File size: 57,527 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
import warnings

import numpy as np
from scipy.optimize import (
    Bounds,
    LinearConstraint,
    NonlinearConstraint,
    OptimizeResult,
)

from .framework import TrustRegion
from .problem import (
    ObjectiveFunction,
    BoundConstraints,
    LinearConstraints,
    NonlinearConstraints,
    Problem,
)
from .utils import (
    MaxEvalError,
    TargetSuccess,
    CallbackSuccess,
    FeasibleSuccess,
    exact_1d_array,
)
from .settings import (
    ExitStatus,
    Options,
    Constants,
    DEFAULT_OPTIONS,
    DEFAULT_CONSTANTS,
    PRINT_OPTIONS,
)


def minimize(
    fun,
    x0,
    args=(),
    bounds=None,
    constraints=(),
    callback=None,
    options=None,
    **kwargs,
):
    r"""
    Minimize a scalar function using the COBYQA method.

    The Constrained Optimization BY Quadratic Approximations (COBYQA) method is
    a derivative-free optimization method designed to solve general nonlinear
    optimization problems. A complete description of COBYQA is given in [3]_.

    Parameters
    ----------
    fun : {callable, None}
        Objective function to be minimized.

            ``fun(x, *args) -> float``

        where ``x`` is an array with shape (n,) and `args` is a tuple. If `fun`
        is ``None``, the objective function is assumed to be the zero function,
        resulting in a feasibility problem.
    x0 : array_like, shape (n,)
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function.
    bounds : {`scipy.optimize.Bounds`, array_like, shape (n, 2)}, optional
        Bound constraints of the problem. It can be one of the cases below.

        #. An instance of `scipy.optimize.Bounds`. For the time being, the
           argument ``keep_feasible`` is disregarded, and all the constraints
           are considered unrelaxable and will be enforced.
        #. An array with shape (n, 2). The bound constraints for ``x[i]`` are
           ``bounds[i][0] <= x[i] <= bounds[i][1]``. Set ``bounds[i][0]`` to
           :math:`-\infty` if there is no lower bound, and set ``bounds[i][1]``
           to :math:`\infty` if there is no upper bound.

        The COBYQA method always respect the bound constraints.
    constraints : {Constraint, list}, optional
        General constraints of the problem. It can be one of the cases below.

        #. An instance of `scipy.optimize.LinearConstraint`. The argument
           ``keep_feasible`` is disregarded.
        #. An instance of `scipy.optimize.NonlinearConstraint`. The arguments
           ``jac``, ``hess``, ``keep_feasible``, ``finite_diff_rel_step``, and
           ``finite_diff_jac_sparsity`` are disregarded.

        #. A list, each of whose elements are described in the cases above.

    callback : callable, optional
        A callback executed at each objective function evaluation. The method
        terminates if a ``StopIteration`` exception is raised by the callback
        function. Its signature can be one of the following:

            ``callback(intermediate_result)``

        where ``intermediate_result`` is a keyword parameter that contains an
        instance of `scipy.optimize.OptimizeResult`, with attributes ``x``
        and ``fun``, being the point at which the objective function is
        evaluated and the value of the objective function, respectively. The
        name of the parameter must be ``intermediate_result`` for the callback
        to be passed an instance of `scipy.optimize.OptimizeResult`.

        Alternatively, the callback function can have the signature:

