None):
"""
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
The Sokal-Sneath dissimilarity between `u` and `v`,
.. math::
\\frac{R}
{c_{TT} + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
Parameters
----------
u : (N,) array_like, bool
Input array.
v : (N,) array_like, bool
Input array.
w : (N,) array_like, optional
The weights for each value in `u` and `v`. Default is None,
which gives each value a weight of 1.0
Returns
-------
sokalsneath : double
The Sokal-Sneath dissimilarity between vectors `u` and `v`.
Examples
--------
>>> from scipy.spatial import distance
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
1.0
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
0.66666666666666663
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
0.0
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
-2.0
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == v.dtype == bool and w is None:
ntt = (u & v).sum()
elif w is None:
ntt = (u * v).sum()
else:
w = _validate_weights(w)
ntt = (u * v * w).sum()
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
denom = np.array(ntt + 2.0 * (ntf + nft))
if not denom.any():
raise ValueError('Sokal-Sneath dissimilarity is not defined for '
'vectors that are entirely false.')
return float(2.0 * (ntf + nft)) / denom
_convert_to_double = partial(_convert_to_type, out_type=np.float64)
_convert_to_bool = partial(_convert_to_type, out_type=bool)
# adding python-only wrappers to _distance_wrap module
_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap
_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap
@dataclasses.dataclass(frozen=True)
class CDistMetricWrapper:
metric_name: str
def __call__(self, XA, XB, *, out=None, **kwargs):
XA = np.ascontiguousarray(XA)
XB = np.ascontiguousarray(XB)
mA, n = XA.shape
mB, _ = XB.shape
metric_name = self.metric_name
metric_info = _METRICS[metric_name]
XA, XB, typ, kwargs = _validate_cdist_input(
XA, XB, mA, mB, n, metric_info, **kwargs)
w = kwargs.pop('w', None)
if w is not None:
metric = metric_info.dist_func
return _cdist_callable(
XA, XB, metric=metric, out=out, w=w, **kwargs)
dm = _prepare_out_argument(out, np.float64, (mA, mB))
# get cdist wrapper
cdist_fn = getattr(_distance_wrap, f'cdist_{metric_name}_{typ}_wrap')
cdist_fn(XA, XB, dm, **kwargs)
return dm
@dataclasses.dataclass(frozen=True)
class PDistMetricWrapper:
metric_name: str
def __call__(self, X, *, out=None, **kwargs):
X = np.ascontiguousarray(X)
m, n = X.shape
metric_name = self.metric_name
metric_info = _METRICS[metric_name]
X, typ, kwargs = _validate_pdist_input(
X, m, n, metric_info, **kwargs)
out_size = (m * (m - 1)) // 2
w = kwargs.pop('w', None)
if w is not None:
metric = metric_info.dist_func
return _pdist_callable(
X, metric=metric, out=out, w=w, **kwargs)
dm = _prepare_out_argument(out, np.float64, (out_size,))
# get pdist wrapper
pdist_fn = getattr(_distance_wrap, f'pdist_{metric_name}_{typ}_wrap')
pdist_fn(X, dm, **kwargs)
return dm
@dataclasses.dataclass(frozen=True)
class MetricInfo:
# Name of python distance function
canonical_name: str
# All aliases, including canonical_name
aka: set[str]
# unvectorized distance function
dist_func: Callable
# Optimized cdist function
cdist_func: Callable
# Optimized pdist function
pdist_func: Callable
# function that checks kwargs and computes default values:
# f(X, m, n, **kwargs)
validator: Callable | None = None
# list of supported types:
# X (pdist) and XA (cdist) are used to choose the type. if there is no
# match the first type is used. Default double
types: list[str] = dataclasses.field(default_factory=lambda: ['double'])
# true if out array must be C-contiguous
requires_contiguous_out: bool = True
# Registry of implemented metrics:
_METRIC_INFOS = [
MetricInfo(
canonical_name='braycurtis',
aka={'braycurtis'},
dist_func=braycurtis,
cdist_func=_distance_pybind.cdist_braycurtis,
pdist_func=_distance_pybind.pdist_braycurtis,
),
MetricInfo(
canonical_name='canberra',
aka={'canberra'},
dist_func=canberra,
cdist_func=_distance_pybind.cdist_canberra,
pdist_func=_distance_pybind.pdist_canberra,
),
MetricInfo(
canonical_name='chebyshev',
aka={'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'},
dist_func=chebyshev,
cdist_func=_distance_pybind.cdist_chebyshev,
