File size: 50,595 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
# mypy: disable-error-code="attr-defined"
import warnings
import numpy as np
import scipy._lib._elementwise_iterative_method as eim
from scipy._lib._util import _RichResult
from scipy._lib._array_api import array_namespace, xp_sign, xp_copy, xp_take_along_axis

_EERRORINCREASE = -1  # used in derivative

def _derivative_iv(f, x, args, tolerances, maxiter, order, initial_step,
                   step_factor, step_direction, preserve_shape, callback):
    # Input validation for `derivative`
    xp = array_namespace(x)

    if not callable(f):
        raise ValueError('`f` must be callable.')

    if not np.iterable(args):
        args = (args,)

    tolerances = {} if tolerances is None else tolerances
    atol = tolerances.get('atol', None)
    rtol = tolerances.get('rtol', None)

    # tolerances are floats, not arrays; OK to use NumPy
    message = 'Tolerances and step parameters must be non-negative scalars.'
    tols = np.asarray([atol if atol is not None else 1,
                       rtol if rtol is not None else 1,
                       step_factor])
    if (not np.issubdtype(tols.dtype, np.number) or np.any(tols < 0)
            or np.any(np.isnan(tols)) or tols.shape != (3,)):
        raise ValueError(message)
    step_factor = float(tols[2])

    maxiter_int = int(maxiter)
    if maxiter != maxiter_int or maxiter <= 0:
        raise ValueError('`maxiter` must be a positive integer.')

    order_int = int(order)
    if order_int != order or order <= 0:
        raise ValueError('`order` must be a positive integer.')

    step_direction = xp.asarray(step_direction)
    initial_step = xp.asarray(initial_step)
    temp = xp.broadcast_arrays(x, step_direction, initial_step)
    x, step_direction, initial_step = temp

    message = '`preserve_shape` must be True or False.'
    if preserve_shape not in {True, False}:
        raise ValueError(message)

    if callback is not None and not callable(callback):
        raise ValueError('`callback` must be callable.')

    return (f, x, args, atol, rtol, maxiter_int, order_int, initial_step,
            step_factor, step_direction, preserve_shape, callback)


def derivative(f, x, *, args=(), tolerances=None, maxiter=10,
               order=8, initial_step=0.5, step_factor=2.0,
               step_direction=0, preserve_shape=False, callback=None):
    """Evaluate the derivative of a elementwise, real scalar function numerically.

    For each element of the output of `f`, `derivative` approximates the first
    derivative of `f` at the corresponding element of `x` using finite difference
    differentiation.

    This function works elementwise when `x`, `step_direction`, and `args` contain
    (broadcastable) arrays.

    Parameters
    ----------
    f : callable
        The function whose derivative is desired. The signature must be::

            f(xi: ndarray, *argsi) -> ndarray

        where each element of ``xi`` is a finite real number and ``argsi`` is a tuple,
        which may contain an arbitrary number of arrays that are broadcastable with
        ``xi``. `f` must be an elementwise function: each scalar element ``f(xi)[j]``
        must equal ``f(xi[j])`` for valid indices ``j``. It must not mutate the array
        ``xi`` or the arrays in ``argsi``.
    x : float array_like
        Abscissae at which to evaluate the derivative. Must be broadcastable with
        `args` and `step_direction`.
    args : tuple of array_like, optional
        Additional positional array arguments to be passed to `f`. Arrays
        must be broadcastable with one another and the arrays of `init`.
        If the callable for which the root is desired requires arguments that are
        not broadcastable with `x`, wrap that callable with `f` such that `f`
        accepts only `x` and broadcastable ``*args``.
    tolerances : dictionary of floats, optional
        Absolute and relative tolerances. Valid keys of the dictionary are:

        - ``atol`` - absolute tolerance on the derivative
        - ``rtol`` - relative tolerance on the derivative

        Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
        `atol` is the smallest normal number of the appropriate dtype, and
        the default `rtol` is the square root of the precision of the
        appropriate dtype.
    order : int, default: 8
        The (positive integer) order of the finite difference formula to be
        used. Odd integers will be rounded up to the next even integer.
    initial_step : float array_like, default: 0.5
        The (absolute) initial step size for the finite difference derivative
        approximation.
    step_factor : float, default: 2.0
        The factor by which the step size is *reduced* in each iteration; i.e.
        the step size in iteration 1 is ``initial_step/step_factor``. If
        ``step_factor < 1``, subsequent steps will be greater than the initial
        step; this may be useful if steps smaller than some threshold are
        undesirable (e.g. due to subtractive cancellation error).
    maxiter : int, default: 10
        The maximum number of iterations of the algorithm to perform. See
        Notes.
    step_direction : integer array_like
        An array representing the direction of the finite difference steps (for
        use when `x` lies near to the boundary of the domain of the function.)
        Must be broadcastable with `x` and all `args`.
        Where 0 (default), central differences are used; where negative (e.g.
        -1), steps are non-positive; and where positive (e.g. 1), all steps are
        non-negative.
    preserve_shape : bool, default: False
        In the following, "arguments of `f`" refers to the array ``xi`` and
        any arrays within ``argsi``. Let ``shape`` be the broadcasted shape
        of `x` and all elements of `args` (which is conceptually
        distinct from ``xi` and ``argsi`` passed into `f`).

        - When ``preserve_shape=False`` (default), `f` must accept arguments
          of *any* broadcastable shapes.

        - When ``preserve_shape=True``, `f` must accept arguments of shape
          ``shape`` *or* ``shape + (n,)``, where ``(n,)`` is the number of
          abscissae at which the function is being evaluated.

        In either case, for each scalar element ``xi[j]`` within ``xi``, the array
        returned by `f` must include the scalar ``f(xi[j])`` at the same index.
        Consequently, the shape of the output is always the shape of the input
        ``xi``.