            ``callback(xk)``

        where ``xk`` is the point at which the objective function is evaluated.
        Introspection is used to determine which of the signatures to invoke.
    options : dict, optional
        Options passed to the solver. Accepted keys are:

            disp : bool, optional
                Whether to print information about the optimization procedure.
                Default is ``False``.
            maxfev : int, optional
                Maximum number of function evaluations. Default is ``500 * n``.
            maxiter : int, optional
                Maximum number of iterations. Default is ``1000 * n``.
            target : float, optional
                Target on the objective function value. The optimization
                procedure is terminated when the objective function value of a
                feasible point is less than or equal to this target. Default is
                ``-numpy.inf``.
            feasibility_tol : float, optional
                Tolerance on the constraint violation. If the maximum
                constraint violation at a point is less than or equal to this
                tolerance, the point is considered feasible. Default is
                ``numpy.sqrt(numpy.finfo(float).eps)``.
            radius_init : float, optional
                Initial trust-region radius. Typically, this value should be in
                the order of one tenth of the greatest expected change to `x0`.
                Default is ``1.0``.
            radius_final : float, optional
                Final trust-region radius. It should indicate the accuracy
                required in the final values of the variables. Default is
                ``1e-6``.
            nb_points : int, optional
                Number of interpolation points used to build the quadratic
                models of the objective and constraint functions. Default is
                ``2 * n + 1``.
            scale : bool, optional
                Whether to scale the variables according to the bounds. Default
                is ``False``.
            filter_size : int, optional
                Maximum number of points in the filter. The filter is used to
                select the best point returned by the optimization procedure.
                Default is ``sys.maxsize``.
            store_history : bool, optional
                Whether to store the history of the function evaluations.
                Default is ``False``.
            history_size : int, optional
                Maximum number of function evaluations to store in the history.
                Default is ``sys.maxsize``.
            debug : bool, optional
                Whether to perform additional checks during the optimization
                procedure. This option should be used only for debugging
                purposes and is highly discouraged to general users. Default is
                ``False``.

        Other constants (from the keyword arguments) are described below. They
        are not intended to be changed by general users. They should only be
        changed by users with a deep understanding of the algorithm, who want
        to experiment with different settings.

    Returns
    -------
    `scipy.optimize.OptimizeResult`
        Result of the optimization procedure, with the following fields:

            message : str
                Description of the cause of the termination.
            success : bool
                Whether the optimization procedure terminated successfully.
            status : int
                Termination status of the optimization procedure.
            x : `numpy.ndarray`, shape (n,)
                Solution point.
            fun : float
                Objective function value at the solution point.
            maxcv : float
                Maximum constraint violation at the solution point.
            nfev : int
                Number of function evaluations.
            nit : int
                Number of iterations.

        If ``store_history`` is True, the result also has the following fields:

            fun_history : `numpy.ndarray`, shape (nfev,)
                History of the objective function values.
            maxcv_history : `numpy.ndarray`, shape (nfev,)
                History of the maximum constraint violations.

        A description of the termination statuses is given below.

        .. list-table::
            :widths: 25 75
            :header-rows: 1

            * - Exit status
              - Description
            * - 0
              - The lower bound for the trust-region radius has been reached.
            * - 1
              - The target objective function value has been reached.
            * - 2
              - All variables are fixed by the bound constraints.
            * - 3
              - The callback requested to stop the optimization procedure.
            * - 4
              - The feasibility problem received has been solved successfully.
            * - 5
              - The maximum number of function evaluations has been exceeded.
            * - 6
              - The maximum number of iterations has been exceeded.
            * - -1
              - The bound constraints are infeasible.
            * - -2
              - A linear algebra error occurred.