pdist_func=_distance_pybind.pdist_chebyshev,
),
MetricInfo(
canonical_name='cityblock',
aka={'cityblock', 'cblock', 'cb', 'c'},
dist_func=cityblock,
cdist_func=_distance_pybind.cdist_cityblock,
pdist_func=_distance_pybind.pdist_cityblock,
),
MetricInfo(
canonical_name='correlation',
aka={'correlation', 'co'},
dist_func=correlation,
cdist_func=CDistMetricWrapper('correlation'),
pdist_func=PDistMetricWrapper('correlation'),
),
MetricInfo(
canonical_name='cosine',
aka={'cosine', 'cos'},
dist_func=cosine,
cdist_func=CDistMetricWrapper('cosine'),
pdist_func=PDistMetricWrapper('cosine'),
),
MetricInfo(
canonical_name='dice',
aka={'dice'},
types=['bool'],
dist_func=dice,
cdist_func=_distance_pybind.cdist_dice,
pdist_func=_distance_pybind.pdist_dice,
),
MetricInfo(
canonical_name='euclidean',
aka={'euclidean', 'euclid', 'eu', 'e'},
dist_func=euclidean,
cdist_func=_distance_pybind.cdist_euclidean,
pdist_func=_distance_pybind.pdist_euclidean,
),
MetricInfo(
canonical_name='hamming',
aka={'matching', 'hamming', 'hamm', 'ha', 'h'},
types=['double', 'bool'],
validator=_validate_hamming_kwargs,
dist_func=hamming,
cdist_func=_distance_pybind.cdist_hamming,
pdist_func=_distance_pybind.pdist_hamming,
),
MetricInfo(
canonical_name='jaccard',
aka={'jaccard', 'jacc', 'ja', 'j'},
types=['double', 'bool'],
dist_func=jaccard,
cdist_func=_distance_pybind.cdist_jaccard,
pdist_func=_distance_pybind.pdist_jaccard,
),
MetricInfo(
canonical_name='jensenshannon',
aka={'jensenshannon', 'js'},
dist_func=jensenshannon,
cdist_func=CDistMetricWrapper('jensenshannon'),
pdist_func=PDistMetricWrapper('jensenshannon'),
),
MetricInfo(
canonical_name='kulczynski1',
aka={'kulczynski1'},
types=['bool'],
dist_func=kulczynski1,
cdist_func=_deprecated_kulczynski1(_distance_pybind.cdist_kulczynski1),
pdist_func=_deprecated_kulczynski1(_distance_pybind.pdist_kulczynski1),
),
MetricInfo(
canonical_name='mahalanobis',
aka={'mahalanobis', 'mahal', 'mah'},
validator=_validate_mahalanobis_kwargs,
dist_func=mahalanobis,
cdist_func=CDistMetricWrapper('mahalanobis'),
pdist_func=PDistMetricWrapper('mahalanobis'),
),
MetricInfo(
canonical_name='minkowski',
aka={'minkowski', 'mi', 'm', 'pnorm'},
validator=_validate_minkowski_kwargs,
dist_func=minkowski,
cdist_func=_distance_pybind.cdist_minkowski,
pdist_func=_distance_pybind.pdist_minkowski,
),
MetricInfo(
canonical_name='rogerstanimoto',
aka={'rogerstanimoto'},
types=['bool'],
dist_func=rogerstanimoto,
cdist_func=_distance_pybind.cdist_rogerstanimoto,
pdist_func=_distance_pybind.pdist_rogerstanimoto,
),
MetricInfo(
canonical_name='russellrao',
aka={'russellrao'},
types=['bool'],
dist_func=russellrao,
cdist_func=_distance_pybind.cdist_russellrao,
pdist_func=_distance_pybind.pdist_russellrao,
),
MetricInfo(
canonical_name='seuclidean',
aka={'seuclidean', 'se', 's'},
validator=_validate_seuclidean_kwargs,
dist_func=seuclidean,
cdist_func=CDistMetricWrapper('seuclidean'),
pdist_func=PDistMetricWrapper('seuclidean'),
),
MetricInfo(
canonical_name='sokalmichener',
aka={'sokalmichener'},
types=['bool'],
dist_func=sokalmichener,
cdist_func=_deprecated_sokalmichener(_distance_pybind.cdist_sokalmichener),
pdist_func=_deprecated_sokalmichener(_distance_pybind.pdist_sokalmichener),
),
MetricInfo(
canonical_name='sokalsneath',
aka={'sokalsneath'},
types=['bool'],
dist_func=sokalsneath,
cdist_func=_distance_pybind.cdist_sokalsneath,
pdist_func=_distance_pybind.pdist_sokalsneath,
),
MetricInfo(
canonical_name='sqeuclidean',
aka={'sqeuclidean', 'sqe', 'sqeuclid'},
dist_func=sqeuclidean,
cdist_func=_distance_pybind.cdist_sqeuclidean,
pdist_func=_distance_pybind.pdist_sqeuclidean,
),
MetricInfo(
canonical_name='yule',
aka={'yule'},
types=['bool'],
dist_func=yule,
cdist_func=_distance_pybind.cdist_yule,
pdist_func=_distance_pybind.pdist_yule,
),
]
_METRICS = {info.canonical_name: info for info in _METRIC_INFOS}
_METRIC_ALIAS = {alias: info
for info in _METRIC_INFOS
for alias in info.aka}
_METRICS_NAMES = list(_METRICS.keys())
_TEST_METRICS = {'test_' + info.canonical_name: info for info in _METRIC_INFOS}
def pdist(X, metric='euclidean', *, out=None, **kwargs):
"""
Pairwise distances between observations in n-dimensional space.
See Notes for common calling conventions.
