File size: 22,027 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# Pytest customization
import json
import os
import warnings
import tempfile
from contextlib import contextmanager
import numpy as np
import numpy.testing as npt
import pytest
import hypothesis
from scipy._lib._fpumode import get_fpu_mode
from scipy._lib._testutils import FPUModeChangeWarning
from scipy._lib._array_api import SCIPY_ARRAY_API, SCIPY_DEVICE
from scipy._lib import _pep440
try:
from scipy_doctest.conftest import dt_config
HAVE_SCPDT = True
except ModuleNotFoundError:
HAVE_SCPDT = False
try:
import pytest_run_parallel # noqa:F401
PARALLEL_RUN_AVAILABLE = True
except Exception:
PARALLEL_RUN_AVAILABLE = False
def pytest_configure(config):
config.addinivalue_line("markers",
"slow: Tests that are very slow.")
config.addinivalue_line("markers",
"xslow: mark test as extremely slow (not run unless explicitly requested)")
config.addinivalue_line("markers",
"xfail_on_32bit: mark test as failing on 32-bit platforms")
try:
import pytest_timeout # noqa:F401
except Exception:
config.addinivalue_line(
"markers", 'timeout: mark a test for a non-default timeout')
try:
# This is a more reliable test of whether pytest_fail_slow is installed
# When I uninstalled it, `import pytest_fail_slow` didn't fail!
from pytest_fail_slow import parse_duration # type: ignore[import-not-found] # noqa:F401,E501
except Exception:
config.addinivalue_line(
"markers", 'fail_slow: mark a test for a non-default timeout failure')
config.addinivalue_line("markers",
"skip_xp_backends(backends, reason=None, np_only=False, cpu_only=False, "
"exceptions=None): "
"mark the desired skip configuration for the `skip_xp_backends` fixture.")
config.addinivalue_line("markers",
"xfail_xp_backends(backends, reason=None, np_only=False, cpu_only=False, "
"exceptions=None): "
"mark the desired xfail configuration for the `xfail_xp_backends` fixture.")
if not PARALLEL_RUN_AVAILABLE:
config.addinivalue_line(
'markers',
'parallel_threads(n): run the given test function in parallel '
'using `n` threads.')
config.addinivalue_line(
"markers",
"thread_unsafe: mark the test function as single-threaded",
)
config.addinivalue_line(
"markers",
"iterations(n): run the given test function `n` times in each thread",
)
def pytest_runtest_setup(item):
mark = item.get_closest_marker("xslow")
if mark is not None:
try:
v = int(os.environ.get('SCIPY_XSLOW', '0'))
except ValueError:
v = False
if not v:
pytest.skip("very slow test; "
"set environment variable SCIPY_XSLOW=1 to run it")
mark = item.get_closest_marker("xfail_on_32bit")
if mark is not None and np.intp(0).itemsize < 8:
pytest.xfail(f'Fails on our 32-bit test platform(s): {mark.args[0]}')
# Older versions of threadpoolctl have an issue that may lead to this
# warning being emitted, see gh-14441
with npt.suppress_warnings() as sup:
sup.filter(pytest.PytestUnraisableExceptionWarning)
try:
from threadpoolctl import threadpool_limits
HAS_THREADPOOLCTL = True
except Exception: # observed in gh-14441: (ImportError, AttributeError)
# Optional dependency only. All exceptions are caught, for robustness
HAS_THREADPOOLCTL = False
if HAS_THREADPOOLCTL:
# Set the number of openmp threads based on the number of workers
# xdist is using to prevent oversubscription. Simplified version of what
# sklearn does (it can rely on threadpoolctl and its builtin OpenMP helper
# functions)
try:
xdist_worker_count = int(os.environ['PYTEST_XDIST_WORKER_COUNT'])
except KeyError:
# raises when pytest-xdist is not installed
return
if not os.getenv('OMP_NUM_THREADS'):
max_openmp_threads = os.cpu_count() // 2 # use nr of physical cores
threads_per_worker = max(max_openmp_threads // xdist_worker_count, 1)
try:
threadpool_limits(threads_per_worker, user_api='blas')
except Exception:
# May raise AttributeError for older versions of OpenBLAS.
# Catch any error for robustness.
return
@pytest.fixture(scope="function", autouse=True)
def check_fpu_mode(request):
"""
Check FPU mode was not changed during the test.
