File size: 19,676 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import numpy as np
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse import csc_matrix, issparse, eye
from scipy.sparse.linalg import splu
from scipy.optimize._numdiff import group_columns
from .common import (validate_max_step, validate_tol, select_initial_step,
                     norm, num_jac, EPS, warn_extraneous,
                     validate_first_step)
from .base import OdeSolver, DenseOutput

S6 = 6 ** 0.5

# Butcher tableau. A is not used directly, see below.
C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1])
E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3

# Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue
# and a complex conjugate pair. They are written below.
MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3)
MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3))
              - 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6)))

# These are transformation matrices.
T = np.array([
    [0.09443876248897524, -0.14125529502095421, 0.03002919410514742],
    [0.25021312296533332, 0.20412935229379994, -0.38294211275726192],
    [1, 1, 0]])
TI = np.array([
    [4.17871859155190428, 0.32768282076106237, 0.52337644549944951],
    [-4.17871859155190428, -0.32768282076106237, 0.47662355450055044],
    [0.50287263494578682, -2.57192694985560522, 0.59603920482822492]])
# These linear combinations are used in the algorithm.
TI_REAL = TI[0]
TI_COMPLEX = TI[1] + 1j * TI[2]

# Interpolator coefficients.
P = np.array([
    [13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6],
    [13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6],
    [1/3, -8/3, 10/3]])


NEWTON_MAXITER = 6  # Maximum number of Newton iterations.
MIN_FACTOR = 0.2  # Minimum allowed decrease in a step size.
MAX_FACTOR = 10  # Maximum allowed increase in a step size.


def solve_collocation_system(fun, t, y, h, Z0, scale, tol,
                             LU_real, LU_complex, solve_lu):
    """Solve the collocation system.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system.
    t : float
        Current time.
    y : ndarray, shape (n,)
        Current state.
    h : float
        Step to try.
    Z0 : ndarray, shape (3, n)
        Initial guess for the solution. It determines new values of `y` at
        ``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants.
    scale : ndarray, shape (n)
        Problem tolerance scale, i.e. ``rtol * abs(y) + atol``.
    tol : float
        Tolerance to which solve the system. This value is compared with
        the normalized by `scale` error.
    LU_real, LU_complex
        LU decompositions of the system Jacobians.
    solve_lu : callable
        Callable which solves a linear system given a LU decomposition. The
        signature is ``solve_lu(LU, b)``.

    Returns
    -------
    converged : bool
        Whether iterations converged.
    n_iter : int
        Number of completed iterations.
    Z : ndarray, shape (3, n)
        Found solution.
    rate : float
        The rate of convergence.
    """
    n = y.shape[0]
    M_real = MU_REAL / h
    M_complex = MU_COMPLEX / h

    W = TI.dot(Z0)
    Z = Z0

    F = np.empty((3, n))
    ch = h * C

    dW_norm_old = None
    dW = np.empty_like(W)
    converged = False
    rate = None
    for k in range(NEWTON_MAXITER):
        for i in range(3):
            F[i] = fun(t + ch[i], y + Z[i])

        if not np.all(np.isfinite(F)):
            break

        f_real = F.T.dot(TI_REAL) - M_real * W[0]
        f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2])

        dW_real = solve_lu(LU_real, f_real)
        dW_complex = solve_lu(LU_complex, f_complex)

        dW[0] = dW_real
        dW[1] = dW_complex.real
        dW[2] = dW_complex.imag

        dW_norm = norm(dW / scale)
        if dW_norm_old is not None:
            rate = dW_norm / dW_norm_old

        if (rate is not None and (rate >= 1 or
                rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)):
            break

        W += dW
        Z = T.dot(W)

        if (dW_norm == 0 or
                rate is not None and rate / (1 - rate) * dW_norm < tol):
            converged = True
            break

        dW_norm_old = dW_norm

    return converged, k + 1, Z, rate


def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old):
    """Predict by which factor to increase/decrease the step size.

