File size: 30,548 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
"""
K-means clustering and vector quantization (:mod:`scipy.cluster.vq`)
====================================================================
Provides routines for k-means clustering, generating code books
from k-means models and quantizing vectors by comparing them with
centroids in a code book.
.. autosummary::
:toctree: generated/
whiten -- Normalize a group of observations so each feature has unit variance
vq -- Calculate code book membership of a set of observation vectors
kmeans -- Perform k-means on a set of observation vectors forming k clusters
kmeans2 -- A different implementation of k-means with more methods
-- for initializing centroids
Background information
----------------------
The k-means algorithm takes as input the number of clusters to
generate, k, and a set of observation vectors to cluster. It
returns a set of centroids, one for each of the k clusters. An
observation vector is classified with the cluster number or
centroid index of the centroid closest to it.
A vector v belongs to cluster i if it is closer to centroid i than
any other centroid. If v belongs to i, we say centroid i is the
dominating centroid of v. The k-means algorithm tries to
minimize distortion, which is defined as the sum of the squared distances
between each observation vector and its dominating centroid.
The minimization is achieved by iteratively reclassifying
the observations into clusters and recalculating the centroids until
a configuration is reached in which the centroids are stable. One can
also define a maximum number of iterations.
Since vector quantization is a natural application for k-means,
information theory terminology is often used. The centroid index
or cluster index is also referred to as a "code" and the table
mapping codes to centroids and, vice versa, is often referred to as a
"code book". The result of k-means, a set of centroids, can be
used to quantize vectors. Quantization aims to find an encoding of
vectors that reduces the expected distortion.
All routines expect obs to be an M by N array, where the rows are
the observation vectors. The codebook is a k by N array, where the
ith row is the centroid of code word i. The observation vectors
and centroids have the same feature dimension.
As an example, suppose we wish to compress a 24-bit color image
(each pixel is represented by one byte for red, one for blue, and
one for green) before sending it over the web. By using a smaller
8-bit encoding, we can reduce the amount of data by two
thirds. Ideally, the colors for each of the 256 possible 8-bit
encoding values should be chosen to minimize distortion of the
color. Running k-means with k=256 generates a code book of 256
codes, which fills up all possible 8-bit sequences. Instead of
sending a 3-byte value for each pixel, the 8-bit centroid index
(or code word) of the dominating centroid is transmitted. The code
book is also sent over the wire so each 8-bit code can be
translated back to a 24-bit pixel value representation. If the
image of interest was of an ocean, we would expect many 24-bit
blues to be represented by 8-bit codes. If it was an image of a
human face, more flesh-tone colors would be represented in the
code book.
"""
import warnings
import numpy as np
from collections import deque
from scipy._lib._array_api import (
_asarray, array_namespace, xp_size, xp_copy
)
from scipy._lib._util import (check_random_state, rng_integers,
_transition_to_rng)
from scipy._lib import array_api_extra as xpx
from scipy.spatial.distance import cdist
from . import _vq
__docformat__ = 'restructuredtext'
__all__ = ['whiten', 'vq', 'kmeans', 'kmeans2']
class ClusterError(Exception):
pass
def whiten(obs, check_finite=True):
"""
Normalize a group of observations on a per feature basis.
Before running k-means, it is beneficial to rescale each feature
dimension of the observation set by its standard deviation (i.e. "whiten"
it - as in "white noise" where each frequency has equal power).
Each feature is divided by its standard deviation across all observations
to give it unit variance.
Parameters
----------
obs : ndarray
Each row of the array is an observation. The
columns are the features seen during each observation.
>>> # f0 f1 f2
>>> obs = [[ 1., 1., 1.], #o0
... [ 2., 2., 2.], #o1
... [ 3., 3., 3.], #o2
... [ 4., 4., 4.]] #o3
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
Returns
-------
result : ndarray
Contains the values in `obs` scaled by the standard deviation
of each column.
