File size: 16,589 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import itertools
import os
import numpy as np
from scipy._lib._array_api import (
xp_assert_equal, xp_assert_close, assert_almost_equal, assert_array_almost_equal
)
from pytest import raises as assert_raises
import pytest
from scipy._lib._testutils import check_free_memory
from scipy.interpolate import RectBivariateSpline
from scipy.interpolate import make_splrep
from scipy.interpolate._fitpack_py import (splrep, splev, bisplrep, bisplev,
sproot, splprep, splint, spalde, splder, splantider, insert, dblint)
from scipy.interpolate._dfitpack import regrid_smth
from scipy.interpolate._fitpack2 import dfitpack_int
def data_file(basename):
return os.path.join(os.path.abspath(os.path.dirname(__file__)),
'data', basename)
def norm2(x):
return np.sqrt(np.dot(x.T, x))
def f1(x, d=0):
"""Derivatives of sin->cos->-sin->-cos."""
if d % 4 == 0:
return np.sin(x)
if d % 4 == 1:
return np.cos(x)
if d % 4 == 2:
return -np.sin(x)
if d % 4 == 3:
return -np.cos(x)
def makepairs(x, y):
"""Helper function to create an array of pairs of x and y."""
xy = np.array(list(itertools.product(np.asarray(x), np.asarray(y))))
return xy.T
class TestSmokeTests:
"""
Smoke tests (with a few asserts) for fitpack routines -- mostly
check that they are runnable
"""
def check_1(self, per=0, s=0, a=0, b=2*np.pi, at_nodes=False,
xb=None, xe=None):
if xb is None:
xb = a
if xe is None:
xe = b
N = 20
# nodes and middle points of the nodes
x = np.linspace(a, b, N + 1)
x1 = a + (b - a) * np.arange(1, N, dtype=float) / float(N - 1)
v = f1(x)
def err_est(k, d):
# Assume f has all derivatives < 1
h = 1.0 / N
tol = 5 * h**(.75*(k-d))
if s > 0:
tol += 1e5*s
return tol
for k in range(1, 6):
tck = splrep(x, v, s=s, per=per, k=k, xe=xe)
tt = tck[0][k:-k] if at_nodes else x1
for d in range(k+1):
tol = err_est(k, d)
err = norm2(f1(tt, d) - splev(tt, tck, d)) / norm2(f1(tt, d))
assert err < tol
# smoke test make_splrep
if not per:
spl = make_splrep(x, v, k=k, s=s, xb=xb, xe=xe)
if len(spl.t) == len(tck[0]):
xp_assert_close(spl.t, tck[0], atol=1e-15)
xp_assert_close(spl.c, tck[1][:spl.c.size], atol=1e-13)
else:
assert k == 5 # knot length differ in some k=5 cases
def check_2(self, per=0, N=20, ia=0, ib=2*np.pi):
a, b, dx = 0, 2*np.pi, 0.2*np.pi
x = np.linspace(a, b, N+1) # nodes
v = np.sin(x)
def err_est(k, d):
# Assume f has all derivatives < 1
h = 1.0 / N
tol = 5 * h**(.75*(k-d))
return tol
nk = []
for k in range(1, 6):
tck = splrep(x, v, s=0, per=per, k=k, xe=b)
nk.append([splint(ia, ib, tck), spalde(dx, tck)])
k = 1
for r in nk:
d = 0
for dr in r[1]:
tol = err_est(k, d)
xp_assert_close(dr, f1(dx, d), atol=0, rtol=tol)
d = d+1
k = k+1
def test_smoke_splrep_splev(self):
self.check_1(s=1e-6)
self.check_1(b=1.5*np.pi)
self.check_1(b=1.5*np.pi, xe=2*np.pi, per=1, s=1e-1)
@pytest.mark.parametrize('per', [0, 1])
@pytest.mark.parametrize('at_nodes', [True, False])
def test_smoke_splrep_splev_2(self, per, at_nodes):
self.check_1(per=per, at_nodes=at_nodes)
@pytest.mark.parametrize('N', [20, 50])
@pytest.mark.parametrize('per', [0, 1])
def test_smoke_splint_spalde(self, N, per):
self.check_2(per=per, N=N)
@pytest.mark.parametrize('N', [20, 50])