    The algorithm is described in [1]_.

    Parameters
    ----------
    h_abs, h_abs_old : float
        Current and previous values of the step size, `h_abs_old` can be None
        (see Notes).
    error_norm, error_norm_old : float
        Current and previous values of the error norm, `error_norm_old` can
        be None (see Notes).

    Returns
    -------
    factor : float
        Predicted factor.

    Notes
    -----
    If `h_abs_old` and `error_norm_old` are both not None then a two-step
    algorithm is used, otherwise a one-step algorithm is used.

    References
    ----------
    .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
           Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8.
    """
    if error_norm_old is None or h_abs_old is None or error_norm == 0:
        multiplier = 1
    else:
        multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25

    with np.errstate(divide='ignore'):
        factor = min(1, multiplier) * error_norm ** -0.25

    return factor


class Radau(OdeSolver):
    """Implicit Runge-Kutta method of Radau IIA family of order 5.

    The implementation follows [1]_. The error is controlled with a
    third-order accurate embedded formula. A cubic polynomial which satisfies
    the collocation conditions is used for the dense output.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system: the time derivative of the state ``y``
        at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
        scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
        return an array of the same shape as ``y``. See `vectorized` for more
        information.
    t0 : float
        Initial time.
    y0 : array_like, shape (n,)
        Initial state.
    t_bound : float
        Boundary time - the integration won't continue beyond it. It also
        determines the direction of the integration.
    first_step : float or None, optional
        Initial step size. Default is ``None`` which means that the algorithm
        should choose.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e., the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float and array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. HHere `rtol` controls a
        relative accuracy (number of correct digits), while `atol` controls
        absolute accuracy (number of correct decimal places). To achieve the
        desired `rtol`, set `atol` to be smaller than the smallest value that
        can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
        allowable error. If `atol` is larger than ``rtol * abs(y)`` the
        number of correct digits is not guaranteed. Conversely, to achieve the
        desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
        than `atol`. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    jac : {None, array_like, sparse_matrix, callable}, optional
        Jacobian matrix of the right-hand side of the system with respect to
        y, required by this method. The Jacobian matrix has shape (n, n) and
        its element (i, j) is equal to ``d f_i / d y_j``.
        There are three ways to define the Jacobian:

            * If array_like or sparse_matrix, the Jacobian is assumed to
              be constant.
            * If callable, the Jacobian is assumed to depend on both
              t and y; it will be called as ``jac(t, y)`` as necessary.
              For the 'Radau' and 'BDF' methods, the return value might be a
              sparse matrix.
            * If None (default), the Jacobian will be approximated by
              finite differences.

        It is generally recommended to provide the Jacobian rather than
        relying on a finite-difference approximation.
    jac_sparsity : {None, array_like, sparse matrix}, optional
        Defines a sparsity structure of the Jacobian matrix for a
        finite-difference approximation. Its shape must be (n, n). This argument
        is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
        elements in *each* row, providing the sparsity structure will greatly
        speed up the computations [2]_. A zero entry means that a corresponding
        element in the Jacobian is always zero. If None (default), the Jacobian
        is assumed to be dense.
    vectorized : bool, optional
        Whether `fun` can be called in a vectorized fashion. Default is False.

        If ``vectorized`` is False, `fun` will always be called with ``y`` of
        shape ``(n,)``, where ``n = len(y0)``.

        If ``vectorized`` is True, `fun` may be called with ``y`` of shape
        ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
        such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
        the returned array is the time derivative of the state corresponding
        with a column of ``y``).

        Setting ``vectorized=True`` allows for faster finite difference
        approximation of the Jacobian by this method, but may result in slower
        execution overall in some circumstances (e.g. small ``len(y0)``).