Parameters
----------
X : array_like
An m by n array of m original observations in an
n-dimensional space.
metric : str or function, optional
The distance metric to use. The distance function can
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
'jaccard', 'jensenshannon', 'kulczynski1',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
'sqeuclidean', 'yule'.
out : ndarray, optional
The output array.
If not None, condensed distance matrix Y is stored in this array.
**kwargs : dict, optional
Extra arguments to `metric`: refer to each metric documentation for a
list of all possible arguments.
Some possible arguments:
p : scalar
The p-norm to apply for Minkowski, weighted and unweighted.
Default: 2.
w : ndarray
The weight vector for metrics that support weights (e.g., Minkowski).
V : ndarray
The variance vector for standardized Euclidean.
Default: var(X, axis=0, ddof=1)
VI : ndarray
The inverse of the covariance matrix for Mahalanobis.
Default: inv(cov(X.T)).T
Returns
-------
Y : ndarray
Returns a condensed distance matrix Y. For each :math:`i` and :math:`j`
(where :math:`i<j<m`),where m is the number of original observations.
The metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``m
* i + j - ((i + 2) * (i + 1)) // 2``.
See Also
--------
squareform : converts between condensed distance matrices and
square distance matrices.
Notes
-----
See ``squareform`` for information on how to calculate the index of
this entry or to convert the condensed distance matrix to a
redundant square matrix.
The following are common calling conventions.
1. ``Y = pdist(X, 'euclidean')``
Computes the distance between m points using Euclidean distance
(2-norm) as the distance metric between the points. The points
are arranged as m n-dimensional row vectors in the matrix X.
2. ``Y = pdist(X, 'minkowski', p=2.)``
Computes the distances using the Minkowski distance
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
that this is only a quasi-metric if :math:`0 < p < 1`).
3. ``Y = pdist(X, 'cityblock')``
Computes the city block or Manhattan distance between the
points.
4. ``Y = pdist(X, 'seuclidean', V=None)``
Computes the standardized Euclidean distance. The standardized
Euclidean distance between two n-vectors ``u`` and ``v`` is
.. math::
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}
V is the variance vector; V[i] is the variance computed over all
the i'th components of the points. If not passed, it is
automatically computed.
5. ``Y = pdist(X, 'sqeuclidean')``
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
the vectors.
6. ``Y = pdist(X, 'cosine')``
Computes the cosine distance between vectors u and v,
.. math::
1 - \\frac{u \\cdot v}
{{\\|u\\|}_2 {\\|v\\|}_2}
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
:math:`u \\cdot v` is the dot product of ``u`` and ``v``.
7. ``Y = pdist(X, 'correlation')``
Computes the correlation distance between vectors u and v. This is
.. math::
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
where :math:`\\bar{v}` is the mean of the elements of vector v,
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
8. ``Y = pdist(X, 'hamming')``
Computes the normalized Hamming distance, or the proportion of
those vector elements between two n-vectors ``u`` and ``v``
which disagree. To save memory, the matrix ``X`` can be of type
boolean.
9. ``Y = pdist(X, 'jaccard')``
Computes the Jaccard distance between the points. Given two
vectors, ``u`` and ``v``, the Jaccard distance is the
proportion of those elements ``u[i]`` and ``v[i]`` that
disagree.
10. ``Y = pdist(X, 'jensenshannon')``
Computes the Jensen-Shannon distance between two probability arrays.
Given two probability vectors, :math:`p` and :math:`q`, the
Jensen-Shannon distance is
.. math::
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
and :math:`D` is the Kullback-Leibler divergence.
11. ``Y = pdist(X, 'chebyshev')``
Computes the Chebyshev distance between the points. The
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
maximum norm-1 distance between their respective elements. More
precisely, the distance is given by
.. math::
d(u,v) = \\max_i {|u_i-v_i|}
12. ``Y = pdist(X, 'canberra')``
Computes the Canberra distance between the points. The
Canberra distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
{|u_i|+|v_i|}
13. ``Y = pdist(X, 'braycurtis')``
Computes the Bray-Curtis distance between the points. The
Bray-Curtis distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \\frac{\\sum_i {|u_i-v_i|}}
{\\sum_i {|u_i+v_i|}}
14. ``Y = pdist(X, 'mahalanobis', VI=None)``
Computes the Mahalanobis distance between the points. The
Mahalanobis distance between two points ``u`` and ``v`` is
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
variable) is the inverse covariance. If ``VI`` is not None,
``VI`` will be used as the inverse covariance matrix.
15. ``Y = pdist(X, 'yule')``
Computes the Yule distance between each pair of boolean
vectors. (see yule function documentation)
16. ``Y = pdist(X, 'matching')``
Synonym for 'hamming'.
17. ``Y = pdist(X, 'dice')``
Computes the Dice distance between each pair of boolean
vectors. (see dice function documentation)
18. ``Y = pdist(X, 'kulczynski1')``
Computes the kulczynski1 distance between each pair of
boolean vectors. (see kulczynski1 function documentation)
.. deprecated:: 1.15.0
This metric is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``pdist(X, 'kulczynski1')`` with
``1 / pdist(X, 'jaccard') - 1``.