"""
old_mode = get_fpu_mode()
yield
new_mode = get_fpu_mode()
if old_mode != new_mode:
warnings.warn(f"FPU mode changed from {old_mode:#x} to {new_mode:#x} during "
"the test",
category=FPUModeChangeWarning, stacklevel=0)
if not PARALLEL_RUN_AVAILABLE:
@pytest.fixture
def num_parallel_threads():
return 1
# Array API backend handling
xp_available_backends = {'numpy': np}
if SCIPY_ARRAY_API and isinstance(SCIPY_ARRAY_API, str):
# fill the dict of backends with available libraries
try:
import array_api_strict
xp_available_backends.update({'array_api_strict': array_api_strict})
if _pep440.parse(array_api_strict.__version__) < _pep440.Version('2.0'):
raise ImportError("array-api-strict must be >= version 2.0")
array_api_strict.set_array_api_strict_flags(
api_version='2023.12'
)
except ImportError:
pass
try:
import torch # type: ignore[import-not-found]
xp_available_backends.update({'torch': torch})
# can use `mps` or `cpu`
torch.set_default_device(SCIPY_DEVICE)
except ImportError:
pass
try:
import cupy # type: ignore[import-not-found]
xp_available_backends.update({'cupy': cupy})
except ImportError:
pass
try:
import jax.numpy # type: ignore[import-not-found]
xp_available_backends.update({'jax.numpy': jax.numpy})
jax.config.update("jax_enable_x64", True)
jax.config.update("jax_default_device", jax.devices(SCIPY_DEVICE)[0])
except ImportError:
pass
# by default, use all available backends
if SCIPY_ARRAY_API.lower() not in ("1", "true"):
SCIPY_ARRAY_API_ = json.loads(SCIPY_ARRAY_API)
if 'all' in SCIPY_ARRAY_API_:
pass # same as True
else:
# only select a subset of backend by filtering out the dict
try:
xp_available_backends = {
backend: xp_available_backends[backend]
for backend in SCIPY_ARRAY_API_
}
except KeyError:
msg = f"'--array-api-backend' must be in {xp_available_backends.keys()}"
raise ValueError(msg)
if 'cupy' in xp_available_backends:
SCIPY_DEVICE = 'cuda'
array_api_compatible = pytest.mark.parametrize("xp", xp_available_backends.values())
skip_xp_invalid_arg = pytest.mark.skipif(SCIPY_ARRAY_API,
reason = ('Test involves masked arrays, object arrays, or other types '
'that are not valid input when `SCIPY_ARRAY_API` is used.'))
def _backends_kwargs_from_request(request, skip_or_xfail):
"""A helper for {skip,xfail}_xp_backends"""
# do not allow multiple backends
args_ = request.keywords[f'{skip_or_xfail}_xp_backends'].args
if len(args_) > 1:
# np_only / cpu_only has args=(), otherwise it's ('numpy',)
# and we do not allow ('numpy', 'cupy')
raise ValueError(f"multiple backends: {args_}")
markers = list(request.node.iter_markers(f'{skip_or_xfail}_xp_backends'))
backends = []
kwargs = {}
for marker in markers:
if marker.kwargs.get('np_only'):
kwargs['np_only'] = True
kwargs['exceptions'] = marker.kwargs.get('exceptions', [])
elif marker.kwargs.get('cpu_only'):
if not kwargs.get('np_only'):
# if np_only is given, it is certainly cpu only
kwargs['cpu_only'] = True
kwargs['exceptions'] = marker.kwargs.get('exceptions', [])
# add backends, if any
if len(marker.args) > 0:
backend = marker.args[0] # was a tuple, ('numpy',) etc
backends.append(backend)
kwargs.update(**{backend: marker.kwargs})
return backends, kwargs
@pytest.fixture
def skip_xp_backends(xp, request):
"""skip_xp_backends(backend=None, reason=None, np_only=False, cpu_only=False, exceptions=None)
Skip a decorated test for the provided backend, or skip a category of backends.