    Attributes
    ----------
    n : int
        Number of equations.
    status : string
        Current status of the solver: 'running', 'finished' or 'failed'.
    t_bound : float
        Boundary time.
    direction : float
        Integration direction: +1 or -1.
    t : float
        Current time.
    y : ndarray
        Current state.
    t_old : float
        Previous time. None if no steps were made yet.
    step_size : float
        Size of the last successful step. None if no steps were made yet.
    nfev : int
        Number of evaluations of the right-hand side.
    njev : int
        Number of evaluations of the Jacobian.
    nlu : int
        Number of LU decompositions.

    References
    ----------
    .. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
           Stiff and Differential-Algebraic Problems", Sec. IV.8.
    .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
           sparse Jacobian matrices", Journal of the Institute of Mathematics
           and its Applications, 13, pp. 117-120, 1974.
    """
    def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
                 rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
                 vectorized=False, first_step=None, **extraneous):
        warn_extraneous(extraneous)
        super().__init__(fun, t0, y0, t_bound, vectorized)
        self.y_old = None
        self.max_step = validate_max_step(max_step)
        self.rtol, self.atol = validate_tol(rtol, atol, self.n)
        self.f = self.fun(self.t, self.y)
        # Select initial step assuming the same order which is used to control
        # the error.
        if first_step is None:
            self.h_abs = select_initial_step(
                self.fun, self.t, self.y, t_bound, max_step, self.f, self.direction,
                3, self.rtol, self.atol)
        else:
            self.h_abs = validate_first_step(first_step, t0, t_bound)
        self.h_abs_old = None
        self.error_norm_old = None

        self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
        self.sol = None

        self.jac_factor = None
        self.jac, self.J = self._validate_jac(jac, jac_sparsity)
        if issparse(self.J):
            def lu(A):
                self.nlu += 1
                return splu(A)

            def solve_lu(LU, b):
                return LU.solve(b)

            I = eye(self.n, format='csc')
        else:
            def lu(A):
                self.nlu += 1
                return lu_factor(A, overwrite_a=True)

            def solve_lu(LU, b):
                return lu_solve(LU, b, overwrite_b=True)

            I = np.identity(self.n)

        self.lu = lu
        self.solve_lu = solve_lu
        self.I = I

        self.current_jac = True
        self.LU_real = None
        self.LU_complex = None
        self.Z = None

    def _validate_jac(self, jac, sparsity):
        t0 = self.t
        y0 = self.y

        if jac is None:
            if sparsity is not None:
                if issparse(sparsity):
                    sparsity = csc_matrix(sparsity)
                groups = group_columns(sparsity)
                sparsity = (sparsity, groups)

            def jac_wrapped(t, y, f):
                self.njev += 1
                J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
                                             self.atol, self.jac_factor,
                                             sparsity)
                return J
            J = jac_wrapped(t0, y0, self.f)
        elif callable(jac):
            J = jac(t0, y0)
            self.njev = 1
            if issparse(J):
                J = csc_matrix(J)

                def jac_wrapped(t, y, _=None):
                    self.njev += 1
                    return csc_matrix(jac(t, y), dtype=float)

            else:
                J = np.asarray(J, dtype=float)

                def jac_wrapped(t, y, _=None):
                    self.njev += 1
                    return np.asarray(jac(t, y), dtype=float)

            if J.shape != (self.n, self.n):
                raise ValueError(f"`jac` is expected to have shape {(self.n, self.n)},"
                                 f" but actually has {J.shape}.")
        else:
            if issparse(jac):
                J = csc_matrix(jac)
            else:
                J = np.asarray(jac, dtype=float)

            if J.shape != (self.n, self.n):
                raise ValueError(f"`jac` is expected to have shape {(self.n, self.n)},"
                                 f" but actually has {J.shape}.")
            jac_wrapped = None

        return jac_wrapped, J

    def _step_impl(self):
        t = self.t
        y = self.y
        f = self.f

        max_step = self.max_step
        atol = self.atol
        rtol = self.rtol

        min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
        if self.h_abs > max_step:
            h_abs = max_step
            h_abs_old = None
            error_norm_old = None
        elif self.h_abs < min_step:
            h_abs = min_step
            h_abs_old = None
            error_norm_old = None
        else:
            h_abs = self.h_abs
            h_abs_old = self.h_abs_old
            error_norm_old = self.error_norm_old