        See Examples.
    callback : callable, optional
        An optional user-supplied function to be called before the first
        iteration and after each iteration.
        Called as ``callback(res)``, where ``res`` is a ``_RichResult``
        similar to that returned by `derivative` (but containing the current
        iterate's values of all variables). If `callback` raises a
        ``StopIteration``, the algorithm will terminate immediately and
        `derivative` will return a result. `callback` must not mutate
        `res` or its attributes.

    Returns
    -------
    res : _RichResult
        An object similar to an instance of `scipy.optimize.OptimizeResult` with the
        following attributes. The descriptions are written as though the values will
        be scalars; however, if `f` returns an array, the outputs will be
        arrays of the same shape.

        success : bool array
            ``True`` where the algorithm terminated successfully (status ``0``);
            ``False`` otherwise.
        status : int array
            An integer representing the exit status of the algorithm.

            - ``0`` : The algorithm converged to the specified tolerances.
            - ``-1`` : The error estimate increased, so iteration was terminated.
            - ``-2`` : The maximum number of iterations was reached.
            - ``-3`` : A non-finite value was encountered.
            - ``-4`` : Iteration was terminated by `callback`.
            - ``1`` : The algorithm is proceeding normally (in `callback` only).

        df : float array
            The derivative of `f` at `x`, if the algorithm terminated
            successfully.
        error : float array
            An estimate of the error: the magnitude of the difference between
            the current estimate of the derivative and the estimate in the
            previous iteration.
        nit : int array
            The number of iterations of the algorithm that were performed.
        nfev : int array
            The number of points at which `f` was evaluated.
        x : float array
            The value at which the derivative of `f` was evaluated
            (after broadcasting with `args` and `step_direction`).

    See Also
    --------
    jacobian, hessian

    Notes
    -----
    The implementation was inspired by jacobi [1]_, numdifftools [2]_, and
    DERIVEST [3]_, but the implementation follows the theory of Taylor series
    more straightforwardly (and arguably naively so).
    In the first iteration, the derivative is estimated using a finite
    difference formula of order `order` with maximum step size `initial_step`.
    Each subsequent iteration, the maximum step size is reduced by
    `step_factor`, and the derivative is estimated again until a termination
    condition is reached. The error estimate is the magnitude of the difference
    between the current derivative approximation and that of the previous
    iteration.

    The stencils of the finite difference formulae are designed such that
    abscissae are "nested": after `f` is evaluated at ``order + 1``
    points in the first iteration, `f` is evaluated at only two new points
    in each subsequent iteration; ``order - 1`` previously evaluated function
    values required by the finite difference formula are reused, and two
    function values (evaluations at the points furthest from `x`) are unused.

    Step sizes are absolute. When the step size is small relative to the
    magnitude of `x`, precision is lost; for example, if `x` is ``1e20``, the
    default initial step size of ``0.5`` cannot be resolved. Accordingly,
    consider using larger initial step sizes for large magnitudes of `x`.

    The default tolerances are challenging to satisfy at points where the
    true derivative is exactly zero. If the derivative may be exactly zero,
    consider specifying an absolute tolerance (e.g. ``atol=1e-12``) to
    improve convergence.

    References
    ----------
    .. [1] Hans Dembinski (@HDembinski). jacobi.
           https://github.com/HDembinski/jacobi
    .. [2] Per A. Brodtkorb and John D'Errico. numdifftools.
           https://numdifftools.readthedocs.io/en/latest/
    .. [3] John D'Errico. DERIVEST: Adaptive Robust Numerical Differentiation.
           https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
    .. [4] Numerical Differentition. Wikipedia.
           https://en.wikipedia.org/wiki/Numerical_differentiation

    Examples
    --------
    Evaluate the derivative of ``np.exp`` at several points ``x``.

    >>> import numpy as np
    >>> from scipy.differentiate import derivative
    >>> f = np.exp
    >>> df = np.exp  # true derivative
    >>> x = np.linspace(1, 2, 5)
    >>> res = derivative(f, x)
    >>> res.df  # approximation of the derivative
    array([2.71828183, 3.49034296, 4.48168907, 5.75460268, 7.3890561 ])
    >>> res.error  # estimate of the error
    array([7.13740178e-12, 9.16600129e-12, 1.17594823e-11, 1.51061386e-11,
           1.94262384e-11])
    >>> abs(res.df - df(x))  # true error
    array([2.53130850e-14, 3.55271368e-14, 5.77315973e-14, 5.59552404e-14,
           6.92779167e-14])

    Show the convergence of the approximation as the step size is reduced.
    Each iteration, the step size is reduced by `step_factor`, so for
    sufficiently small initial step, each iteration reduces the error by a
    factor of ``1/step_factor**order`` until finite precision arithmetic
    inhibits further improvement.

    >>> import matplotlib.pyplot as plt
    >>> iter = list(range(1, 12))  # maximum iterations
    >>> hfac = 2  # step size reduction per iteration
    >>> hdir = [-1, 0, 1]  # compare left-, central-, and right- steps
    >>> order = 4  # order of differentiation formula
    >>> x = 1
    >>> ref = df(x)
    >>> errors = []  # true error
    >>> for i in iter:
    ...     res = derivative(f, x, maxiter=i, step_factor=hfac,
    ...                      step_direction=hdir, order=order,
    ...                      # prevent early termination
    ...                      tolerances=dict(atol=0, rtol=0))
    ...     errors.append(abs(res.df - ref))
    >>> errors = np.array(errors)
    >>> plt.semilogy(iter, errors[:, 0], label='left differences')
    >>> plt.semilogy(iter, errors[:, 1], label='central differences')
    >>> plt.semilogy(iter, errors[:, 2], label='right differences')
    >>> plt.xlabel('iteration')
    >>> plt.ylabel('error')
    >>> plt.legend()
    >>> plt.show()
    >>> (errors[1, 1] / errors[0, 1], 1 / hfac**order)
    (0.06215223140159822, 0.0625)

    The implementation is vectorized over `x`, `step_direction`, and `args`.
    The function is evaluated once before the first iteration to perform input
    validation and standardization, and once per iteration thereafter.