See ``skip_or_xfail_backends`` docstring for details. Note that, contrary to
``skip_or_xfail_backends``, the ``backend`` and ``reason`` arguments are optional
single strings: this function only skips a single backend at a time.
To skip multiple backends, provide multiple decorators.
""" # noqa: E501
if "skip_xp_backends" not in request.keywords:
return
backends, kwargs = _backends_kwargs_from_request(request, skip_or_xfail='skip')
skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='skip')
@pytest.fixture
def xfail_xp_backends(xp, request):
"""xfail_xp_backends(backend=None, reason=None, np_only=False, cpu_only=False, exceptions=None)
xfail a decorated test for the provided backend, or xfail a category of backends.
See ``skip_or_xfail_backends`` docstring for details. Note that, contrary to
``skip_or_xfail_backends``, the ``backend`` and ``reason`` arguments are optional
single strings: this function only xfails a single backend at a time.
To xfail multiple backends, provide multiple decorators.
""" # noqa: E501
if "xfail_xp_backends" not in request.keywords:
return
backends, kwargs = _backends_kwargs_from_request(request, skip_or_xfail='xfail')
skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='xfail')
def skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='skip'):
"""
Skip based on the ``skip_xp_backends`` or ``xfail_xp_backends`` marker.
See the "Support for the array API standard" docs page for usage examples.
Parameters
----------
backends : tuple
Backends to skip/xfail, e.g. ``("array_api_strict", "torch")``.
These are overriden when ``np_only`` is ``True``, and are not
necessary to provide for non-CPU backends when ``cpu_only`` is ``True``.
For a custom reason to apply, you should pass a dict ``{'reason': '...'}``
to a keyword matching the name of the backend.
reason : str, optional
A reason for the skip/xfail in the case of ``np_only=True``.
If unprovided, a default reason is used. Note that it is not possible
to specify a custom reason with ``cpu_only``.
np_only : bool, optional
When ``True``, the test is skipped/xfailed for all backends other
than the default NumPy backend. There is no need to provide
any ``backends`` in this case. To specify a reason, pass a
value to ``reason``. Default: ``False``.
cpu_only : bool, optional
When ``True``, the test is skipped/xfailed on non-CPU devices.
There is no need to provide any ``backends`` in this case,
but any ``backends`` will also be skipped on the CPU.
Default: ``False``.
exceptions : list, optional
A list of exceptions for use with ``cpu_only`` or ``np_only``.
This should be provided when delegation is implemented for some,
but not all, non-CPU/non-NumPy backends.
skip_or_xfail : str
``'skip'`` to skip, ``'xfail'`` to xfail.
"""
skip_or_xfail = getattr(pytest, skip_or_xfail)
np_only = kwargs.get("np_only", False)
cpu_only = kwargs.get("cpu_only", False)
exceptions = kwargs.get("exceptions", [])
if reasons := kwargs.get("reasons"):
raise ValueError(f"provide a single `reason=` kwarg; got {reasons=} instead")
# input validation
if np_only and cpu_only:
# np_only is a stricter subset of cpu_only
cpu_only = False
if exceptions and not (cpu_only or np_only):
raise ValueError("`exceptions` is only valid alongside `cpu_only` or `np_only`")
if np_only:
reason = kwargs.get("reason", "do not run with non-NumPy backends.")