Examples
--------
>>> import numpy as np
>>> from scipy.cluster.vq import whiten
>>> features = np.array([[1.9, 2.3, 1.7],
... [1.5, 2.5, 2.2],
... [0.8, 0.6, 1.7,]])
>>> whiten(features)
array([[ 4.17944278, 2.69811351, 7.21248917],
[ 3.29956009, 2.93273208, 9.33380951],
[ 1.75976538, 0.7038557 , 7.21248917]])
"""
xp = array_namespace(obs)
obs = _asarray(obs, check_finite=check_finite, xp=xp)
std_dev = xp.std(obs, axis=0)
zero_std_mask = std_dev == 0
if xp.any(zero_std_mask):
std_dev[zero_std_mask] = 1.0
warnings.warn("Some columns have standard deviation zero. "
"The values of these columns will not change.",
RuntimeWarning, stacklevel=2)
return obs / std_dev
def vq(obs, code_book, check_finite=True):
"""
Assign codes from a code book to observations.
Assigns a code from a code book to each observation. Each
observation vector in the 'M' by 'N' `obs` array is compared with the
centroids in the code book and assigned the code of the closest
centroid.
The features in `obs` should have unit variance, which can be
achieved by passing them through the whiten function. The code
book can be created with the k-means algorithm or a different
encoding algorithm.
Parameters
----------
obs : ndarray
Each row of the 'M' x 'N' array is an observation. The columns are
the "features" seen during each observation. The features must be
whitened first using the whiten function or something equivalent.
code_book : ndarray
The code book is usually generated using the k-means algorithm.
Each row of the array holds a different code, and the columns are
the features of the code.
>>> # f0 f1 f2 f3
>>> code_book = [
... [ 1., 2., 3., 4.], #c0
... [ 1., 2., 3., 4.], #c1
... [ 1., 2., 3., 4.]] #c2
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
Returns
-------
code : ndarray
A length M array holding the code book index for each observation.
dist : ndarray
The distortion (distance) between the observation and its nearest
code.
Examples
--------
>>> import numpy as np
>>> from scipy.cluster.vq import vq
>>> code_book = np.array([[1., 1., 1.],
... [2., 2., 2.]])
>>> features = np.array([[1.9, 2.3, 1.7],
... [1.5, 2.5, 2.2],
... [0.8, 0.6, 1.7]])
>>> vq(features, code_book)
(array([1, 1, 0], dtype=int32), array([0.43588989, 0.73484692, 0.83066239]))
"""
xp = array_namespace(obs, code_book)
obs = _asarray(obs, xp=xp, check_finite=check_finite)
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
ct = xp.result_type(obs, code_book)
c_obs = xp.astype(obs, ct, copy=False)
c_code_book = xp.astype(code_book, ct, copy=False)
if xp.isdtype(ct, kind='real floating'):
c_obs = np.asarray(c_obs)
c_code_book = np.asarray(c_code_book)
result = _vq.vq(c_obs, c_code_book)
return xp.asarray(result[0]), xp.asarray(result[1])
return py_vq(obs, code_book, check_finite=False)
def py_vq(obs, code_book, check_finite=True):
""" Python version of vq algorithm.
The algorithm computes the Euclidean distance between each
observation and every frame in the code_book.
Parameters
----------
obs : ndarray
Expects a rank 2 array. Each row is one observation.
code_book : ndarray
Code book to use. Same format than obs. Should have same number of
features (e.g., columns) than obs.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
Returns
-------
code : ndarray
code[i] gives the label of the ith obversation; its code is
code_book[code[i]].
mind_dist : ndarray
min_dist[i] gives the distance between the ith observation and its
corresponding code.
Notes
-----
This function is slower than the C version but works for
all input types. If the inputs have the wrong types for the
C versions of the function, this one is called as a last resort.
It is about 20 times slower than the C version.