    >>> def f(x, p):
    ...     f.nit += 1
    ...     return x**p
    >>> f.nit = 0
    >>> def df(x, p):
    ...     return p*x**(p-1)
    >>> x = np.arange(1, 5)
    >>> p = np.arange(1, 6).reshape((-1, 1))
    >>> hdir = np.arange(-1, 2).reshape((-1, 1, 1))
    >>> res = derivative(f, x, args=(p,), step_direction=hdir, maxiter=1)
    >>> np.allclose(res.df, df(x, p))
    True
    >>> res.df.shape
    (3, 5, 4)
    >>> f.nit
    2

    By default, `preserve_shape` is False, and therefore the callable
    `f` may be called with arrays of any broadcastable shapes.
    For example:

    >>> shapes = []
    >>> def f(x, c):
    ...    shape = np.broadcast_shapes(x.shape, c.shape)
    ...    shapes.append(shape)
    ...    return np.sin(c*x)
    >>>
    >>> c = [1, 5, 10, 20]
    >>> res = derivative(f, 0, args=(c,))
    >>> shapes
    [(4,), (4, 8), (4, 2), (3, 2), (2, 2), (1, 2)]

    To understand where these shapes are coming from - and to better
    understand how `derivative` computes accurate results - note that
    higher values of ``c`` correspond with higher frequency sinusoids.
    The higher frequency sinusoids make the function's derivative change
    faster, so more function evaluations are required to achieve the target
    accuracy:

    >>> res.nfev
    array([11, 13, 15, 17], dtype=int32)

    The initial ``shape``, ``(4,)``, corresponds with evaluating the
    function at a single abscissa and all four frequencies; this is used
    for input validation and to determine the size and dtype of the arrays
    that store results. The next shape corresponds with evaluating the
    function at an initial grid of abscissae and all four frequencies.
    Successive calls to the function evaluate the function at two more
    abscissae, increasing the effective order of the approximation by two.
    However, in later function evaluations, the function is evaluated at
    fewer frequencies because the corresponding derivative has already
    converged to the required tolerance. This saves function evaluations to
    improve performance, but it requires the function to accept arguments of
    any shape.

    "Vector-valued" functions are unlikely to satisfy this requirement.
    For example, consider

    >>> def f(x):
    ...    return [x, np.sin(3*x), x+np.sin(10*x), np.sin(20*x)*(x-1)**2]

    This integrand is not compatible with `derivative` as written; for instance,
    the shape of the output will not be the same as the shape of ``x``. Such a
    function *could* be converted to a compatible form with the introduction of
    additional parameters, but this would be inconvenient. In such cases,
    a simpler solution would be to use `preserve_shape`.

    >>> shapes = []
    >>> def f(x):
    ...     shapes.append(x.shape)
    ...     x0, x1, x2, x3 = x
    ...     return [x0, np.sin(3*x1), x2+np.sin(10*x2), np.sin(20*x3)*(x3-1)**2]
    >>>
    >>> x = np.zeros(4)
    >>> res = derivative(f, x, preserve_shape=True)
    >>> shapes
    [(4,), (4, 8), (4, 2), (4, 2), (4, 2), (4, 2)]

    Here, the shape of ``x`` is ``(4,)``. With ``preserve_shape=True``, the
    function may be called with argument ``x`` of shape ``(4,)`` or ``(4, n)``,
    and this is what we observe.

    """
    # TODO (followup):
    #  - investigate behavior at saddle points
    #  - multivariate functions?
    #  - relative steps?
    #  - show example of `np.vectorize`

    res = _derivative_iv(f, x, args, tolerances, maxiter, order, initial_step,
                            step_factor, step_direction, preserve_shape, callback)
    (func, x, args, atol, rtol, maxiter, order,
     h0, fac, hdir, preserve_shape, callback) = res

    # Initialization
    # Since f(x) (no step) is not needed for central differences, it may be
    # possible to eliminate this function evaluation. However, it's useful for
    # input validation and standardization, and everything else is designed to
    # reduce function calls, so let's keep it simple.
    temp = eim._initialize(func, (x,), args, preserve_shape=preserve_shape)
    func, xs, fs, args, shape, dtype, xp = temp

    finfo = xp.finfo(dtype)
    atol = finfo.smallest_normal if atol is None else atol
    rtol = finfo.eps**0.5 if rtol is None else rtol  # keep same as `hessian`

    x, f = xs[0], fs[0]
    df = xp.full_like(f, xp.nan)

    # Ideally we'd broadcast the shape of `hdir` in `_elementwise_algo_init`, but
    # it's simpler to do it here than to generalize `_elementwise_algo_init` further.
    # `hdir` and `x` are already broadcasted in `_derivative_iv`, so we know
    # that `hdir` can be broadcasted to the final shape. Same with `h0`.
    hdir = xp.broadcast_to(hdir, shape)
    hdir = xp.reshape(hdir, (-1,))
    hdir = xp.astype(xp_sign(hdir), dtype)
    h0 = xp.broadcast_to(h0, shape)
    h0 = xp.reshape(h0, (-1,))
    h0 = xp.astype(h0, dtype)
    h0[h0 <= 0] = xp.asarray(xp.nan, dtype=dtype)

    status = xp.full_like(x, eim._EINPROGRESS, dtype=xp.int32)  # in progress
    nit, nfev = 0, 1  # one function evaluations performed above
    # Boolean indices of left, central, right, and (all) one-sided steps
    il = hdir < 0
    ic = hdir == 0
    ir = hdir > 0
    io = il | ir

    # Most of these attributes are reasonably obvious, but:
    # - `fs` holds all the function values of all active `x`. The zeroth
    #   axis corresponds with active points `x`, the first axis corresponds
    #   with the different steps (in the order described in
    #   `_derivative_weights`).
    # - `terms` (which could probably use a better name) is half the `order`,
    #   which is always even.
    work = _RichResult(x=x, df=df, fs=f[:, xp.newaxis], error=xp.nan, h=h0,
                       df_last=xp.nan, error_last=xp.nan, fac=fac,
                       atol=atol, rtol=rtol, nit=nit, nfev=nfev,
                       status=status, dtype=dtype, terms=(order+1)//2,
                       hdir=hdir, il=il, ic=ic, ir=ir, io=io,
                       # Store the weights in an object so they can't get compressed
                       # Using RichResult to allow dot notation, but a dict would work
                       diff_state=_RichResult(central=[], right=[], fac=None))

    # This is the correspondence between terms in the `work` object and the
    # final result. In this case, the mapping is trivial. Note that `success`
    # is prepended automatically.
    res_work_pairs = [('status', 'status'), ('df', 'df'), ('error', 'error'),
                      ('nit', 'nit'), ('nfev', 'nfev'), ('x', 'x')]

    def pre_func_eval(work):
        """Determine the abscissae at which the function needs to be evaluated.

