File size: 7,994 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#  ******************************************************************************
#   Copyright (C) 2013 Kenneth L. Ho
#   Redistribution and use in source and binary forms, with or without
#   modification, are permitted provided that the following conditions are met:
#
#   Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer. Redistributions in binary
#   form must reproduce the above copyright notice, this list of conditions and
#   the following disclaimer in the documentation and/or other materials
#   provided with the distribution.
#
#   None of the names of the copyright holders may be used to endorse or
#   promote products derived from this software without specific prior written
#   permission.
#
#   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#   POSSIBILITY OF SUCH DAMAGE.
#  ******************************************************************************

import scipy.linalg.interpolative as pymatrixid
import numpy as np
from scipy.linalg import hilbert, svdvals, norm
from scipy.sparse.linalg import aslinearoperator
from scipy.linalg.interpolative import interp_decomp

from numpy.testing import (assert_, assert_allclose, assert_equal,
                           assert_array_equal)
import pytest
from pytest import raises as assert_raises


@pytest.fixture()
def eps():
    yield 1e-12


@pytest.fixture()
def rng():
    rng = np.random.default_rng(1718313768084012)
    yield rng


@pytest.fixture(params=[np.float64, np.complex128])
def A(request):
    # construct Hilbert matrix
    # set parameters
    n = 300
    yield hilbert(n).astype(request.param)


@pytest.fixture()
def L(A):
    yield aslinearoperator(A)


@pytest.fixture()
def rank(A, eps):
    S = np.linalg.svd(A, compute_uv=False)
    try:
        rank = np.nonzero(S < eps)[0][0]
    except IndexError:
        rank = A.shape[0]
    return rank


class TestInterpolativeDecomposition:

    @pytest.mark.parametrize(
        "rand,lin_op",
        [(False, False), (True, False), (True, True)])
    def test_real_id_fixed_precision(self, A, L, eps, rand, lin_op, rng):
        # Test ID routines on a Hilbert matrix.
        A_or_L = A if not lin_op else L

        k, idx, proj = pymatrixid.interp_decomp(A_or_L, eps, rand=rand, rng=rng)
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        assert_allclose(A, B, rtol=eps, atol=1e-08)

    @pytest.mark.parametrize(
        "rand,lin_op",
        [(False, False), (True, False), (True, True)])
    def test_real_id_fixed_rank(self, A, L, eps, rank, rand, lin_op, rng):
        k = rank
        A_or_L = A if not lin_op else L

        idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand, rng=rng)
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        assert_allclose(A, B, rtol=eps, atol=1e-08)

    @pytest.mark.parametrize("rand,lin_op", [(False, False)])
    def test_real_id_skel_and_interp_matrices(
            self, A, L, eps, rank, rand, lin_op, rng):
        k = rank
        A_or_L = A if not lin_op else L

        idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand, rng=rng)
        P = pymatrixid.reconstruct_interp_matrix(idx, proj)
        B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
        assert_allclose(B, A[:, idx[:k]], rtol=eps, atol=1e-08)
        assert_allclose(B @ P, A, rtol=eps, atol=1e-08)

    @pytest.mark.parametrize(
        "rand,lin_op",
        [(False, False), (True, False), (True, True)])
    def test_svd_fixed_precision(self, A, L, eps, rand, lin_op, rng):
        A_or_L = A if not lin_op else L

        U, S, V = pymatrixid.svd(A_or_L, eps, rand=rand, rng=rng)
        B = U * S @ V.T.conj()
        assert_allclose(A, B, rtol=eps, atol=1e-08)

    @pytest.mark.parametrize(
        "rand,lin_op",
        [(False, False), (True, False), (True, True)])
    def test_svd_fixed_rank(self, A, L, eps, rank, rand, lin_op, rng):
        k = rank
        A_or_L = A if not lin_op else L

        U, S, V = pymatrixid.svd(A_or_L, k, rand=rand, rng=rng)
        B = U * S @ V.T.conj()
        assert_allclose(A, B, rtol=eps, atol=1e-08)

    def test_id_to_svd(self, A, eps, rank):
        k = rank

        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
        B = U * S @ V.T.conj()
        assert_allclose(A, B, rtol=eps, atol=1e-08)

    def test_estimate_spectral_norm(self, A, rng):
        s = svdvals(A)
        norm_2_est = pymatrixid.estimate_spectral_norm(A, rng=rng)
        assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)

    def test_estimate_spectral_norm_diff(self, A, rng):
        B = A.copy()
        B[:, 0] *= 1.2
        s = svdvals(A - B)
        norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B, rng=rng)
        assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)

    def test_rank_estimates_array(self, A, rng):
        B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)

        for M in [A, B]:
            rank_tol = 1e-9
            rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
            rank_est = pymatrixid.estimate_rank(M, rank_tol, rng=rng)
            assert_(rank_est >= rank_np)
            assert_(rank_est <= rank_np + 10)

    def test_rank_estimates_lin_op(self, A, rng):
        B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)

        for M in [A, B]:
            ML = aslinearoperator(M)
            rank_tol = 1e-9
            rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
            rank_est = pymatrixid.estimate_rank(ML, rank_tol, rng=rng)
            assert_(rank_est >= rank_np - 4)
            assert_(rank_est <= rank_np + 4)

    def test_badcall(self):
        A = hilbert(5).astype(np.float32)
        with assert_raises(ValueError):
            pymatrixid.interp_decomp(A, 1e-6, rand=False)

    def test_rank_too_large(self):
        # svd(array, k) should not segfault
        a = np.ones((4, 3))
        with assert_raises(ValueError):
            pymatrixid.svd(a, 4)

    def test_full_rank(self):
        eps = 1.0e-12

        # fixed precision
        A = np.random.rand(16, 8)
        k, idx, proj = pymatrixid.interp_decomp(A, eps)
        assert_equal(k, A.shape[1])

        P = pymatrixid.reconstruct_interp_matrix(idx, proj)
        B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
        assert_allclose(A, B @ P)

        # fixed rank
        idx, proj = pymatrixid.interp_decomp(A, k)

        P = pymatrixid.reconstruct_interp_matrix(idx, proj)
        B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
        assert_allclose(A, B @ P)

    @pytest.mark.parametrize("dtype", [np.float64, np.complex128])
    @pytest.mark.parametrize("rand", [True, False])
    @pytest.mark.parametrize("eps", [1, 0.1])
    def test_bug_9793(self, dtype, rand, eps):
        A = np.array([[-1, -1, -1, 0, 0, 0],
                      [0, 0, 0, 1, 1, 1],
                      [1, 0, 0, 1, 0, 0],
                      [0, 1, 0, 0, 1, 0],
                      [0, 0, 1, 0, 0, 1]],
                     dtype=dtype, order="C")
        B = A.copy()
        interp_decomp(A.T, eps, rand=rand)
        assert_array_equal(A, B)