@pytest.mark.parametrize('per', [0, 1])
def test_smoke_splint_spalde_iaib(self, N, per):
self.check_2(ia=0.2*np.pi, ib=np.pi, N=N, per=per)
def test_smoke_sproot(self):
# sproot is only implemented for k=3
a, b = 0.1, 15
x = np.linspace(a, b, 20)
v = np.sin(x)
for k in [1, 2, 4, 5]:
tck = splrep(x, v, s=0, per=0, k=k, xe=b)
with assert_raises(ValueError):
sproot(tck)
k = 3
tck = splrep(x, v, s=0, k=3)
roots = sproot(tck)
xp_assert_close(splev(roots, tck), np.zeros(len(roots)), atol=1e-10, rtol=1e-10)
xp_assert_close(roots, np.pi * np.array([1, 2, 3, 4]), rtol=1e-3)
@pytest.mark.parametrize('N', [20, 50])
@pytest.mark.parametrize('k', [1, 2, 3, 4, 5])
def test_smoke_splprep_splrep_splev(self, N, k):
a, b, dx = 0, 2.*np.pi, 0.2*np.pi
x = np.linspace(a, b, N+1) # nodes
v = np.sin(x)
tckp, u = splprep([x, v], s=0, per=0, k=k, nest=-1)
uv = splev(dx, tckp)
err1 = abs(uv[1] - np.sin(uv[0]))
assert err1 < 1e-2
tck = splrep(x, v, s=0, per=0, k=k)
err2 = abs(splev(uv[0], tck) - np.sin(uv[0]))
assert err2 < 1e-2
# Derivatives of parametric cubic spline at u (first function)
if k == 3:
tckp, u = splprep([x, v], s=0, per=0, k=k, nest=-1)
for d in range(1, k+1):
uv = splev(dx, tckp, d)
def test_smoke_bisplrep_bisplev(self):
xb, xe = 0, 2.*np.pi
yb, ye = 0, 2.*np.pi
kx, ky = 3, 3
Nx, Ny = 20, 20
def f2(x, y):
return np.sin(x+y)
x = np.linspace(xb, xe, Nx + 1)
y = np.linspace(yb, ye, Ny + 1)
xy = makepairs(x, y)
tck = bisplrep(xy[0], xy[1], f2(xy[0], xy[1]), s=0, kx=kx, ky=ky)
tt = [tck[0][kx:-kx], tck[1][ky:-ky]]
t2 = makepairs(tt[0], tt[1])
v1 = bisplev(tt[0], tt[1], tck)
v2 = f2(t2[0], t2[1])
v2.shape = len(tt[0]), len(tt[1])
assert norm2(np.ravel(v1 - v2)) < 1e-2
class TestSplev:
def test_1d_shape(self):
x = [1,2,3,4,5]
y = [4,5,6,7,8]
tck = splrep(x, y)
z = splev([1], tck)
assert z.shape == (1,)
z = splev(1, tck)
assert z.shape == ()
def test_2d_shape(self):
x = [1, 2, 3, 4, 5]
y = [4, 5, 6, 7, 8]
tck = splrep(x, y)
t = np.array([[1.0, 1.5, 2.0, 2.5],
[3.0, 3.5, 4.0, 4.5]])
z = splev(t, tck)
z0 = splev(t[0], tck)
z1 = splev(t[1], tck)
xp_assert_equal(z, np.vstack((z0, z1)))
def test_extrapolation_modes(self):
# test extrapolation modes
# * if ext=0, return the extrapolated value.
# * if ext=1, return 0
# * if ext=2, raise a ValueError
# * if ext=3, return the boundary value.
x = [1,2,3]
y = [0,2,4]
tck = splrep(x, y, k=1)
rstl = [[-2, 6], [0, 0], None, [0, 4]]
for ext in (0, 1, 3):
assert_array_almost_equal(splev([0, 4], tck, ext=ext), rstl[ext])
assert_raises(ValueError, splev, [0, 4], tck, ext=2)
class TestSplder:
def setup_method(self):
# non-uniform grid, just to make it sure
x = np.linspace(0, 1, 100)**3
y = np.sin(20 * x)
self.spl = splrep(x, y)
# double check that knots are non-uniform
assert np.ptp(np.diff(self.spl[0])) > 0
def test_inverse(self):
# Check that antiderivative + derivative is identity.
for n in range(5):
spl2 = splantider(self.spl, n)
spl3 = splder(spl2, n)
xp_assert_close(self.spl[0], spl3[0])
xp_assert_close(self.spl[1], spl3[1])
assert self.spl[2] == spl3[2]
def test_splder_vs_splev(self):
# Check derivative vs. FITPACK
for n in range(3+1):
# Also extrapolation!
xx = np.linspace(-1, 2, 2000)
if n == 3:
# ... except that FITPACK extrapolates strangely for
# order 0, so let's not check that.
xx = xx[(xx >= 0) & (xx <= 1)]
dy = splev(xx, self.spl, n)
spl2 = splder(self.spl, n)
dy2 = splev(xx, spl2)
if n == 1:
xp_assert_close(dy, dy2, rtol=2e-6)
else:
xp_assert_close(dy, dy2)
def test_splantider_vs_splint(self):
# Check antiderivative vs. FITPACK
spl2 = splantider(self.spl)
# no extrapolation, splint assumes function is zero outside
# range
xx = np.linspace(0, 1, 20)
for x1 in xx:
for x2 in xx:
y1 = splint(x1, x2, self.spl)
y2 = splev(x2, spl2) - splev(x1, spl2)
xp_assert_close(np.asarray(y1), np.asarray(y2))
def test_order0_diff(self):
assert_raises(ValueError, splder, self.spl, 4)
def test_kink(self):
# Should refuse to differentiate splines with kinks
spl2 = insert(0.5, self.spl, m=2)
splder(spl2, 2) # Should work
assert_raises(ValueError, splder, spl2, 3)
spl2 = insert(0.5, self.spl, m=3)
splder(spl2, 1) # Should work
assert_raises(ValueError, splder, spl2, 2)
spl2 = insert(0.5, self.spl, m=4)
assert_raises(ValueError, splder, spl2, 1)
def test_multidim(self):
# c can have trailing dims
for n in range(3):
t, c, k = self.spl
c2 = np.c_[c, c, c]
c2 = np.dstack((c2, c2))
spl2 = splantider((t, c2, k), n)
spl3 = splder(spl2, n)
xp_assert_close(t, spl3[0])
xp_assert_close(c2, spl3[1])
assert k == spl3[2]
class TestSplint:
def test_len_c(self):
n, k = 7, 3
x = np.arange(n)
y = x**3
t, c, k = splrep(x, y, s=0)
# note that len(c) == len(t) == 11 (== len(x) + 2*(k-1))
assert len(t) == len(c) == n + 2*(k-1)
# integrate directly: $\int_0^6 x^3 dx = 6^4 / 4$
res = splint(0, 6, (t, c, k))
expected = 6**4 / 4
assert abs(res - expected) < 1e-13
# check that the coefficients past len(t) - k - 1 are ignored
c0 = c.copy()
c0[len(t) - k - 1:] = np.nan
res0 = splint(0, 6, (t, c0, k))
assert abs(res0 - expected) < 1e-13
# however, all other coefficients *are* used
c0[6] = np.nan
assert np.isnan(splint(0, 6, (t, c0, k)))
# check that the coefficient array can have length `len(t) - k - 1`
c1 = c[:len(t) - k - 1]
res1 = splint(0, 6, (t, c1, k))
assert (res1 - expected) < 1e-13
# however shorter c arrays raise. The error from f2py is a
# `dftipack.error`, which is an Exception but not ValueError etc.
with assert_raises(Exception, match=r">=n-k-1"):
splint(0, 1, (np.ones(10), np.ones(5), 3))
class TestBisplrep:
def test_overflow(self):
from numpy.lib.stride_tricks import as_strided
if dfitpack_int.itemsize == 8:
size = 1500000**2
else:
size = 400**2
# Don't allocate a real array, as it's very big, but rely
# on that it's not referenced
x = as_strided(np.zeros(()), shape=(size,))
assert_raises(OverflowError, bisplrep, x, x, x, w=x,
xb=0, xe=1, yb=0, ye=1, s=0)
def test_regression_1310(self):
# Regression test for gh-1310
with np.load(data_file('bug-1310.npz')) as loaded_data:
data = loaded_data['data']
# Shouldn't crash -- the input data triggers work array sizes
# that caused previously some data to not be aligned on
# sizeof(double) boundaries in memory, which made the Fortran
# code to crash when compiled with -O3
bisplrep(data[:,0], data[:,1], data[:,2], kx=3, ky=3, s=0,
full_output=True)
@pytest.mark.skipif(dfitpack_int != np.int64, reason="needs ilp64 fitpack")
def test_ilp64_bisplrep(self):
check_free_memory(28000) # VM size, doesn't actually use the pages
x = np.linspace(0, 1, 400)
y = np.linspace(0, 1, 400)
x, y = np.meshgrid(x, y)
z = np.zeros_like(x)
tck = bisplrep(x, y, z, kx=3, ky=3, s=0)
xp_assert_close(bisplev(0.5, 0.5, tck), 0.0)
def test_dblint():