"""
xp = array_namespace(obs, code_book)
obs = _asarray(obs, xp=xp, check_finite=check_finite)
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
if obs.ndim != code_book.ndim:
raise ValueError("Observation and code_book should have the same rank")
if obs.ndim == 1:
obs = obs[:, xp.newaxis]
code_book = code_book[:, xp.newaxis]
# Once `cdist` has array API support, this `xp.asarray` call can be removed
dist = xp.asarray(cdist(obs, code_book))
code = xp.argmin(dist, axis=1)
min_dist = xp.min(dist, axis=1)
return code, min_dist
def _kmeans(obs, guess, thresh=1e-5, xp=None):
""" "raw" version of k-means.
Returns
-------
code_book
The lowest distortion codebook found.
avg_dist
The average distance a observation is from a code in the book.
Lower means the code_book matches the data better.
See Also
--------
kmeans : wrapper around k-means
Examples
--------
Note: not whitened in this example.
>>> import numpy as np
>>> from scipy.cluster.vq import _kmeans
>>> features = np.array([[ 1.9,2.3],
... [ 1.5,2.5],
... [ 0.8,0.6],
... [ 0.4,1.8],
... [ 1.0,1.0]])
>>> book = np.array((features[0],features[2]))
>>> _kmeans(features,book)
(array([[ 1.7 , 2.4 ],
[ 0.73333333, 1.13333333]]), 0.40563916697728591)
"""
xp = np if xp is None else xp
code_book = guess
diff = xp.inf
prev_avg_dists = deque([diff], maxlen=2)
while diff > thresh:
# compute membership and distances between obs and code_book
obs_code, distort = vq(obs, code_book, check_finite=False)
prev_avg_dists.append(xp.mean(distort, axis=-1))
# recalc code_book as centroids of associated obs
obs = np.asarray(obs)
obs_code = np.asarray(obs_code)
code_book, has_members = _vq.update_cluster_means(obs, obs_code,
code_book.shape[0])
obs = xp.asarray(obs)
obs_code = xp.asarray(obs_code)
code_book = xp.asarray(code_book)
has_members = xp.asarray(has_members)
code_book = code_book[has_members]
diff = xp.abs(prev_avg_dists[0] - prev_avg_dists[1])
return code_book, prev_avg_dists[1]
@_transition_to_rng("seed")
def kmeans(obs, k_or_guess, iter=20, thresh=1e-5, check_finite=True,
*, rng=None):
"""
Performs k-means on a set of observation vectors forming k clusters.
The k-means algorithm adjusts the classification of the observations
into clusters and updates the cluster centroids until the position of
the centroids is stable over successive iterations. In this
implementation of the algorithm, the stability of the centroids is
determined by comparing the absolute value of the change in the average
Euclidean distance between the observations and their corresponding
centroids against a threshold. This yields
a code book mapping centroids to codes and vice versa.
Parameters
----------
obs : ndarray
Each row of the M by N array is an observation vector. The
columns are the features seen during each observation.
The features must be whitened first with the `whiten` function.
k_or_guess : int or ndarray
The number of centroids to generate. A code is assigned to
each centroid, which is also the row index of the centroid
in the code_book matrix generated.
The initial k centroids are chosen by randomly selecting
observations from the observation matrix. Alternatively,
passing a k by N array specifies the initial k centroids.
iter : int, optional
The number of times to run k-means, returning the codebook
with the lowest distortion. This argument is ignored if
initial centroids are specified with an array for the
``k_or_guess`` parameter. This parameter does not represent the
number of iterations of the k-means algorithm.
thresh : float, optional
Terminates the k-means algorithm if the change in
distortion since the last k-means iteration is less than
or equal to threshold.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
Returns
-------
codebook : ndarray
A k by N array of k centroids. The ith centroid
codebook[i] is represented with the code i. The centroids
and codes generated represent the lowest distortion seen,
not necessarily the globally minimal distortion.
Note that the number of centroids is not necessarily the same as the
``k_or_guess`` parameter, because centroids assigned to no observations
are removed during iterations.
distortion : float
The mean (non-squared) Euclidean distance between the observations
passed and the centroids generated. Note the difference to the standard
definition of distortion in the context of the k-means algorithm, which
is the sum of the squared distances.