    Other Parameters
    ----------------
    decrease_radius_factor : float, optional
        Factor by which the trust-region radius is reduced when the reduction
        ratio is low or negative. Default is ``0.5``.
    increase_radius_factor : float, optional
        Factor by which the trust-region radius is increased when the reduction
        ratio is large. Default is ``numpy.sqrt(2.0)``.
    increase_radius_threshold : float, optional
        Threshold that controls the increase of the trust-region radius when
        the reduction ratio is large. Default is ``2.0``.
    decrease_radius_threshold : float, optional
        Threshold used to determine whether the trust-region radius should be
        reduced to the resolution. Default is ``1.4``.
    decrease_resolution_factor : float, optional
        Factor by which the resolution is reduced when the current value is far
        from its final value. Default is ``0.1``.
    large_resolution_threshold : float, optional
        Threshold used to determine whether the resolution is far from its
        final value. Default is ``250.0``.
    moderate_resolution_threshold : float, optional
        Threshold used to determine whether the resolution is close to its
        final value. Default is ``16.0``.
    low_ratio : float, optional
        Threshold used to determine whether the reduction ratio is low. Default
        is ``0.1``.
    high_ratio : float, optional
        Threshold used to determine whether the reduction ratio is high.
        Default is ``0.7``.
    very_low_ratio : float, optional
        Threshold used to determine whether the reduction ratio is very low.
        This is used to determine whether the models should be reset. Default
        is ``0.01``.
    penalty_increase_threshold : float, optional
        Threshold used to determine whether the penalty parameter should be
        increased. Default is ``1.5``.
    penalty_increase_factor : float, optional
        Factor by which the penalty parameter is increased. Default is ``2.0``.
    short_step_threshold : float, optional
        Factor used to determine whether the trial step is too short. Default
        is ``0.5``.
    low_radius_factor : float, optional
        Factor used to determine which interpolation point should be removed
        from the interpolation set at each iteration. Default is ``0.1``.
    byrd_omojokun_factor : float, optional
        Factor by which the trust-region radius is reduced for the computations
        of the normal step in the Byrd-Omojokun composite-step approach.
        Default is ``0.8``.
    threshold_ratio_constraints : float, optional
        Threshold used to determine which constraints should be taken into
        account when decreasing the penalty parameter. Default is ``2.0``.
    large_shift_factor : float, optional
        Factor used to determine whether the point around which the quadratic
        models are built should be updated. Default is ``10.0``.
    large_gradient_factor : float, optional
        Factor used to determine whether the models should be reset. Default is
        ``10.0``.
    resolution_factor : float, optional
        Factor by which the resolution is decreased. Default is ``2.0``.
    improve_tcg : bool, optional
        Whether to improve the steps computed by the truncated conjugate
        gradient method when the trust-region boundary is reached. Default is
        ``True``.

    References
    ----------
    .. [1] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Ser.
       Oper. Res. Financ. Eng. Springer, New York, NY, USA, second edition,
       2006. `doi:10.1007/978-0-387-40065-5
       <https://doi.org/10.1007/978-0-387-40065-5>`_.
    .. [2] M. J. D. Powell. A direct search optimization method that models the
       objective and constraint functions by linear interpolation. In S. Gomez
       and J.-P. Hennart, editors, *Advances in Optimization and Numerical
       Analysis*, volume 275 of Math. Appl., pages 51--67. Springer, Dordrecht,
       Netherlands, 1994. `doi:10.1007/978-94-015-8330-5_4
       <https://doi.org/10.1007/978-94-015-8330-5_4>`_.
    .. [3] T. M. Ragonneau. *Model-Based Derivative-Free Optimization Methods
       and Software*. PhD thesis, Department of Applied Mathematics, The Hong
       Kong Polytechnic University, Hong Kong, China, 2022. URL:
       https://theses.lib.polyu.edu.hk/handle/200/12294.

    Examples
    --------
    To demonstrate how to use `minimize`, we first minimize the Rosenbrock
    function implemented in `scipy.optimize` in an unconstrained setting.

    .. testsetup::

        import numpy as np
        np.set_printoptions(precision=3, suppress=True)

    >>> from cobyqa import minimize
    >>> from scipy.optimize import rosen

    To solve the problem using COBYQA, run:

    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
    >>> res = minimize(rosen, x0)
    >>> res.x
    array([1., 1., 1., 1., 1.])