        J = self.J
        LU_real = self.LU_real
        LU_complex = self.LU_complex

        current_jac = self.current_jac
        jac = self.jac

        rejected = False
        step_accepted = False
        message = None
        while not step_accepted:
            if h_abs < min_step:
                return False, self.TOO_SMALL_STEP

            h = h_abs * self.direction
            t_new = t + h

            if self.direction * (t_new - self.t_bound) > 0:
                t_new = self.t_bound

            h = t_new - t
            h_abs = np.abs(h)

            if self.sol is None:
                Z0 = np.zeros((3, y.shape[0]))
            else:
                Z0 = self.sol(t + h * C).T - y

            scale = atol + np.abs(y) * rtol

            converged = False
            while not converged:
                if LU_real is None or LU_complex is None:
                    LU_real = self.lu(MU_REAL / h * self.I - J)
                    LU_complex = self.lu(MU_COMPLEX / h * self.I - J)

                converged, n_iter, Z, rate = solve_collocation_system(
                    self.fun, t, y, h, Z0, scale, self.newton_tol,
                    LU_real, LU_complex, self.solve_lu)

                if not converged:
                    if current_jac:
                        break

                    J = self.jac(t, y, f)
                    current_jac = True
                    LU_real = None
                    LU_complex = None

            if not converged:
                h_abs *= 0.5
                LU_real = None
                LU_complex = None
                continue

            y_new = y + Z[-1]
            ZE = Z.T.dot(E) / h
            error = self.solve_lu(LU_real, f + ZE)
            scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
            error_norm = norm(error / scale)
            safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
                                                       + n_iter)

            if rejected and error_norm > 1:
                error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE)
                error_norm = norm(error / scale)

            if error_norm > 1:
                factor = predict_factor(h_abs, h_abs_old,
                                        error_norm, error_norm_old)
                h_abs *= max(MIN_FACTOR, safety * factor)

                LU_real = None
                LU_complex = None
                rejected = True
            else:
                step_accepted = True

        recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3

        factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old)
        factor = min(MAX_FACTOR, safety * factor)

        if not recompute_jac and factor < 1.2:
            factor = 1
        else:
            LU_real = None
            LU_complex = None

        f_new = self.fun(t_new, y_new)
        if recompute_jac:
            J = jac(t_new, y_new, f_new)
            current_jac = True
        elif jac is not None:
            current_jac = False

        self.h_abs_old = self.h_abs
        self.error_norm_old = error_norm

        self.h_abs = h_abs * factor

        self.y_old = y

        self.t = t_new
        self.y = y_new
        self.f = f_new

        self.Z = Z

        self.LU_real = LU_real
        self.LU_complex = LU_complex
        self.current_jac = current_jac
        self.J = J

        self.t_old = t
        self.sol = self._compute_dense_output()

        return step_accepted, message

    def _compute_dense_output(self):
        Q = np.dot(self.Z.T, P)
        return RadauDenseOutput(self.t_old, self.t, self.y_old, Q)

    def _dense_output_impl(self):
        return self.sol


class RadauDenseOutput(DenseOutput):
    def __init__(self, t_old, t, y_old, Q):
        super().__init__(t_old, t)
        self.h = t - t_old
        self.Q = Q
        self.order = Q.shape[1] - 1
        self.y_old = y_old

    def _call_impl(self, t):
        x = (t - self.t_old) / self.h
        if t.ndim == 0:
            p = np.tile(x, self.order + 1)
            p = np.cumprod(p)
        else:
            p = np.tile(x, (self.order + 1, 1))
            p = np.cumprod(p, axis=0)
        # Here we don't multiply by h, not a mistake.
        y = np.dot(self.Q, p)
        if y.ndim == 2:
            y += self.y_old[:, None]
        else:
            y += self.y_old

        return y