See Also
--------
kmeans2 : a different implementation of k-means clustering
with more methods for generating initial centroids but without
using a distortion change threshold as a stopping criterion.
whiten : must be called prior to passing an observation matrix
to kmeans.
Notes
-----
For more functionalities or optimal performance, you can use
`sklearn.cluster.KMeans <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>`_.
`This <https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html#comparison-of-high-performance-implementations>`_
is a benchmark result of several implementations.
Examples
--------
>>> import numpy as np
>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> import matplotlib.pyplot as plt
>>> features = np.array([[ 1.9,2.3],
... [ 1.5,2.5],
... [ 0.8,0.6],
... [ 0.4,1.8],
... [ 0.1,0.1],
... [ 0.2,1.8],
... [ 2.0,0.5],
... [ 0.3,1.5],
... [ 1.0,1.0]])
>>> whitened = whiten(features)
>>> book = np.array((whitened[0],whitened[2]))
>>> kmeans(whitened,book)
(array([[ 2.3110306 , 2.86287398], # random
[ 0.93218041, 1.24398691]]), 0.85684700941625547)
>>> codes = 3
>>> kmeans(whitened,codes)
(array([[ 2.3110306 , 2.86287398], # random
[ 1.32544402, 0.65607529],
[ 0.40782893, 2.02786907]]), 0.5196582527686241)
>>> # Create 50 datapoints in two clusters a and b
>>> pts = 50
>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
>>> b = rng.multivariate_normal([30, 10],
... [[10, 2], [2, 1]],
... size=pts)
>>> features = np.concatenate((a, b))
>>> # Whiten data
>>> whitened = whiten(features)
>>> # Find 2 clusters in the data
>>> codebook, distortion = kmeans(whitened, 2)
>>> # Plot whitened data and cluster centers in red
>>> plt.scatter(whitened[:, 0], whitened[:, 1])
>>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
>>> plt.show()
"""
if isinstance(k_or_guess, int):
xp = array_namespace(obs)
else:
xp = array_namespace(obs, k_or_guess)
obs = _asarray(obs, xp=xp, check_finite=check_finite)
guess = _asarray(k_or_guess, xp=xp, check_finite=check_finite)
if iter < 1:
raise ValueError(f"iter must be at least 1, got {iter}")
# Determine whether a count (scalar) or an initial guess (array) was passed.
if xp_size(guess) != 1:
if xp_size(guess) < 1:
raise ValueError(f"Asked for 0 clusters. Initial book was {guess}")
return _kmeans(obs, guess, thresh=thresh, xp=xp)
# k_or_guess is a scalar, now verify that it's an integer
k = int(guess)
if k != guess:
raise ValueError("If k_or_guess is a scalar, it must be an integer.")
if k < 1:
raise ValueError("Asked for %d clusters." % k)
rng = check_random_state(rng)
# initialize best distance value to a large value
best_dist = xp.inf
for i in range(iter):
# the initial code book is randomly selected from observations
guess = _kpoints(obs, k, rng, xp)
book, dist = _kmeans(obs, guess, thresh=thresh, xp=xp)
if dist < best_dist:
best_book = book
best_dist = dist
return best_book, best_dist
def _kpoints(data, k, rng, xp):
"""Pick k points at random in data (one row = one observation).
Parameters
----------
data : ndarray
Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
dimensional data, rank 2 multidimensional data, in which case one
row is one observation.
k : int
Number of samples to generate.
rng : `numpy.random.Generator` or `numpy.random.RandomState`
Random number generator.
Returns
-------
x : ndarray
A 'k' by 'N' containing the initial centroids
"""
idx = rng.choice(data.shape[0], size=int(k), replace=False)
# convert to array with default integer dtype (avoids numpy#25607)
idx = xp.asarray(idx, dtype=xp.asarray([1]).dtype)
return xp.take(data, idx, axis=0)
def _krandinit(data, k, rng, xp):
"""Returns k samples of a random variable whose parameters depend on data.