    To see how bound and constraints are handled using `minimize`, we solve
    Example 16.4 of [1]_, defined as

    .. math::

        \begin{aligned}
            \min_{x \in \mathbb{R}^2}   & \quad (x_1 - 1)^2 + (x_2 - 2.5)^2\\
            \text{s.t.}                 & \quad -x_1 + 2x_2 \le 2,\\
                                        & \quad x_1 + 2x_2 \le 6,\\
                                        & \quad x_1 - 2x_2 \le 2,\\
                                        & \quad x_1 \ge 0,\\
                                        & \quad x_2 \ge 0.
        \end{aligned}

    >>> import numpy as np
    >>> from scipy.optimize import Bounds, LinearConstraint

    Its objective function can be implemented as:

    >>> def fun(x):
    ...     return (x[0] - 1.0)**2 + (x[1] - 2.5)**2

    This problem can be solved using `minimize` as:

    >>> x0 = [2.0, 0.0]
    >>> bounds = Bounds([0.0, 0.0], np.inf)
    >>> constraints = LinearConstraint([
    ...     [-1.0, 2.0],
    ...     [1.0, 2.0],
    ...     [1.0, -2.0],
    ... ], -np.inf, [2.0, 6.0, 2.0])
    >>> res = minimize(fun, x0, bounds=bounds, constraints=constraints)
    >>> res.x
    array([1.4, 1.7])

    To see how nonlinear constraints are handled, we solve Problem (F) of [2]_,
    defined as

    .. math::

        \begin{aligned}
            \min_{x \in \mathbb{R}^2}   & \quad -x_1 - x_2\\
            \text{s.t.}                 & \quad x_1^2 - x_2 \le 0,\\
                                        & \quad x_1^2 + x_2^2 \le 1.
        \end{aligned}

    >>> from scipy.optimize import NonlinearConstraint

    Its objective and constraint functions can be implemented as:

    >>> def fun(x):
    ...     return -x[0] - x[1]
    >>>
    >>> def cub(x):
    ...     return [x[0]**2 - x[1], x[0]**2 + x[1]**2]

    This problem can be solved using `minimize` as:

    >>> x0 = [1.0, 1.0]
    >>> constraints = NonlinearConstraint(cub, -np.inf, [0.0, 1.0])
    >>> res = minimize(fun, x0, constraints=constraints)
    >>> res.x
    array([0.707, 0.707])

    Finally, to see how to supply linear and nonlinear constraints
    simultaneously, we solve Problem (G) of [2]_, defined as

    .. math::

        \begin{aligned}
            \min_{x \in \mathbb{R}^3}   & \quad x_3\\
            \text{s.t.}                 & \quad 5x_1 - x_2 + x_3 \ge 0,\\
                                        & \quad -5x_1 - x_2 + x_3 \ge 0,\\
                                        & \quad x_1^2 + x_2^2 + 4x_2 \le x_3.
        \end{aligned}

    Its objective and nonlinear constraint functions can be implemented as:

    >>> def fun(x):
    ...     return x[2]
    >>>
    >>> def cub(x):
    ...     return x[0]**2 + x[1]**2 + 4.0*x[1] - x[2]

    This problem can be solved using `minimize` as:

    >>> x0 = [1.0, 1.0, 1.0]
    >>> constraints = [
    ...     LinearConstraint(
    ...         [[5.0, -1.0, 1.0], [-5.0, -1.0, 1.0]],
    ...         [0.0, 0.0],
    ...         np.inf,
    ...     ),
    ...     NonlinearConstraint(cub, -np.inf, 0.0),
    ... ]
    >>> res = minimize(fun, x0, constraints=constraints)
    >>> res.x
    array([ 0., -3., -3.])
    """
    # Get basic options that are needed for the initialization.
    if options is None:
        options = {}
    else:
        options = dict(options)
    verbose = options.get(Options.VERBOSE, DEFAULT_OPTIONS[Options.VERBOSE])
    verbose = bool(verbose)
    feasibility_tol = options.get(
        Options.FEASIBILITY_TOL,
        DEFAULT_OPTIONS[Options.FEASIBILITY_TOL],
    )
    feasibility_tol = float(feasibility_tol)
    scale = options.get(Options.SCALE, DEFAULT_OPTIONS[Options.SCALE])
    scale = bool(scale)
    store_history = options.get(
        Options.STORE_HISTORY,
        DEFAULT_OPTIONS[Options.STORE_HISTORY],
    )
    store_history = bool(store_history)
    if Options.HISTORY_SIZE in options and options[Options.HISTORY_SIZE] <= 0:
        raise ValueError("The size of the history must be positive.")
    history_size = options.get(
        Options.HISTORY_SIZE,
        DEFAULT_OPTIONS[Options.HISTORY_SIZE],
    )
    history_size = int(history_size)
    if Options.FILTER_SIZE in options and options[Options.FILTER_SIZE] <= 0:
        raise ValueError("The size of the filter must be positive.")
    filter_size = options.get(
        Options.FILTER_SIZE,
        DEFAULT_OPTIONS[Options.FILTER_SIZE],
    )
    filter_size = int(filter_size)
    debug = options.get(Options.DEBUG, DEFAULT_OPTIONS[Options.DEBUG])
    debug = bool(debug)