        See `_derivative_weights` for a description of the stencil (pattern
        of the abscissae).

        In the first iteration, there is only one stored function value in
        `work.fs`, `f(x)`, so we need to evaluate at `order` new points. In
        subsequent iterations, we evaluate at two new points. Note that
        `work.x` is always flattened into a 1D array after broadcasting with
        all `args`, so we add a new axis at the end and evaluate all point
        in one call to the function.

        For improvement:
        - Consider measuring the step size actually taken, since ``(x + h) - x``
          is not identically equal to `h` with floating point arithmetic.
        - Adjust the step size automatically if `x` is too big to resolve the
          step.
        - We could probably save some work if there are no central difference
          steps or no one-sided steps.
        """
        n = work.terms  # half the order
        h = work.h[:, xp.newaxis]  # step size
        c = work.fac  # step reduction factor
        d = c**0.5  # square root of step reduction factor (one-sided stencil)
        # Note - no need to be careful about dtypes until we allocate `x_eval`

        if work.nit == 0:
            hc = h / c**xp.arange(n, dtype=work.dtype)
            hc = xp.concat((-xp.flip(hc, axis=-1), hc), axis=-1)
        else:
            hc = xp.concat((-h, h), axis=-1) / c**(n-1)

        if work.nit == 0:
            hr = h / d**xp.arange(2*n, dtype=work.dtype)
        else:
            hr = xp.concat((h, h/d), axis=-1) / c**(n-1)

        n_new = 2*n if work.nit == 0 else 2  # number of new abscissae
        x_eval = xp.zeros((work.hdir.shape[0], n_new), dtype=work.dtype)
        il, ic, ir = work.il, work.ic, work.ir
        x_eval[ir] = work.x[ir][:, xp.newaxis] + hr[ir]
        x_eval[ic] = work.x[ic][:, xp.newaxis] + hc[ic]
        x_eval[il] = work.x[il][:, xp.newaxis] - hr[il]
        return x_eval

    def post_func_eval(x, f, work):
        """ Estimate the derivative and error from the function evaluations

        As in `pre_func_eval`: in the first iteration, there is only one stored
        function value in `work.fs`, `f(x)`, so we need to add the `order` new
        points. In subsequent iterations, we add two new points. The tricky
        part is getting the order to match that of the weights, which is
        described in `_derivative_weights`.

        For improvement:
        - Change the order of the weights (and steps in `pre_func_eval`) to
          simplify `work_fc` concatenation and eliminate `fc` concatenation.
        - It would be simple to do one-step Richardson extrapolation with `df`
          and `df_last` to increase the order of the estimate and/or improve
          the error estimate.
        - Process the function evaluations in a more numerically favorable
          way. For instance, combining the pairs of central difference evals
          into a second-order approximation and using Richardson extrapolation
          to produce a higher order approximation seemed to retain accuracy up
          to very high order.
        - Alternatively, we could use `polyfit` like Jacobi. An advantage of
          fitting polynomial to more points than necessary is improved noise
          tolerance.
        """
        n = work.terms
        n_new = n if work.nit == 0 else 1
        il, ic, io = work.il, work.ic, work.io

        # Central difference
        # `work_fc` is *all* the points at which the function has been evaluated
        # `fc` is the points we're using *this iteration* to produce the estimate
        work_fc = (f[ic][:, :n_new], work.fs[ic], f[ic][:, -n_new:])
        work_fc = xp.concat(work_fc, axis=-1)
        if work.nit == 0:
            fc = work_fc
        else:
            fc = (work_fc[:, :n], work_fc[:, n:n+1], work_fc[:, -n:])
            fc = xp.concat(fc, axis=-1)

        # One-sided difference
        work_fo = xp.concat((work.fs[io], f[io]), axis=-1)
        if work.nit == 0:
            fo = work_fo
        else:
            fo = xp.concat((work_fo[:, 0:1], work_fo[:, -2*n:]), axis=-1)

        work.fs = xp.zeros((ic.shape[0], work.fs.shape[-1] + 2*n_new), dtype=work.dtype)
        work.fs[ic] = work_fc
        work.fs[io] = work_fo

        wc, wo = _derivative_weights(work, n, xp)
        work.df_last = xp.asarray(work.df, copy=True)
        work.df[ic] = fc @ wc / work.h[ic]
        work.df[io] = fo @ wo / work.h[io]
        work.df[il] *= -1

        work.h /= work.fac
        work.error_last = work.error
        # Simple error estimate - the difference in derivative estimates between
        # this iteration and the last. This is typically conservative because if
        # convergence has begin, the true error is much closer to the difference
        # between the current estimate and the *next* error estimate. However,
        # we could use Richarson extrapolation to produce an error estimate that
        # is one order higher, and take the difference between that and
        # `work.df` (which would just be constant factor that depends on `fac`.)
        work.error = xp.abs(work.df - work.df_last)

    def check_termination(work):
        """Terminate due to convergence, non-finite values, or error increase"""
        stop = xp.astype(xp.zeros_like(work.df), xp.bool)

        i = work.error < work.atol + work.rtol*abs(work.df)
        work.status[i] = eim._ECONVERGED
        stop[i] = True

        if work.nit > 0:
            i = ~((xp.isfinite(work.x) & xp.isfinite(work.df)) | stop)
            work.df[i], work.status[i] = xp.nan, eim._EVALUEERR
            stop[i] = True