19. ``Y = pdist(X, 'rogerstanimoto')``
Computes the Rogers-Tanimoto distance between each pair of
boolean vectors. (see rogerstanimoto function documentation)
20. ``Y = pdist(X, 'russellrao')``
Computes the Russell-Rao distance between each pair of
boolean vectors. (see russellrao function documentation)
21. ``Y = pdist(X, 'sokalmichener')``
Computes the Sokal-Michener distance between each pair of
boolean vectors. (see sokalmichener function documentation)
.. deprecated:: 1.15.0
This metric is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``pdist(X, 'sokalmichener')`` with
``pdist(X, 'rogerstanimoto')``.
22. ``Y = pdist(X, 'sokalsneath')``
Computes the Sokal-Sneath distance between each pair of
boolean vectors. (see sokalsneath function documentation)
23. ``Y = pdist(X, 'kulczynski1')``
Computes the Kulczynski 1 distance between each pair of
boolean vectors. (see kulczynski1 function documentation)
24. ``Y = pdist(X, f)``
Computes the distance between all pairs of vectors in X
using the user supplied 2-arity function f. For example,
Euclidean distance between the vectors could be computed
as follows::
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))
Note that you should avoid passing a reference to one of
the distance functions defined in this library. For example,::
dm = pdist(X, sokalsneath)
would calculate the pair-wise distances between the vectors in
X using the Python function sokalsneath. This would result in
sokalsneath being called :math:`{n \\choose 2}` times, which
is inefficient. Instead, the optimized C version is more
efficient, and we call it using the following syntax.::
dm = pdist(X, 'sokalsneath')
Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import pdist
``x`` is an array of five points in three-dimensional space.
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
``pdist(x)`` with no additional arguments computes the 10 pairwise
Euclidean distances:
>>> pdist(x)
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
The following computes the pairwise Minkowski distances with ``p = 3.5``:
>>> pdist(x, metric='minkowski', p=3.5)
array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714,
6.03956994, 1. , 4.45128103, 4.10636143, 5.0619695 ])
The pairwise city block or Manhattan distances:
>>> pdist(x, metric='cityblock')
array([ 3., 11., 10., 4., 8., 9., 1., 9., 7., 8.])
"""
# You can also call this as:
# Y = pdist(X, 'test_abc')
# where 'abc' is the metric being tested. This computes the distance
# between all pairs of vectors in X using the distance metric 'abc' but
# with a more succinct, verifiable, but less efficient implementation.
X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True,
check_finite=False)
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
if callable(metric):
mstr = getattr(metric, '__name__', 'UnknownCustomMetric')
metric_info = _METRIC_ALIAS.get(mstr, None)
if metric_info is not None:
X, typ, kwargs = _validate_pdist_input(
X, m, n, metric_info, **kwargs)
return _pdist_callable(X, metric=metric, out=out, **kwargs)
elif isinstance(metric, str):
mstr = metric.lower()
metric_info = _METRIC_ALIAS.get(mstr, None)
if metric_info is not None:
pdist_fn = metric_info.pdist_func
return pdist_fn(X, out=out, **kwargs)
elif mstr.startswith("test_"):
metric_info = _TEST_METRICS.get(mstr, None)
if metric_info is None:
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
X, typ, kwargs = _validate_pdist_input(
X, m, n, metric_info, **kwargs)
return _pdist_callable(
X, metric=metric_info.dist_func, out=out, **kwargs)
else:
raise ValueError(f'Unknown Distance Metric: {mstr}')
else:
raise TypeError('2nd argument metric must be a string identifier '
'or a function.')
def squareform(X, force="no", checks=True):
"""
Convert a vector-form distance vector to a square-form distance
matrix, and vice-versa.
Parameters
----------
X : array_like
Either a condensed or redundant distance matrix.
force : str, optional
As with MATLAB(TM), if force is equal to ``'tovector'`` or
``'tomatrix'``, the input will be treated as a distance matrix or
distance vector respectively.
checks : bool, optional
If set to False, no checks will be made for matrix
symmetry nor zero diagonals. This is useful if it is known that
``X - X.T1`` is small and ``diag(X)`` is close to zero.
These values are ignored any way so they do not disrupt the
squareform transformation.
Returns
-------
Y : ndarray
If a condensed distance matrix is passed, a redundant one is
returned, or if a redundant one is passed, a condensed distance
matrix is returned.
Notes
-----
1. ``v = squareform(X)``
Given a square n-by-n symmetric distance matrix ``X``,
``v = squareform(X)`` returns a ``n * (n-1) / 2``
(i.e. binomial coefficient n choose 2) sized vector `v`
where :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
is the distance between distinct points ``i`` and ``j``.
If ``X`` is non-square or asymmetric, an error is raised.
2. ``X = squareform(v)``
Given a ``n * (n-1) / 2`` sized vector ``v``
for some integer ``n >= 1`` encoding distances as described,
``X = squareform(v)`` returns a n-by-n distance matrix ``X``.
The ``X[i, j]`` and ``X[j, i]`` values are set to
:math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
and all diagonal elements are zero.
In SciPy 0.19.0, ``squareform`` stopped casting all input types to
float64, and started returning arrays of the same dtype as the input.
Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import pdist, squareform
``x`` is an array of five points in three-dimensional space.