    # Initialize the objective function.
    if not isinstance(args, tuple):
        args = (args,)
    obj = ObjectiveFunction(fun, verbose, debug, *args)

    # Initialize the bound constraints.
    if not hasattr(x0, "__len__"):
        x0 = [x0]
    n_orig = len(x0)
    bounds = BoundConstraints(_get_bounds(bounds, n_orig))

    # Initialize the constraints.
    linear_constraints, nonlinear_constraints = _get_constraints(constraints)
    linear = LinearConstraints(linear_constraints, n_orig, debug)
    nonlinear = NonlinearConstraints(nonlinear_constraints, verbose, debug)

    # Initialize the problem (and remove the fixed variables).
    pb = Problem(
        obj,
        x0,
        bounds,
        linear,
        nonlinear,
        callback,
        feasibility_tol,
        scale,
        store_history,
        history_size,
        filter_size,
        debug,
    )

    # Set the default options.
    _set_default_options(options, pb.n)
    constants = _set_default_constants(**kwargs)

    # Initialize the models and skip the computations whenever possible.
    if not pb.bounds.is_feasible:
        # The bound constraints are infeasible.
        return _build_result(
            pb,
            0.0,
            False,
            ExitStatus.INFEASIBLE_ERROR,
            0,
            options,
        )
    elif pb.n == 0:
        # All variables are fixed by the bound constraints.
        return _build_result(
            pb,
            0.0,
            True,
            ExitStatus.FIXED_SUCCESS,
            0,
            options,
        )
    if verbose:
        print("Starting the optimization procedure.")
        print(f"Initial trust-region radius: {options[Options.RHOBEG]}.")
        print(f"Final trust-region radius: {options[Options.RHOEND]}.")
        print(
            f"Maximum number of function evaluations: "
            f"{options[Options.MAX_EVAL]}."
        )
        print(f"Maximum number of iterations: {options[Options.MAX_ITER]}.")
        print()
    try:
        framework = TrustRegion(pb, options, constants)
    except TargetSuccess:
        # The target on the objective function value has been reached
        return _build_result(
            pb,
            0.0,
            True,
            ExitStatus.TARGET_SUCCESS,
            0,
            options,
        )
    except CallbackSuccess:
        # The callback raised a StopIteration exception.
        return _build_result(
            pb,
            0.0,
            True,
            ExitStatus.CALLBACK_SUCCESS,
            0,
            options,
        )
    except FeasibleSuccess:
        # The feasibility problem has been solved successfully.
        return _build_result(
            pb,
            0.0,
            True,
            ExitStatus.FEASIBLE_SUCCESS,
            0,
            options,
        )
    except MaxEvalError:
        # The maximum number of function evaluations has been exceeded.
        return _build_result(
            pb,
            0.0,
            False,
            ExitStatus.MAX_ITER_WARNING,
            0,
            options,
        )
    except np.linalg.LinAlgError:
        # The construction of the initial interpolation set failed.
        return _build_result(
            pb,
            0.0,
            False,
            ExitStatus.LINALG_ERROR,
            0,
            options,
        )