# Basic test to see it runs and gives the correct result on a trivial
# problem. Note that `dblint` is not exposed in the interpolate namespace.
x = np.linspace(0, 1)
y = np.linspace(0, 1)
xx, yy = np.meshgrid(x, y)
rect = RectBivariateSpline(x, y, 4 * xx * yy)
tck = list(rect.tck)
tck.extend(rect.degrees)
assert abs(dblint(0, 1, 0, 1, tck) - 1) < 1e-10
assert abs(dblint(0, 0.5, 0, 1, tck) - 0.25) < 1e-10
assert abs(dblint(0.5, 1, 0, 1, tck) - 0.75) < 1e-10
assert abs(dblint(-100, 100, -100, 100, tck) - 1) < 1e-10
def test_splev_der_k():
# regression test for gh-2188: splev(x, tck, der=k) gives garbage or crashes
# for x outside of knot range
# test case from gh-2188
tck = (np.array([0., 0., 2.5, 2.5]),
np.array([-1.56679978, 2.43995873, 0., 0.]),
1)
t, c, k = tck
x = np.array([-3, 0, 2.5, 3])
# an explicit form of the linear spline
xp_assert_close(splev(x, tck), c[0] + (c[1] - c[0]) * x/t[2])
xp_assert_close(splev(x, tck, 1),
np.ones_like(x) * (c[1] - c[0]) / t[2]
)
# now check a random spline vs splder
np.random.seed(1234)
x = np.sort(np.random.random(30))
y = np.random.random(30)
t, c, k = splrep(x, y)
x = [t[0] - 1., t[-1] + 1.]
tck2 = splder((t, c, k), k)
xp_assert_close(splev(x, (t, c, k), k), splev(x, tck2))
def test_splprep_segfault():
# regression test for gh-3847: splprep segfaults if knots are specified
# for task=-1
t = np.arange(0, 1.1, 0.1)
x = np.sin(2*np.pi*t)
y = np.cos(2*np.pi*t)
tck, u = splprep([x, y], s=0)
np.arange(0, 1.01, 0.01)
uknots = tck[0] # using the knots from the previous fitting
tck, u = splprep([x, y], task=-1, t=uknots) # here is the crash
def test_bisplev_integer_overflow():
np.random.seed(1)
x = np.linspace(0, 1, 11)
y = x
z = np.random.randn(11, 11).ravel()
kx = 1
ky = 1
nx, tx, ny, ty, c, fp, ier = regrid_smth(
x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0)
tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky)
xp = np.zeros([2621440])
yp = np.zeros([2621440])
assert_raises((RuntimeError, MemoryError), bisplev, xp, yp, tck)
@pytest.mark.xslow
def test_gh_1766():
# this should fail gracefully instead of segfaulting (int overflow)
size = 22
kx, ky = 3, 3
def f2(x, y):
return np.sin(x+y)
x = np.linspace(0, 10, size)
y = np.linspace(50, 700, size)
xy = makepairs(x, y)
tck = bisplrep(xy[0], xy[1], f2(xy[0], xy[1]), s=0, kx=kx, ky=ky)
# the size value here can either segfault
# or produce a MemoryError on main
tx_ty_size = 500000
tck[0] = np.arange(tx_ty_size)
tck[1] = np.arange(tx_ty_size) * 4
tt_0 = np.arange(50)
tt_1 = np.arange(50) * 3
with pytest.raises(MemoryError):
bisplev(tt_0, tt_1, tck, 1, 1)
def test_spalde_scalar_input():
# Ticket #629
x = np.linspace(0, 10)
y = x**3
tck = splrep(x, y, k=3, t=[5])
res = spalde(np.float64(1), tck)
des = np.array([1., 3., 6., 6.])
assert_almost_equal(res, des)
def test_spalde_nc():
# regression test for https://github.com/scipy/scipy/issues/19002
# here len(t) = 29 and len(c) = 25 (== len(t) - k - 1)
x = np.asarray([-10., -9., -8., -7., -6., -5., -4., -3., -2.5, -2., -1.5,
-1., -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 4., 5., 6.],
dtype="float")
t = [-10.0, -10.0, -10.0, -10.0, -9.0, -8.0, -7.0, -6.0, -5.0, -4.0, -3.0,
-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0,
5.0, 6.0, 6.0, 6.0, 6.0]
c = np.asarray([1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
k = 3
res = spalde(x, (t, c, k))
res = np.vstack(res)
res_splev = np.asarray([splev(x, (t, c, k), nu) for nu in range(4)])
xp_assert_close(res, res_splev.T, atol=1e-15)
|