        # With infinite precision, there is a step size below which
        # all smaller step sizes will reduce the error. But in floating point
        # arithmetic, catastrophic cancellation will begin to cause the error
        # to increase again. This heuristic tries to avoid step sizes that are
        # too small. There may be more theoretically sound approaches for
        # detecting a step size that minimizes the total error, but this
        # heuristic seems simple and effective.
        i = (work.error > work.error_last*10) & ~stop
        work.status[i] = _EERRORINCREASE
        stop[i] = True

        return stop

    def post_termination_check(work):
        return

    def customize_result(res, shape):
        return shape

    return eim._loop(work, callback, shape, maxiter, func, args, dtype,
                     pre_func_eval, post_func_eval, check_termination,
                     post_termination_check, customize_result, res_work_pairs,
                     xp, preserve_shape)


def _derivative_weights(work, n, xp):
    # This produces the weights of the finite difference formula for a given
    # stencil. In experiments, use of a second-order central difference formula
    # with Richardson extrapolation was more accurate numerically, but it was
    # more complicated, and it would have become even more complicated when
    # adding support for one-sided differences. However, now that all the
    # function evaluation values are stored, they can be processed in whatever
    # way is desired to produce the derivative estimate. We leave alternative
    # approaches to future work. To be more self-contained, here is the theory
    # for deriving the weights below.
    #
    # Recall that the Taylor expansion of a univariate, scalar-values function
    # about a point `x` may be expressed as:
    #      f(x + h)  =     f(x) + f'(x)*h + f''(x)/2!*h**2  + O(h**3)
    # Suppose we evaluate f(x), f(x+h), and f(x-h).  We have:
    #      f(x)      =     f(x)
    #      f(x + h)  =     f(x) + f'(x)*h + f''(x)/2!*h**2  + O(h**3)
    #      f(x - h)  =     f(x) - f'(x)*h + f''(x)/2!*h**2  + O(h**3)
    # We can solve for weights `wi` such that:
    #   w1*f(x)      = w1*(f(x))
    # + w2*f(x + h)  = w2*(f(x) + f'(x)*h + f''(x)/2!*h**2) + O(h**3)
    # + w3*f(x - h)  = w3*(f(x) - f'(x)*h + f''(x)/2!*h**2) + O(h**3)
    #                =     0    + f'(x)*h + 0               + O(h**3)
    # Then
    #     f'(x) ~ (w1*f(x) + w2*f(x+h) + w3*f(x-h))/h
    # is a finite difference derivative approximation with error O(h**2),
    # and so it is said to be a "second-order" approximation. Under certain
    # conditions (e.g. well-behaved function, `h` sufficiently small), the
    # error in the approximation will decrease with h**2; that is, if `h` is
    # reduced by a factor of 2, the error is reduced by a factor of 4.
    #
    # By default, we use eighth-order formulae. Our central-difference formula
    # uses abscissae:
    #   x-h/c**3, x-h/c**2, x-h/c, x-h, x, x+h, x+h/c, x+h/c**2, x+h/c**3
    # where `c` is the step factor. (Typically, the step factor is greater than
    # one, so the outermost points - as written above - are actually closest to
    # `x`.) This "stencil" is chosen so that each iteration, the step can be
    # reduced by the factor `c`, and most of the function evaluations can be
    # reused with the new step size. For example, in the next iteration, we
    # will have:
    #   x-h/c**4, x-h/c**3, x-h/c**2, x-h/c, x, x+h/c, x+h/c**2, x+h/c**3, x+h/c**4
    # We do not reuse `x-h` and `x+h` for the new derivative estimate.
    # While this would increase the order of the formula and thus the
    # theoretical convergence rate, it is also less stable numerically.
    # (As noted above, there are other ways of processing the values that are
    # more stable. Thus, even now we store `f(x-h)` and `f(x+h)` in `work.fs`
    # to simplify future development of this sort of improvement.)
    #
    # The (right) one-sided formula is produced similarly using abscissae
    #   x, x+h, x+h/d, x+h/d**2, ..., x+h/d**6, x+h/d**7, x+h/d**7
    # where `d` is the square root of `c`. (The left one-sided formula simply
    # uses -h.) When the step size is reduced by factor `c = d**2`, we have
    # abscissae:
    #   x, x+h/d**2, x+h/d**3..., x+h/d**8, x+h/d**9, x+h/d**9
    # `d` is chosen as the square root of `c` so that the rate of the step-size
    # reduction is the same per iteration as in the central difference case.
    # Note that because the central difference formulas are inherently of even
    # order, for simplicity, we use only even-order formulas for one-sided
    # differences, too.

    # It's possible for the user to specify `fac` in, say, double precision but
    # `x` and `args` in single precision. `fac` gets converted to single
    # precision, but we should always use double precision for the intermediate
    # calculations here to avoid additional error in the weights.
    fac = float(work.fac)

    # Note that if the user switches back to floating point precision with
    # `x` and `args`, then `fac` will not necessarily equal the (lower
    # precision) cached `_derivative_weights.fac`, and the weights will
    # need to be recalculated. This could be fixed, but it's late, and of
    # low consequence.

    diff_state = work.diff_state
    if fac != diff_state.fac:
        diff_state.central = []
        diff_state.right = []
        diff_state.fac = fac

    if len(diff_state.central) != 2*n + 1:
        # Central difference weights. Consider refactoring this; it could
        # probably be more compact.
        # Note: Using NumPy here is OK; we convert to xp-type at the end
        i = np.arange(-n, n + 1)
        p = np.abs(i) - 1.  # center point has power `p` -1, but sign `s` is 0
        s = np.sign(i)

        h = s / fac ** p
        A = np.vander(h, increasing=True).T
        b = np.zeros(2*n + 1)
        b[1] = 1
        weights = np.linalg.solve(A, b)