More precisely, it returns k observations sampled from a Gaussian random
variable whose mean and covariances are the ones estimated from the data.
Parameters
----------
data : ndarray
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
data, rank 2 multidimensional data, in which case one
row is one observation.
k : int
Number of samples to generate.
rng : `numpy.random.Generator` or `numpy.random.RandomState`
Random number generator.
Returns
-------
x : ndarray
A 'k' by 'N' containing the initial centroids
"""
mu = xp.mean(data, axis=0)
k = np.asarray(k)
if data.ndim == 1:
_cov = xpx.cov(data, xp=xp)
x = rng.standard_normal(size=k)
x = xp.asarray(x)
x *= xp.sqrt(_cov)
elif data.shape[1] > data.shape[0]:
# initialize when the covariance matrix is rank deficient
_, s, vh = xp.linalg.svd(data - mu, full_matrices=False)
x = rng.standard_normal(size=(k, xp_size(s)))
x = xp.asarray(x)
sVh = s[:, None] * vh / xp.sqrt(data.shape[0] - xp.asarray(1.))
x = x @ sVh
else:
_cov = xpx.atleast_nd(xpx.cov(data.T, xp=xp), ndim=2, xp=xp)
# k rows, d cols (one row = one obs)
# Generate k sample of a random variable ~ Gaussian(mu, cov)
x = rng.standard_normal(size=(k, xp_size(mu)))
x = xp.asarray(x)
x = x @ xp.linalg.cholesky(_cov).T
x += mu
return x
def _kpp(data, k, rng, xp):
""" Picks k points in the data based on the kmeans++ method.
Parameters
----------
data : ndarray
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
data, rank 2 multidimensional data, in which case one
row is one observation.
k : int
Number of samples to generate.
rng : `numpy.random.Generator` or `numpy.random.RandomState`
Random number generator.
Returns
-------
init : ndarray
A 'k' by 'N' containing the initial centroids.
References
----------
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.
"""
ndim = len(data.shape)
if ndim == 1:
data = data[:, None]
dims = data.shape[1]
init = xp.empty((int(k), dims))
for i in range(k):
if i == 0:
init[i, :] = data[rng_integers(rng, data.shape[0]), :]
else:
D2 = cdist(init[:i,:], data, metric='sqeuclidean').min(axis=0)
probs = D2/D2.sum()
cumprobs = probs.cumsum()
r = rng.uniform()
cumprobs = np.asarray(cumprobs)
init[i, :] = data[np.searchsorted(cumprobs, r), :]
if ndim == 1:
init = init[:, 0]
return init
_valid_init_meth = {'random': _krandinit, 'points': _kpoints, '++': _kpp}
def _missing_warn():
"""Print a warning when called."""
warnings.warn("One of the clusters is empty. "
"Re-run kmeans with a different initialization.",
stacklevel=3)
def _missing_raise():
"""Raise a ClusterError when called."""
raise ClusterError("One of the clusters is empty. "
"Re-run kmeans with a different initialization.")
_valid_miss_meth = {'warn': _missing_warn, 'raise': _missing_raise}
@_transition_to_rng("seed")
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random',
missing='warn', check_finite=True, *, rng=None):
"""
Classify a set of observations into k clusters using the k-means algorithm.
The algorithm attempts to minimize the Euclidean distance between
observations and centroids. Several initialization methods are
included.
Parameters
----------
data : ndarray
A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length
'M' array of 'M' 1-D observations.
k : int or ndarray
The number of clusters to form as well as the number of
centroids to generate. If `minit` initialization string is
'matrix', or if a ndarray is given instead, it is
interpreted as initial cluster to use instead.
iter : int, optional
Number of iterations of the k-means algorithm to run. Note
that this differs in meaning from the iters parameter to
the kmeans function.
thresh : float, optional
(not used yet)
minit : str, optional
Method for initialization. Available methods are 'random',
'points', '++' and 'matrix':
'random': generate k centroids from a Gaussian with mean and
variance estimated from the data.