    # Start the optimization procedure.
    success = False
    n_iter = 0
    k_new = None
    n_short_steps = 0
    n_very_short_steps = 0
    n_alt_models = 0
    while True:
        # Stop the optimization procedure if the maximum number of iterations
        # has been exceeded. We do not write the main loop as a for loop
        # because we want to access the number of iterations outside the loop.
        if n_iter >= options[Options.MAX_ITER]:
            status = ExitStatus.MAX_ITER_WARNING
            break
        n_iter += 1

        # Update the point around which the quadratic models are built.
        if (
            np.linalg.norm(
                framework.x_best - framework.models.interpolation.x_base
            )
            >= constants[Constants.LARGE_SHIFT_FACTOR] * framework.radius
        ):
            framework.shift_x_base(options)

        # Evaluate the trial step.
        radius_save = framework.radius
        normal_step, tangential_step = framework.get_trust_region_step(options)
        step = normal_step + tangential_step
        s_norm = np.linalg.norm(step)

        # If the trial step is too short, we do not attempt to evaluate the
        # objective and constraint functions. Instead, we reduce the
        # trust-region radius and check whether the resolution should be
        # enhanced and whether the geometry of the interpolation set should be
        # improved. Otherwise, we entertain a classical iteration. The
        # criterion for performing an exceptional jump is taken from NEWUOA.
        if (
            s_norm
            <= constants[Constants.SHORT_STEP_THRESHOLD] * framework.resolution
        ):
            framework.radius *= constants[Constants.DECREASE_RESOLUTION_FACTOR]
            if radius_save > framework.resolution:
                n_short_steps = 0
                n_very_short_steps = 0
            else:
                n_short_steps += 1
                n_very_short_steps += 1
                if s_norm > 0.1 * framework.resolution:
                    n_very_short_steps = 0
            enhance_resolution = n_short_steps >= 5 or n_very_short_steps >= 3
            if enhance_resolution:
                n_short_steps = 0
                n_very_short_steps = 0
                improve_geometry = False
            else:
                try:
                    k_new, dist_new = framework.get_index_to_remove()
                except np.linalg.LinAlgError:
                    status = ExitStatus.LINALG_ERROR
                    break
                improve_geometry = dist_new > max(
                    framework.radius,
                    constants[Constants.RESOLUTION_FACTOR]
                    * framework.resolution,
                )
        else:
            # Increase the penalty parameter if necessary.
            same_best_point = framework.increase_penalty(step)
            if same_best_point:
                # Evaluate the objective and constraint functions.
                try:
                    fun_val, cub_val, ceq_val = _eval(
                        pb,
                        framework,
                        step,
                        options,
                    )
                except TargetSuccess:
                    status = ExitStatus.TARGET_SUCCESS
                    success = True
                    break
                except FeasibleSuccess:
                    status = ExitStatus.FEASIBLE_SUCCESS
                    success = True
                    break
                except CallbackSuccess:
                    status = ExitStatus.CALLBACK_SUCCESS
                    success = True
                    break
                except MaxEvalError:
                    status = ExitStatus.MAX_EVAL_WARNING
                    break

                # Perform a second-order correction step if necessary.
                merit_old = framework.merit(
                    framework.x_best,
                    framework.fun_best,
                    framework.cub_best,
                    framework.ceq_best,
                )
                merit_new = framework.merit(
                    framework.x_best + step, fun_val, cub_val, ceq_val
                )
                if (
                    pb.type == "nonlinearly constrained"
                    and merit_new > merit_old
                    and np.linalg.norm(normal_step)
                    > constants[Constants.BYRD_OMOJOKUN_FACTOR] ** 2.0
                    * framework.radius
                ):
                    soc_step = framework.get_second_order_correction_step(
                        step, options
                    )
                    if np.linalg.norm(soc_step) > 0.0:
                        step += soc_step