        # Enforce identities to improve accuracy
        weights[n] = 0
        for i in range(n):
            weights[-i-1] = -weights[i]

        # Cache the weights. We only need to calculate them once unless
        # the step factor changes.
        diff_state.central = weights

        # One-sided difference weights. The left one-sided weights (with
        # negative steps) are simply the negative of the right one-sided
        # weights, so no need to compute them separately.
        i = np.arange(2*n + 1)
        p = i - 1.
        s = np.sign(i)

        h = s / np.sqrt(fac) ** p
        A = np.vander(h, increasing=True).T
        b = np.zeros(2 * n + 1)
        b[1] = 1
        weights = np.linalg.solve(A, b)

        diff_state.right = weights

    return (xp.asarray(diff_state.central, dtype=work.dtype),
            xp.asarray(diff_state.right, dtype=work.dtype))


def jacobian(f, x, *, tolerances=None, maxiter=10, order=8, initial_step=0.5,
             step_factor=2.0, step_direction=0):
    r"""Evaluate the Jacobian of a function numerically.

    Parameters
    ----------
    f : callable
        The function whose Jacobian is desired. The signature must be::

            f(xi: ndarray) -> ndarray

        where each element of ``xi`` is a finite real. If the function to be
        differentiated accepts additional arguments, wrap it (e.g. using
        `functools.partial` or ``lambda``) and pass the wrapped callable
        into `jacobian`. `f` must not mutate the array ``xi``. See Notes
        regarding vectorization and the dimensionality of the input and output.
    x : float array_like
        Points at which to evaluate the Jacobian. Must have at least one dimension.
        See Notes regarding the dimensionality and vectorization.
    tolerances : dictionary of floats, optional
        Absolute and relative tolerances. Valid keys of the dictionary are:

        - ``atol`` - absolute tolerance on the derivative
        - ``rtol`` - relative tolerance on the derivative

        Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
        `atol` is the smallest normal number of the appropriate dtype, and
        the default `rtol` is the square root of the precision of the
        appropriate dtype.
    maxiter : int, default: 10
        The maximum number of iterations of the algorithm to perform. See
        Notes.
    order : int, default: 8
        The (positive integer) order of the finite difference formula to be
        used. Odd integers will be rounded up to the next even integer.
    initial_step : float array_like, default: 0.5
        The (absolute) initial step size for the finite difference derivative
        approximation. Must be broadcastable with `x` and `step_direction`.
    step_factor : float, default: 2.0
        The factor by which the step size is *reduced* in each iteration; i.e.
        the step size in iteration 1 is ``initial_step/step_factor``. If
        ``step_factor < 1``, subsequent steps will be greater than the initial
        step; this may be useful if steps smaller than some threshold are
        undesirable (e.g. due to subtractive cancellation error).
    step_direction : integer array_like
        An array representing the direction of the finite difference steps (e.g.
        for use when `x` lies near to the boundary of the domain of the function.)
        Must be broadcastable with `x` and `initial_step`.
        Where 0 (default), central differences are used; where negative (e.g.
        -1), steps are non-positive; and where positive (e.g. 1), all steps are
        non-negative.

    Returns
    -------
    res : _RichResult
        An object similar to an instance of `scipy.optimize.OptimizeResult` with the
        following attributes. The descriptions are written as though the values will
        be scalars; however, if `f` returns an array, the outputs will be
        arrays of the same shape.

        success : bool array
            ``True`` where the algorithm terminated successfully (status ``0``);
            ``False`` otherwise.
        status : int array
            An integer representing the exit status of the algorithm.

            - ``0`` : The algorithm converged to the specified tolerances.
            - ``-1`` : The error estimate increased, so iteration was terminated.
            - ``-2`` : The maximum number of iterations was reached.
            - ``-3`` : A non-finite value was encountered.

        df : float array
            The Jacobian of `f` at `x`, if the algorithm terminated
            successfully.
        error : float array
            An estimate of the error: the magnitude of the difference between
            the current estimate of the Jacobian and the estimate in the
            previous iteration.
        nit : int array
            The number of iterations of the algorithm that were performed.
        nfev : int array
            The number of points at which `f` was evaluated.

        Each element of an attribute is associated with the corresponding
        element of `df`. For instance, element ``i`` of `nfev` is the
        number of points at which `f` was evaluated for the sake of
        computing element ``i`` of `df`.

    See Also
    --------
    derivative, hessian

    Notes
    -----
    Suppose we wish to evaluate the Jacobian of a function
    :math:`f: \mathbf{R}^m \rightarrow \mathbf{R}^n`. Assign to variables
    ``m`` and ``n`` the positive integer values of :math:`m` and :math:`n`,
    respectively, and let ``...`` represent an arbitrary tuple of integers.
    If we wish to evaluate the Jacobian at a single point, then:

    - argument `x` must be an array of shape ``(m,)``
    - argument `f` must be vectorized to accept an array of shape ``(m, ...)``.
      The first axis represents the :math:`m` inputs of :math:`f`; the remainder
      are for evaluating the function at multiple points in a single call.
    - argument `f` must return an array of shape ``(n, ...)``. The first
      axis represents the :math:`n` outputs of :math:`f`; the remainder
      are for the result of evaluating the function at multiple points.
    - attribute ``df`` of the result object will be an array of shape ``(n, m)``,
      the Jacobian.

    This function is also vectorized in the sense that the Jacobian can be
    evaluated at ``k`` points in a single call. In this case, `x` would be an
    array of shape ``(m, k)``, `f` would accept an array of shape
    ``(m, k, ...)`` and return an array of shape ``(n, k, ...)``, and the ``df``
    attribute of the result would have shape ``(n, m, k)``.