if not isinstance(reason, str) and len(reason) > 1:
raise ValueError("please provide a singleton `reason` "
"when using `np_only`")
if xp.__name__ != 'numpy' and xp.__name__ not in exceptions:
skip_or_xfail(reason=reason)
return
if cpu_only:
reason = ("no array-agnostic implementation or delegation available "
"for this backend and device")
exceptions = [] if exceptions is None else exceptions
if SCIPY_ARRAY_API and SCIPY_DEVICE != 'cpu':
if xp.__name__ == 'cupy' and 'cupy' not in exceptions:
skip_or_xfail(reason=reason)
elif xp.__name__ == 'torch' and 'torch' not in exceptions:
if 'cpu' not in xp.empty(0).device.type:
skip_or_xfail(reason=reason)
elif xp.__name__ == 'jax.numpy' and 'jax.numpy' not in exceptions:
for d in xp.empty(0).devices():
if 'cpu' not in d.device_kind:
skip_or_xfail(reason=reason)
if backends is not None:
for i, backend in enumerate(backends):
if xp.__name__ == backend:
reason = kwargs[backend].get('reason')
if not reason:
reason = f"do not run with array API backend: {backend}"
skip_or_xfail(reason=reason)
# Following the approach of NumPy's conftest.py...
# Use a known and persistent tmpdir for hypothesis' caches, which
# can be automatically cleared by the OS or user.
hypothesis.configuration.set_hypothesis_home_dir(
os.path.join(tempfile.gettempdir(), ".hypothesis")
)
# We register two custom profiles for SciPy - for details see
# https://hypothesis.readthedocs.io/en/latest/settings.html
# The first is designed for our own CI runs; the latter also
# forces determinism and is designed for use via scipy.test()
hypothesis.settings.register_profile(
name="nondeterministic", deadline=None, print_blob=True,
)
hypothesis.settings.register_profile(
name="deterministic",
deadline=None, print_blob=True, database=None, derandomize=True,
suppress_health_check=list(hypothesis.HealthCheck),
)
# Profile is currently set by environment variable `SCIPY_HYPOTHESIS_PROFILE`
# In the future, it would be good to work the choice into dev.py.
SCIPY_HYPOTHESIS_PROFILE = os.environ.get("SCIPY_HYPOTHESIS_PROFILE",
"deterministic")
hypothesis.settings.load_profile(SCIPY_HYPOTHESIS_PROFILE)
############################################################################
# doctesting stuff
if HAVE_SCPDT:
# FIXME: populate the dict once
@contextmanager
def warnings_errors_and_rng(test=None):
"""Temporarily turn (almost) all warnings to errors.
Filter out known warnings which we allow.
"""
known_warnings = dict()
# these functions are known to emit "divide by zero" RuntimeWarnings
divide_by_zero = [
'scipy.linalg.norm', 'scipy.ndimage.center_of_mass',
]
for name in divide_by_zero:
known_warnings[name] = dict(category=RuntimeWarning,
message='divide by zero')
# Deprecated stuff in scipy.signal and elsewhere
deprecated = [
'scipy.signal.cwt', 'scipy.signal.morlet', 'scipy.signal.morlet2',
'scipy.signal.ricker',
'scipy.integrate.simpson',
'scipy.interpolate.interp2d',
'scipy.linalg.kron',
]
for name in deprecated:
known_warnings[name] = dict(category=DeprecationWarning)
from scipy import integrate
# the functions are known to emit IntegrationWarnings
integration_w = ['scipy.special.ellip_normal',
'scipy.special.ellip_harm_2',
]
for name in integration_w:
known_warnings[name] = dict(category=integrate.IntegrationWarning,
message='The occurrence of roundoff')
# scipy.stats deliberately emits UserWarnings sometimes
user_w = ['scipy.stats.anderson_ksamp', 'scipy.stats.kurtosistest',
'scipy.stats.normaltest', 'scipy.sparse.linalg.norm']
for name in user_w:
known_warnings[name] = dict(category=UserWarning)
# additional one-off warnings to filter
dct = {
'scipy.sparse.linalg.norm':
dict(category=UserWarning, message="Exited at iteration"),
# tutorials
'linalg.rst':
dict(message='the matrix subclass is not',
category=PendingDeprecationWarning),
'stats.rst':
dict(message='The maximum number of subdivisions',
category=integrate.IntegrationWarning),
}
known_warnings.update(dct)
# these legitimately emit warnings in examples
legit = set('scipy.signal.normalize')