'points': choose k observations (rows) at random from data for
the initial centroids.
'++': choose k observations accordingly to the kmeans++ method
(careful seeding)
'matrix': interpret the k parameter as a k by M (or length k
array for 1-D data) array of initial centroids.
missing : str, optional
Method to deal with empty clusters. Available methods are
'warn' and 'raise':
'warn': give a warning and continue.
'raise': raise an ClusterError and terminate the algorithm.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
rng : `numpy.random.Generator`, optional
Pseudorandom number generator state. When `rng` is None, a new
`numpy.random.Generator` is created using entropy from the
operating system. Types other than `numpy.random.Generator` are
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
Returns
-------
centroid : ndarray
A 'k' by 'N' array of centroids found at the last iteration of
k-means.
label : ndarray
label[i] is the code or index of the centroid the
ith observation is closest to.
See Also
--------
kmeans
References
----------
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.
Examples
--------
>>> from scipy.cluster.vq import kmeans2
>>> import matplotlib.pyplot as plt
>>> import numpy as np
Create z, an array with shape (100, 2) containing a mixture of samples
from three multivariate normal distributions.
>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
>>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
>>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
>>> z = np.concatenate((a, b, c))
>>> rng.shuffle(z)
Compute three clusters.
>>> centroid, label = kmeans2(z, 3, minit='points')
>>> centroid
array([[ 2.22274463, -0.61666946], # may vary
[ 0.54069047, 5.86541444],
[ 6.73846769, 4.01991898]])
How many points are in each cluster?
>>> counts = np.bincount(label)
>>> counts
array([29, 51, 20]) # may vary
Plot the clusters.
>>> w0 = z[label == 0]
>>> w1 = z[label == 1]
>>> w2 = z[label == 2]
>>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
>>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
>>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
>>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids')
>>> plt.axis('equal')
>>> plt.legend(shadow=True)
>>> plt.show()
"""
if int(iter) < 1:
raise ValueError(f"Invalid iter ({iter}), must be a positive integer.")
try:
miss_meth = _valid_miss_meth[missing]
except KeyError as e:
raise ValueError(f"Unknown missing method {missing!r}") from e
if isinstance(k, int):
xp = array_namespace(data)
else:
xp = array_namespace(data, k)
data = _asarray(data, xp=xp, check_finite=check_finite)
code_book = xp_copy(k, xp=xp)
if data.ndim == 1:
d = 1
elif data.ndim == 2:
d = data.shape[1]
else:
raise ValueError("Input of rank > 2 is not supported.")
if xp_size(data) < 1 or xp_size(code_book) < 1:
raise ValueError("Empty input is not supported.")
# If k is not a single value, it should be compatible with data's shape
if minit == 'matrix' or xp_size(code_book) > 1:
if data.ndim != code_book.ndim:
raise ValueError("k array doesn't match data rank")
nc = code_book.shape[0]
if data.ndim > 1 and code_book.shape[1] != d:
raise ValueError("k array doesn't match data dimension")
else:
nc = int(code_book)
if nc < 1:
raise ValueError("Cannot ask kmeans2 for %d clusters"
" (k was %s)" % (nc, code_book))
elif nc != code_book:
warnings.warn("k was not an integer, was converted.", stacklevel=2)
try:
init_meth = _valid_init_meth[minit]
except KeyError as e:
raise ValueError(f"Unknown init method {minit!r}") from e
else:
rng = check_random_state(rng)
code_book = init_meth(data, code_book, rng, xp)
data = np.asarray(data)
code_book = np.asarray(code_book)
for i in range(iter):
# Compute the nearest neighbor for each obs using the current code book
label = vq(data, code_book, check_finite=check_finite)[0]
# Update the code book by computing centroids
new_code_book, has_members = _vq.update_cluster_means(data, label, nc)
if not has_members.all():
miss_meth()
# Set the empty clusters to their previous positions
new_code_book[~has_members] = code_book[~has_members]
code_book = new_code_book
return xp.asarray(code_book), xp.asarray(label)
|