    Suppose the desired callable ``f_not_vectorized`` is not vectorized; it can
    only accept an array of shape ``(m,)``. A simple solution to satisfy the required
    interface is to wrap ``f_not_vectorized`` as follows::

        def f(x):
            return np.apply_along_axis(f_not_vectorized, axis=0, arr=x)

    Alternatively, suppose the desired callable ``f_vec_q`` is vectorized, but
    only for 2-D arrays of shape ``(m, q)``. To satisfy the required interface,
    consider::

        def f(x):
            m, batch = x.shape[0], x.shape[1:]  # x.shape is (m, ...)
            x = np.reshape(x, (m, -1))  # `-1` is short for q = prod(batch)
            res = f_vec_q(x)  # pass shape (m, q) to function
            n = res.shape[0]
            return np.reshape(res, (n,) + batch)  # return shape (n, ...)

    Then pass the wrapped callable ``f`` as the first argument of `jacobian`.

    References
    ----------
    .. [1] Jacobian matrix and determinant, *Wikipedia*,
           https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

    Examples
    --------
    The Rosenbrock function maps from :math:`\mathbf{R}^m \rightarrow \mathbf{R}`;
    the SciPy implementation `scipy.optimize.rosen` is vectorized to accept an
    array of shape ``(m, p)`` and return an array of shape ``p``. Suppose we wish
    to evaluate the Jacobian (AKA the gradient because the function returns a scalar)
    at ``[0.5, 0.5, 0.5]``.

    >>> import numpy as np
    >>> from scipy.differentiate import jacobian
    >>> from scipy.optimize import rosen, rosen_der
    >>> m = 3
    >>> x = np.full(m, 0.5)
    >>> res = jacobian(rosen, x)
    >>> ref = rosen_der(x)  # reference value of the gradient
    >>> res.df, ref
    (array([-51.,  -1.,  50.]), array([-51.,  -1.,  50.]))

    As an example of a function with multiple outputs, consider Example 4
    from [1]_.

    >>> def f(x):
    ...     x1, x2, x3 = x
    ...     return [x1, 5*x3, 4*x2**2 - 2*x3, x3*np.sin(x1)]

    The true Jacobian is given by:

    >>> def df(x):
    ...         x1, x2, x3 = x
    ...         one = np.ones_like(x1)
    ...         return [[one, 0*one, 0*one],
    ...                 [0*one, 0*one, 5*one],
    ...                 [0*one, 8*x2, -2*one],
    ...                 [x3*np.cos(x1), 0*one, np.sin(x1)]]

    Evaluate the Jacobian at an arbitrary point.

    >>> rng = np.random.default_rng(389252938452)
    >>> x = rng.random(size=3)
    >>> res = jacobian(f, x)
    >>> ref = df(x)
    >>> res.df.shape == (4, 3)
    True
    >>> np.allclose(res.df, ref)
    True

    Evaluate the Jacobian at 10 arbitrary points in a single call.

    >>> x = rng.random(size=(3, 10))
    >>> res = jacobian(f, x)
    >>> ref = df(x)
    >>> res.df.shape == (4, 3, 10)
    True
    >>> np.allclose(res.df, ref)
    True

    """
    xp = array_namespace(x)
    x = xp.asarray(x)
    int_dtype = xp.isdtype(x.dtype, 'integral')
    x0 = xp.asarray(x, dtype=xp.asarray(1.0).dtype) if int_dtype else x

    if x0.ndim < 1:
        message = "Argument `x` must be at least 1-D."
        raise ValueError(message)

    m = x0.shape[0]
    i = xp.arange(m)

    def wrapped(x):
        p = () if x.ndim == x0.ndim else (x.shape[-1],)  # number of abscissae

        new_shape = (m, m) + x0.shape[1:] + p
        xph = xp.expand_dims(x0, axis=1)
        if x.ndim != x0.ndim:
            xph = xp.expand_dims(xph, axis=-1)
        xph = xp_copy(xp.broadcast_to(xph, new_shape), xp=xp)
        xph[i, i] = x
        return f(xph)

    res = derivative(wrapped, x, tolerances=tolerances,
                     maxiter=maxiter, order=order, initial_step=initial_step,
                     step_factor=step_factor, preserve_shape=True,
                     step_direction=step_direction)

    del res.x  # the user knows `x`, and the way it gets broadcasted is meaningless here
    return res


def hessian(f, x, *, tolerances=None, maxiter=10,
            order=8, initial_step=0.5, step_factor=2.0):
    r"""Evaluate the Hessian of a function numerically.

    Parameters
    ----------
    f : callable
        The function whose Hessian is desired. The signature must be::

            f(xi: ndarray) -> ndarray

        where each element of ``xi`` is a finite real. If the function to be
        differentiated accepts additional arguments, wrap it (e.g. using
        `functools.partial` or ``lambda``) and pass the wrapped callable
        into `hessian`. `f` must not mutate the array ``xi``. See Notes
        regarding vectorization and the dimensionality of the input and output.
    x : float array_like
        Points at which to evaluate the Hessian. Must have at least one dimension.
        See Notes regarding the dimensionality and vectorization.
    tolerances : dictionary of floats, optional
        Absolute and relative tolerances. Valid keys of the dictionary are:

        - ``atol`` - absolute tolerance on the derivative
        - ``rtol`` - relative tolerance on the derivative

        Iteration will stop when ``res.error < atol + rtol * abs(res.df)``. The default
        `atol` is the smallest normal number of the appropriate dtype, and
        the default `rtol` is the square root of the precision of the
        appropriate dtype.
    order : int, default: 8
        The (positive integer) order of the finite difference formula to be
        used. Odd integers will be rounded up to the next even integer.
    initial_step : float, default: 0.5
        The (absolute) initial step size for the finite difference derivative
        approximation.
    step_factor : float, default: 2.0
        The factor by which the step size is *reduced* in each iteration; i.e.
        the step size in iteration 1 is ``initial_step/step_factor``. If
        ``step_factor < 1``, subsequent steps will be greater than the initial
        step; this may be useful if steps smaller than some threshold are
        undesirable (e.g. due to subtractive cancellation error).
    maxiter : int, default: 10
        The maximum number of iterations of the algorithm to perform. See
        Notes.