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
``pdist(x)`` computes the Euclidean distances between each pair of
points in ``x``. The distances are returned in a one-dimensional
array with length ``5*(5 - 1)/2 = 10``.
>>> distvec = pdist(x)
>>> distvec
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
``squareform(distvec)`` returns the 5x5 distance matrix.
>>> m = squareform(distvec)
>>> m
array([[0. , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
[2.23606798, 0. , 4.89897949, 6.40312424, 1. ],
[6.40312424, 4.89897949, 0. , 5.38516481, 4.58257569],
[7.34846923, 6.40312424, 5.38516481, 0. , 5.47722558],
[2.82842712, 1. , 4.58257569, 5.47722558, 0. ]])
When given a square distance matrix ``m``, ``squareform(m)`` returns
the one-dimensional condensed distance vector associated with the
matrix. In this case, we recover ``distvec``.
>>> squareform(m)
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
"""
X = np.ascontiguousarray(X)
s = X.shape
if force.lower() == 'tomatrix':
if len(s) != 1:
raise ValueError("Forcing 'tomatrix' but input X is not a "
"distance vector.")
elif force.lower() == 'tovector':
if len(s) != 2:
raise ValueError("Forcing 'tovector' but input X is not a "
"distance matrix.")
# X = squareform(v)
if len(s) == 1:
if s[0] == 0:
return np.zeros((1, 1), dtype=X.dtype)
# Grab the closest value to the square root of the number
# of elements times 2 to see if the number of elements
# is indeed a binomial coefficient.
d = int(np.ceil(np.sqrt(s[0] * 2)))
# Check that v is of valid dimensions.
if d * (d - 1) != s[0] * 2:
raise ValueError('Incompatible vector size. It must be a binomial '
'coefficient n choose 2 for some integer n >= 2.')
# Allocate memory for the distance matrix.
M = np.zeros((d, d), dtype=X.dtype)
# Since the C code does not support striding using strides.
# The dimensions are used instead.
X = _copy_array_if_base_present(X)
# Fill in the values of the distance matrix.
_distance_wrap.to_squareform_from_vector_wrap(M, X)
# Return the distance matrix.
return M
elif len(s) == 2:
if s[0] != s[1]:
raise ValueError('The matrix argument must be square.')
if checks:
is_valid_dm(X, throw=True, name='X')
# One-side of the dimensions is set here.
d = s[0]
if d <= 1:
return np.array([], dtype=X.dtype)
# Create a vector.
v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype)
# Since the C code does not support striding using strides.
# The dimensions are used instead.
X = _copy_array_if_base_present(X)
# Convert the vector to squareform.
_distance_wrap.to_vector_from_squareform_wrap(X, v)
return v
else:
raise ValueError("The first argument must be one or two dimensional "
f"array. A {len(s)}-dimensional array is not permitted")
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
"""
Return True if input array is a valid distance matrix.
Distance matrices must be 2-dimensional numpy arrays.
They must have a zero-diagonal, and they must be symmetric.
Parameters
----------
D : array_like
The candidate object to test for validity.
tol : float, optional
The distance matrix should be symmetric. `tol` is the maximum
difference between entries ``ij`` and ``ji`` for the distance
metric to be considered symmetric.
throw : bool, optional
An exception is thrown if the distance matrix passed is not valid.
name : str, optional
The name of the variable to checked. This is useful if
throw is set to True so the offending variable can be identified
in the exception message when an exception is thrown.
warning : bool, optional
Instead of throwing an exception, a warning message is
raised.
Returns
-------
valid : bool
True if the variable `D` passed is a valid distance matrix.
Notes
-----
Small numerical differences in `D` and `D.T` and non-zeroness of
the diagonal are ignored if they are within the tolerance specified
by `tol`.
Examples
--------
>>> import numpy as np
>>> from scipy.spatial.distance import is_valid_dm
This matrix is a valid distance matrix.
>>> d = np.array([[0.0, 1.1, 1.2, 1.3],
... [1.1, 0.0, 1.0, 1.4],
... [1.2, 1.0, 0.0, 1.5],
... [1.3, 1.4, 1.5, 0.0]])
>>> is_valid_dm(d)
True
In the following examples, the input is not a valid distance matrix.
Not square:
>>> is_valid_dm([[0, 2, 2], [2, 0, 2]])
False
Nonzero diagonal element:
>>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]])
False
Not symmetric:
>>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]])
False
"""
D = np.asarray(D, order='c')
valid = True
try:
s = D.shape
if len(D.shape) != 2:
if name:
raise ValueError(f"Distance matrix '{name}' must have shape=2 "
"(i.e. be two-dimensional).")
else:
raise ValueError('Distance matrix must have shape=2 (i.e. '
'be two-dimensional).')
if tol == 0.0:
if not (D == D.T).all():
if name:
raise ValueError(f"Distance matrix '{name}' must be symmetric.")
else:
raise ValueError('Distance matrix must be symmetric.')
if not (D[range(0, s[0]), range(0, s[0])] == 0).all():
if name:
raise ValueError(f"Distance matrix '{name}' diagonal must be zero.")
else:
raise ValueError('Distance matrix diagonal must be zero.')