# Now, the meat of the matter: filter warnings,
# also control the random seed for each doctest.
# XXX: this matches the refguide-check behavior, but is a tad strange:
# makes sure that the seed the old-fashioned np.random* methods is
# *NOT* reproducible but the new-style `default_rng()` *IS* repoducible.
# Should these two be either both repro or both not repro?
from scipy._lib._util import _fixed_default_rng
import numpy as np
with _fixed_default_rng():
np.random.seed(None)
with warnings.catch_warnings():
if test and test.name in known_warnings:
warnings.filterwarnings('ignore',
**known_warnings[test.name])
yield
elif test and test.name in legit:
yield
else:
warnings.simplefilter('error', Warning)
yield
dt_config.user_context_mgr = warnings_errors_and_rng
dt_config.skiplist = set([
'scipy.linalg.LinAlgError', # comes from numpy
'scipy.fftpack.fftshift', # fftpack stuff is also from numpy
'scipy.fftpack.ifftshift',
'scipy.fftpack.fftfreq',
'scipy.special.sinc', # sinc is from numpy
'scipy.optimize.show_options', # does not have much to doctest
'scipy.signal.normalize', # manipulates warnings (XXX temp skip)
'scipy.sparse.linalg.norm', # XXX temp skip
# these below test things which inherit from np.ndarray
# cross-ref https://github.com/numpy/numpy/issues/28019
'scipy.io.matlab.MatlabObject.strides',
'scipy.io.matlab.MatlabObject.dtype',
'scipy.io.matlab.MatlabOpaque.dtype',
'scipy.io.matlab.MatlabOpaque.strides',
'scipy.io.matlab.MatlabFunction.strides',
'scipy.io.matlab.MatlabFunction.dtype'
])
# these are affected by NumPy 2.0 scalar repr: rely on string comparison
if np.__version__ < "2":
dt_config.skiplist.update(set([
'scipy.io.hb_read',
'scipy.io.hb_write',
'scipy.sparse.csgraph.connected_components',
'scipy.sparse.csgraph.depth_first_order',
'scipy.sparse.csgraph.shortest_path',
'scipy.sparse.csgraph.floyd_warshall',
'scipy.sparse.csgraph.dijkstra',
'scipy.sparse.csgraph.bellman_ford',
'scipy.sparse.csgraph.johnson',
'scipy.sparse.csgraph.yen',
'scipy.sparse.csgraph.breadth_first_order',
'scipy.sparse.csgraph.reverse_cuthill_mckee',
'scipy.sparse.csgraph.structural_rank',
'scipy.sparse.csgraph.construct_dist_matrix',
'scipy.sparse.csgraph.reconstruct_path',
'scipy.ndimage.value_indices',
'scipy.stats.mstats.describe',
]))
# help pytest collection a bit: these names are either private
# (distributions), or just do not need doctesting.
dt_config.pytest_extra_ignore = [
"scipy.stats.distributions",
"scipy.optimize.cython_optimize",
"scipy.test",
"scipy.show_config",
# equivalent to "pytest --ignore=path/to/file"
"scipy/special/_precompute",
"scipy/interpolate/_interpnd_info.py",
"scipy/_lib/array_api_compat",
"scipy/_lib/highs",
"scipy/_lib/unuran",
"scipy/_lib/_gcutils.py",
"scipy/_lib/doccer.py",
"scipy/_lib/_uarray",
]
dt_config.pytest_extra_xfail = {
# name: reason
"ND_regular_grid.rst": "ReST parser limitation",
"extrapolation_examples.rst": "ReST parser limitation",
"sampling_pinv.rst": "__cinit__ unexpected argument",
"sampling_srou.rst": "nan in scalar_power",
"probability_distributions.rst": "integration warning",
}
# tutorials
dt_config.pseudocode = set(['integrate.nquad(func,'])
dt_config.local_resources = {
'io.rst': [
"octave_a.mat",
"octave_cells.mat",
"octave_struct.mat"
]
}
dt_config.strict_check = True
############################################################################
|