    Returns
    -------
    res : _RichResult
        An object similar to an instance of `scipy.optimize.OptimizeResult` with the
        following attributes. The descriptions are written as though the values will
        be scalars; however, if `f` returns an array, the outputs will be
        arrays of the same shape.

        success : bool array
            ``True`` where the algorithm terminated successfully (status ``0``);
            ``False`` otherwise.
        status : int array
            An integer representing the exit status of the algorithm.

            - ``0`` : The algorithm converged to the specified tolerances.
            - ``-1`` : The error estimate increased, so iteration was terminated.
            - ``-2`` : The maximum number of iterations was reached.
            - ``-3`` : A non-finite value was encountered.

        ddf : float array
            The Hessian of `f` at `x`, if the algorithm terminated
            successfully.
        error : float array
            An estimate of the error: the magnitude of the difference between
            the current estimate of the Hessian and the estimate in the
            previous iteration.
        nfev : int array
            The number of points at which `f` was evaluated.

        Each element of an attribute is associated with the corresponding
        element of `ddf`. For instance, element ``[i, j]`` of `nfev` is the
        number of points at which `f` was evaluated for the sake of
        computing element ``[i, j]`` of `ddf`.

    See Also
    --------
    derivative, jacobian

    Notes
    -----
    Suppose we wish to evaluate the Hessian of a function
    :math:`f: \mathbf{R}^m \rightarrow \mathbf{R}`, and we assign to variable
    ``m`` the positive integer value of :math:`m`. If we wish to evaluate
    the Hessian at a single point, then:

    - argument `x` must be an array of shape ``(m,)``
    - argument `f` must be vectorized to accept an array of shape
      ``(m, ...)``. The first axis represents the :math:`m` inputs of
      :math:`f`; the remaining axes indicated by ellipses are for evaluating
      the function at several abscissae in a single call.
    - argument `f` must return an array of shape ``(...)``.
    - attribute ``dff`` of the result object will be an array of shape ``(m, m)``,
      the Hessian.

    This function is also vectorized in the sense that the Hessian can be
    evaluated at ``k`` points in a single call. In this case, `x` would be an
    array of shape ``(m, k)``, `f` would accept an array of shape
    ``(m, ...)`` and return an array of shape ``(...)``, and the ``ddf``
    attribute of the result would have shape ``(m, m, k)``. Note that the
    axis associated with the ``k`` points is included within the axes
    denoted by ``(...)``.

    Currently, `hessian` is implemented by nesting calls to `jacobian`.
    All options passed to `hessian` are used for both the inner and outer
    calls with one exception: the `rtol` used in the inner `jacobian` call
    is tightened by a factor of 100 with the expectation that the inner
    error can be ignored. A consequence is that `rtol` should not be set
    less than 100 times the precision of the dtype of `x`; a warning is
    emitted otherwise.

    References
    ----------
    .. [1] Hessian matrix, *Wikipedia*,
           https://en.wikipedia.org/wiki/Hessian_matrix

    Examples
    --------
    The Rosenbrock function maps from :math:`\mathbf{R}^m \rightarrow \mathbf{R}`;
    the SciPy implementation `scipy.optimize.rosen` is vectorized to accept an
    array of shape ``(m, ...)`` and return an array of shape ``...``. Suppose we
    wish to evaluate the Hessian at ``[0.5, 0.5, 0.5]``.

    >>> import numpy as np
    >>> from scipy.differentiate import hessian
    >>> from scipy.optimize import rosen, rosen_hess
    >>> m = 3
    >>> x = np.full(m, 0.5)
    >>> res = hessian(rosen, x)
    >>> ref = rosen_hess(x)  # reference value of the Hessian
    >>> np.allclose(res.ddf, ref)
    True

    `hessian` is vectorized to evaluate the Hessian at multiple points
    in a single call.

    >>> rng = np.random.default_rng(4589245925010)
    >>> x = rng.random((m, 10))
    >>> res = hessian(rosen, x)
    >>> ref = [rosen_hess(xi) for xi in x.T]
    >>> ref = np.moveaxis(ref, 0, -1)
    >>> np.allclose(res.ddf, ref)
    True

    """
    # todo:
    # - add ability to vectorize over additional parameters (*args?)
    # - error estimate stack with inner jacobian (or use legit 2D stencil)

    kwargs = dict(maxiter=maxiter, order=order, initial_step=initial_step,
                  step_factor=step_factor)
    tolerances = {} if tolerances is None else tolerances
    atol = tolerances.get('atol', None)
    rtol = tolerances.get('rtol', None)

    xp = array_namespace(x)
    x = xp.asarray(x)
    dtype = x.dtype if not xp.isdtype(x.dtype, 'integral') else xp.asarray(1.).dtype
    finfo = xp.finfo(dtype)
    rtol = finfo.eps**0.5 if rtol is None else rtol  # keep same as `derivative`

    # tighten the inner tolerance to make the inner error negligible
    rtol_min = finfo.eps * 100
    message = (f"The specified `{rtol=}`, but error estimates are likely to be "
               f"unreliable when `rtol < {rtol_min}`.")
    if 0 < rtol < rtol_min:  # rtol <= 0 is an error
        warnings.warn(message, RuntimeWarning, stacklevel=2)
        rtol = rtol_min

    def df(x):
        tolerances = dict(rtol=rtol/100, atol=atol)
        temp = jacobian(f, x, tolerances=tolerances, **kwargs)
        nfev.append(temp.nfev if len(nfev) == 0 else temp.nfev.sum(axis=-1))
        return temp.df

    nfev = []  # track inner function evaluations
    res = jacobian(df, x, tolerances=tolerances, **kwargs)  # jacobian of jacobian

    nfev = xp.cumulative_sum(xp.stack(nfev), axis=0)
    res_nit = xp.astype(res.nit[xp.newaxis, ...], xp.int64)  # appease torch
    res.nfev = xp_take_along_axis(nfev, res_nit, axis=0)[0]
    res.ddf = res.df
    del res.df  # this is renamed to ddf
    del res.nit  # this is only the outer-jacobian nit

    return res