else:
if not (D - D.T <= tol).all():
if name:
raise ValueError(f'Distance matrix \'{name}\' must be '
f'symmetric within tolerance {tol:5.5f}.')
else:
raise ValueError('Distance matrix must be symmetric within '
f'tolerance {tol:5.5f}.')
if not (D[range(0, s[0]), range(0, s[0])] <= tol).all():
if name:
raise ValueError(f'Distance matrix \'{name}\' diagonal must be '
f'close to zero within tolerance {tol:5.5f}.')
else:
raise ValueError(('Distance matrix \'{}\' diagonal must be close '
'to zero within tolerance {:5.5f}.').format(*tol))
except Exception as e:
if throw:
raise
if warning:
warnings.warn(str(e), stacklevel=2)
valid = False
return valid
def is_valid_y(y, warning=False, throw=False, name=None):
"""
Return True if the input array is a valid condensed distance matrix.
Condensed distance matrices must be 1-dimensional numpy arrays.
Their length must be a binomial coefficient :math:`{n \\choose 2}`
for some positive integer n.
Parameters
----------
y : array_like
The condensed distance matrix.
warning : bool, optional
Invokes a warning if the variable passed is not a valid
condensed distance matrix. The warning message explains why
the distance matrix is not valid. `name` is used when
referencing the offending variable.
throw : bool, optional
Throws an exception if the variable passed is not a valid
condensed distance matrix.
name : bool, optional
Used when referencing the offending variable in the
warning or exception message.
Returns
-------
bool
True if the input array is a valid condensed distance matrix,
False otherwise.
Examples
--------
>>> from scipy.spatial.distance import is_valid_y
This vector is a valid condensed distance matrix. The length is 6,
which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6.
>>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9]
>>> is_valid_y(v)
True
An input vector with length, say, 7, is not a valid condensed distance
matrix.
>>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7])
False
"""
y = np.asarray(y, order='c')
valid = True
try:
if len(y.shape) != 1:
if name:
raise ValueError(f"Condensed distance matrix '{name}' must "
"have shape=1 (i.e. be one-dimensional).")
else:
raise ValueError('Condensed distance matrix must have shape=1 '
'(i.e. be one-dimensional).')
n = y.shape[0]
d = int(np.ceil(np.sqrt(n * 2)))
if (d * (d - 1) / 2) != n:
if name:
raise ValueError(f"Length n of condensed distance matrix '{name}' "
"must be a binomial coefficient, i.e."
"there must be a k such that (k \\choose 2)=n)!")
else:
raise ValueError('Length n of condensed distance matrix must '
'be a binomial coefficient, i.e. there must '
'be a k such that (k \\choose 2)=n)!')
except Exception as e:
if throw:
raise
if warning:
warnings.warn(str(e), stacklevel=2)
valid = False
return valid
def num_obs_dm(d):
"""
Return the number of original observations that correspond to a
square, redundant distance matrix.
Parameters
----------
d : array_like
The target distance matrix.
Returns
-------
num_obs_dm : int
The number of observations in the redundant distance matrix.
Examples
--------
Find the number of original observations corresponding
to a square redundant distance matrix d.
>>> from scipy.spatial.distance import num_obs_dm
>>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]]
>>> num_obs_dm(d)
3
"""
d = np.asarray(d, order='c')
is_valid_dm(d, tol=np.inf, throw=True, name='d')
return d.shape[0]
def num_obs_y(Y):
"""
Return the number of original observations that correspond to a
condensed distance matrix.
Parameters
----------
Y : array_like
Condensed distance matrix.
Returns
-------
n : int
The number of observations in the condensed distance matrix `Y`.
Examples
--------
Find the number of original observations corresponding to a
condensed distance matrix Y.
>>> from scipy.spatial.distance import num_obs_y
>>> Y = [1, 2, 3.5, 7, 10, 4]
>>> num_obs_y(Y)
4
"""
Y = np.asarray(Y, order='c')
is_valid_y(Y, throw=True, name='Y')
k = Y.shape[0]
if k == 0:
raise ValueError("The number of observations cannot be determined on "
"an empty distance matrix.")
d = int(np.ceil(np.sqrt(k * 2)))
if (d * (d - 1) / 2) != k:
raise ValueError("Invalid condensed distance matrix passed. Must be "
"some k where k=(n choose 2) for some n >= 2.")
return d
def _prepare_out_argument(out, dtype, expected_shape):
if out is None:
return np.empty(expected_shape, dtype=dtype)
if out.shape != expected_shape:
raise ValueError("Output array has incorrect shape.")
if not out.flags.c_contiguous:
raise ValueError("Output array must be C-contiguous.")
if out.dtype != np.float64:
raise ValueError("Output array must be double type.")
return out
def _pdist_callable(X, *, out, metric, **kwargs):
n = X.shape[0]
out_size = (n * (n - 1)) // 2
dm = _prepare_out_argument(out, np.float64, (out_size,))
k = 0
for i in range(X.shape[0] - 1):
for j in range(i + 1, X.shape[0]):
dm[k] = metric(X[i], X[j], **kwargs)
k += 1
return dm
def _cdist_callable(XA, XB, *, out, metric, **kwargs):
mA = XA.shape[0]
mB = XB.shape[0]
dm = _prepare_out_argument(out, np.float64, (mA, mB))
for i in range(mA):
for j in range(mB):
dm[i, j] = metric(XA[i], XB[j], **kwargs)
return dm
def cdist(XA, XB, metric='euclidean', *, out=None, **kwargs):
"""
Compute distance between each pair of the two collections of inputs.