                        # Evaluate the objective and constraint functions.
                        try:
                            fun_val, cub_val, ceq_val = _eval(
                                pb,
                                framework,
                                step,
                                options,
                            )
                        except TargetSuccess:
                            status = ExitStatus.TARGET_SUCCESS
                            success = True
                            break
                        except FeasibleSuccess:
                            status = ExitStatus.FEASIBLE_SUCCESS
                            success = True
                            break
                        except CallbackSuccess:
                            status = ExitStatus.CALLBACK_SUCCESS
                            success = True
                            break
                        except MaxEvalError:
                            status = ExitStatus.MAX_EVAL_WARNING
                            break

                # Calculate the reduction ratio.
                ratio = framework.get_reduction_ratio(
                    step,
                    fun_val,
                    cub_val,
                    ceq_val,
                )

                # Choose an interpolation point to remove.
                try:
                    k_new = framework.get_index_to_remove(
                        framework.x_best + step
                    )[0]
                except np.linalg.LinAlgError:
                    status = ExitStatus.LINALG_ERROR
                    break

                # Update the interpolation set.
                try:
                    ill_conditioned = framework.models.update_interpolation(
                        k_new, framework.x_best + step, fun_val, cub_val,
                        ceq_val
                    )
                except np.linalg.LinAlgError:
                    status = ExitStatus.LINALG_ERROR
                    break
                framework.set_best_index()

                # Update the trust-region radius.
                framework.update_radius(step, ratio)

                # Attempt to replace the models by the alternative ones.
                if framework.radius <= framework.resolution:
                    if ratio >= constants[Constants.VERY_LOW_RATIO]:
                        n_alt_models = 0
                    else:
                        n_alt_models += 1
                        grad = framework.models.fun_grad(framework.x_best)
                        try:
                            grad_alt = framework.models.fun_alt_grad(
                                framework.x_best
                            )
                        except np.linalg.LinAlgError:
                            status = ExitStatus.LINALG_ERROR
                            break
                        if np.linalg.norm(grad) < constants[
                            Constants.LARGE_GRADIENT_FACTOR
                        ] * np.linalg.norm(grad_alt):
                            n_alt_models = 0
                        if n_alt_models >= 3:
                            try:
                                framework.models.reset_models()
                            except np.linalg.LinAlgError:
                                status = ExitStatus.LINALG_ERROR
                                break
                            n_alt_models = 0

                # Update the Lagrange multipliers.
                framework.set_multipliers(framework.x_best + step)

                # Check whether the resolution should be enhanced.
                try:
                    k_new, dist_new = framework.get_index_to_remove()
                except np.linalg.LinAlgError:
                    status = ExitStatus.LINALG_ERROR
                    break
                improve_geometry = (
                    ill_conditioned
                    or ratio <= constants[Constants.LOW_RATIO]
                    and dist_new
                    > max(
                        framework.radius,
                        constants[Constants.RESOLUTION_FACTOR]
                        * framework.resolution,
                    )
                )
                enhance_resolution = (
                    radius_save <= framework.resolution
                    and ratio <= constants[Constants.LOW_RATIO]
                    and not improve_geometry
                )
            else:
                # When increasing the penalty parameter, the best point so far
                # may change. In this case, we restart the iteration.
                enhance_resolution = False
                improve_geometry = False

        # Reduce the resolution if necessary.
        if enhance_resolution:
            if framework.resolution <= options[Options.RHOEND]:
                success = True
                status = ExitStatus.RADIUS_SUCCESS
                break
            framework.enhance_resolution(options)
            framework.decrease_penalty()

            if verbose:
                maxcv_val = pb.maxcv(
                    framework.x_best, framework.cub_best, framework.ceq_best
                )
                _print_step(
                    f"New trust-region radius: {framework.resolution}",
                    pb,
                    pb.build_x(framework.x_best),
                    framework.fun_best,
                    maxcv_val,
                    pb.n_eval,
                    n_iter,
                )
                print()