See Notes for common calling conventions.
Parameters
----------
XA : array_like
An :math:`m_A` by :math:`n` array of :math:`m_A`
original observations in an :math:`n`-dimensional space.
Inputs are converted to float type.
XB : array_like
An :math:`m_B` by :math:`n` array of :math:`m_B`
original observations in an :math:`n`-dimensional space.
Inputs are converted to float type.
metric : str or callable, optional
The distance metric to use. If a string, the distance function can be
'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon',
'kulczynski1', 'mahalanobis', 'matching', 'minkowski',
'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener',
'sokalsneath', 'sqeuclidean', 'yule'.
**kwargs : dict, optional
Extra arguments to `metric`: refer to each metric documentation for a
list of all possible arguments.
Some possible arguments:
p : scalar
The p-norm to apply for Minkowski, weighted and unweighted.
Default: 2.
w : array_like
The weight vector for metrics that support weights (e.g., Minkowski).
V : array_like
The variance vector for standardized Euclidean.
Default: var(vstack([XA, XB]), axis=0, ddof=1)
VI : array_like
The inverse of the covariance matrix for Mahalanobis.
Default: inv(cov(vstack([XA, XB].T))).T
out : ndarray
The output array
If not None, the distance matrix Y is stored in this array.
Returns
-------
Y : ndarray
A :math:`m_A` by :math:`m_B` distance matrix is returned.
For each :math:`i` and :math:`j`, the metric
``dist(u=XA[i], v=XB[j])`` is computed and stored in the
:math:`ij` th entry.
Raises
------
ValueError
An exception is thrown if `XA` and `XB` do not have
the same number of columns.
Notes
-----
The following are common calling conventions:
1. ``Y = cdist(XA, XB, 'euclidean')``
Computes the distance between :math:`m` points using
Euclidean distance (2-norm) as the distance metric between the
points. The points are arranged as :math:`m`
:math:`n`-dimensional row vectors in the matrix X.
2. ``Y = cdist(XA, XB, 'minkowski', p=2.)``
Computes the distances using the Minkowski distance
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
that this is only a quasi-metric if :math:`0 < p < 1`).
3. ``Y = cdist(XA, XB, 'cityblock')``
Computes the city block or Manhattan distance between the
points.
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``
Computes the standardized Euclidean distance. The standardized
Euclidean distance between two n-vectors ``u`` and ``v`` is
.. math::
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.
V is the variance vector; V[i] is the variance computed over all
the i'th components of the points. If not passed, it is
automatically computed.
5. ``Y = cdist(XA, XB, 'sqeuclidean')``
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
the vectors.
6. ``Y = cdist(XA, XB, 'cosine')``
Computes the cosine distance between vectors u and v,
.. math::
1 - \\frac{u \\cdot v}
{{\\|u\\|}_2 {\\|v\\|}_2}
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
:math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.
7. ``Y = cdist(XA, XB, 'correlation')``
Computes the correlation distance between vectors u and v. This is
.. math::
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
where :math:`\\bar{v}` is the mean of the elements of vector v,
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
8. ``Y = cdist(XA, XB, 'hamming')``
Computes the normalized Hamming distance, or the proportion of
those vector elements between two n-vectors ``u`` and ``v``
which disagree. To save memory, the matrix ``X`` can be of type
boolean.
9. ``Y = cdist(XA, XB, 'jaccard')``
Computes the Jaccard distance between the points. Given two
vectors, ``u`` and ``v``, the Jaccard distance is the
proportion of those elements ``u[i]`` and ``v[i]`` that
disagree where at least one of them is non-zero.
10. ``Y = cdist(XA, XB, 'jensenshannon')``
Computes the Jensen-Shannon distance between two probability arrays.
Given two probability vectors, :math:`p` and :math:`q`, the
Jensen-Shannon distance is
.. math::
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
and :math:`D` is the Kullback-Leibler divergence.
11. ``Y = cdist(XA, XB, 'chebyshev')``
Computes the Chebyshev distance between the points. The
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
maximum norm-1 distance between their respective elements. More
precisely, the distance is given by
.. math::
d(u,v) = \\max_i {|u_i-v_i|}.
12. ``Y = cdist(XA, XB, 'canberra')``
Computes the Canberra distance between the points. The
Canberra distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
{|u_i|+|v_i|}.
13. ``Y = cdist(XA, XB, 'braycurtis')``
Computes the Bray-Curtis distance between the points. The
Bray-Curtis distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
{\\sum_i (|u_i+v_i|)}
14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``
Computes the Mahalanobis distance between the points. The
Mahalanobis distance between two points ``u`` and ``v`` is
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
variable) is the inverse covariance. If ``VI`` is not None,
``VI`` will be used as the inverse covariance matrix.
15. ``Y = cdist(XA, XB, 'yule')``
Computes the Yule distance between the boolean
vectors. (see `yule` function documentation)
16. ``Y = cdist(XA, XB, 'matching')``
Synonym for 'hamming'.
17. ``Y = cdist(XA, XB, 'dice')``
Computes the Dice distance between the boolean vectors. (see
`dice` function documentation)
18. ``Y = cdist(XA, XB, 'kulczynski1')``
Computes the kulczynski distance between the boolean
vectors. (see `kulczynski1` function documentation)
.. deprecated:: 1.15.0
This metric is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``cdist(XA, XB, 'kulczynski1')`` with
``1 / cdist(XA, XB, 'jaccard') - 1``.
19. ``Y = cdist(XA, XB, 'rogerstanimoto')``
Computes the Rogers-Tanimoto distance between the boolean
vectors. (see `rogerstanimoto` function documentation)
20. ``Y = cdist(XA, XB, 'russellrao')``
Computes the Russell-Rao distance between the boolean
vectors. (see `russellrao` function documentation)
21. ``Y = cdist(XA, XB, 'sokalmichener')``
Computes the Sokal-Michener distance between the boolean
vectors. (see `sokalmichener` function documentation)
.. deprecated:: 1.15.0
This metric is deprecated and will be removed in SciPy 1.17.0.
Replace usage of ``cdist(XA, XB, 'sokalmichener')`` with
``cdist(XA, XB, 'rogerstanimoto')``.
22. ``Y = cdist(XA, XB, 'sokalsneath')``
Computes the Sokal-Sneath distance between the vectors. (see
`sokalsneath` function documentation)
23. ``Y = cdist(XA, XB, f)``
Computes the distance between all pairs of vectors in X
using the user supplied 2-arity function f. For example,
Euclidean distance between the vectors could be computed
as follows::
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
Note that you should avoid passing a reference to one of
the distance functions defined in this library. For example,::
dm = cdist(XA, XB, sokalsneath)
would calculate the pair-wise distances between the vectors in
X using the Python function `sokalsneath`. This would result in
sokalsneath being called :math:`{n \\choose 2}` times, which
is inefficient. Instead, the optimized C version is more
efficient, and we call it using the following syntax::
dm = cdist(XA, XB, 'sokalsneath')
Examples
--------
Find the Euclidean distances between four 2-D coordinates:
>>> from scipy.spatial import distance
>>> import numpy as np
>>> coords = [(35.0456, -85.2672),
... (35.1174, -89.9711),
... (35.9728, -83.9422),
... (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[ 0. , 4.7044, 1.6172, 1.8856],
[ 4.7044, 0. , 6.0893, 3.3561],
[ 1.6172, 6.0893, 0. , 2.8477],
[ 1.8856, 3.3561, 2.8477, 0. ]])
Find the Manhattan distance from a 3-D point to the corners of the unit
cube:
>>> a = np.array([[0, 0, 0],
... [0, 0, 1],
... [0, 1, 0],
... [0, 1, 1],
... [1, 0, 0],
... [1, 0, 1],
... [1, 1, 0],
... [1, 1, 1]])
>>> b = np.array([[ 0.1, 0.2, 0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[ 0.7],
[ 0.9],
[ 1.3],
[ 1.5],
[ 1.5],
[ 1.7],
[ 2.1],
[ 2.3]])
"""
# You can also call this as:
# Y = cdist(XA, XB, 'test_abc')
# where 'abc' is the metric being tested. This computes the distance
# between all pairs of vectors in XA and XB using the distance metric 'abc'
# but with a more succinct, verifiable, but less efficient implementation.
XA = np.asarray(XA)
XB = np.asarray(XB)
s = XA.shape
sB = XB.shape
if len(s) != 2:
raise ValueError('XA must be a 2-dimensional array.')
if len(sB) != 2:
raise ValueError('XB must be a 2-dimensional array.')
if s[1] != sB[1]:
raise ValueError('XA and XB must have the same number of columns '
'(i.e. feature dimension.)')
mA = s[0]
mB = sB[0]
n = s[1]
if callable(metric):
mstr = getattr(metric, '__name__', 'Unknown')
metric_info = _METRIC_ALIAS.get(mstr, None)
if metric_info is not None:
XA, XB, typ, kwargs = _validate_cdist_input(
XA, XB, mA, mB, n, metric_info, **kwargs)
return _cdist_callable(XA, XB, metric=metric, out=out, **kwargs)
elif isinstance(metric, str):
mstr = metric.lower()
metric_info = _METRIC_ALIAS.get(mstr, None)
if metric_info is not None:
cdist_fn = metric_info.cdist_func
return cdist_fn(XA, XB, out=out, **kwargs)
elif mstr.startswith("test_"):
metric_info = _TEST_METRICS.get(mstr, None)
if metric_info is None:
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
XA, XB, typ, kwargs = _validate_cdist_input(
XA, XB, mA, mB, n, metric_info, **kwargs)
return _cdist_callable(
XA, XB, metric=metric_info.dist_func, out=out, **kwargs)
else:
raise ValueError(f'Unknown Distance Metric: {mstr}')
else:
raise TypeError('2nd argument metric must be a string identifier '
'or a function.')
|