        # Improve the geometry of the interpolation set if necessary.
        if improve_geometry:
            try:
                step = framework.get_geometry_step(k_new, options)
            except np.linalg.LinAlgError:
                status = ExitStatus.LINALG_ERROR
                break

            # Evaluate the objective and constraint functions.
            try:
                fun_val, cub_val, ceq_val = _eval(pb, framework, step, options)
            except TargetSuccess:
                status = ExitStatus.TARGET_SUCCESS
                success = True
                break
            except FeasibleSuccess:
                status = ExitStatus.FEASIBLE_SUCCESS
                success = True
                break
            except CallbackSuccess:
                status = ExitStatus.CALLBACK_SUCCESS
                success = True
                break
            except MaxEvalError:
                status = ExitStatus.MAX_EVAL_WARNING
                break

            # Update the interpolation set.
            try:
                framework.models.update_interpolation(
                    k_new,
                    framework.x_best + step,
                    fun_val,
                    cub_val,
                    ceq_val,
                )
            except np.linalg.LinAlgError:
                status = ExitStatus.LINALG_ERROR
                break
            framework.set_best_index()

    return _build_result(
        pb,
        framework.penalty,
        success,
        status,
        n_iter,
        options,
    )


def _get_bounds(bounds, n):
    """
    Uniformize the bounds.
    """
    if bounds is None:
        return Bounds(np.full(n, -np.inf), np.full(n, np.inf))
    elif isinstance(bounds, Bounds):
        if bounds.lb.shape != (n,) or bounds.ub.shape != (n,):
            raise ValueError(f"The bounds must have {n} elements.")
        return Bounds(bounds.lb, bounds.ub)
    elif hasattr(bounds, "__len__"):
        bounds = np.asarray(bounds)
        if bounds.shape != (n, 2):
            raise ValueError(
                "The shape of the bounds is not compatible with "
                "the number of variables."
            )
        return Bounds(bounds[:, 0], bounds[:, 1])
    else:
        raise TypeError(
            "The bounds must be an instance of "
            "scipy.optimize.Bounds or an array-like object."
        )


def _get_constraints(constraints):
    """
    Extract the linear and nonlinear constraints.
    """
    if isinstance(constraints, dict) or not hasattr(constraints, "__len__"):
        constraints = (constraints,)

    # Extract the linear and nonlinear constraints.
    linear_constraints = []
    nonlinear_constraints = []
    for constraint in constraints:
        if isinstance(constraint, LinearConstraint):
            lb = exact_1d_array(
                constraint.lb,
                "The lower bound of the linear constraints must be a vector.",
            )
            ub = exact_1d_array(
                constraint.ub,
                "The upper bound of the linear constraints must be a vector.",
            )
            linear_constraints.append(
                LinearConstraint(
                    constraint.A,
                    *np.broadcast_arrays(lb, ub),
                )
            )
        elif isinstance(constraint, NonlinearConstraint):
            lb = exact_1d_array(
                constraint.lb,
                "The lower bound of the "
                "nonlinear constraints must be a "
                "vector.",
            )
            ub = exact_1d_array(
                constraint.ub,
                "The upper bound of the "
                "nonlinear constraints must be a "
                "vector.",
            )
            nonlinear_constraints.append(
                NonlinearConstraint(
                    constraint.fun,
                    *np.broadcast_arrays(lb, ub),
                )
            )
        elif isinstance(constraint, dict):
            if "type" not in constraint or constraint["type"] not in (
                "eq",
                "ineq",
            ):
                raise ValueError('The constraint type must be "eq" or "ineq".')
            if "fun" not in constraint or not callable(constraint["fun"]):
                raise ValueError("The constraint function must be callable.")
            nonlinear_constraints.append(
                {
                    "fun": constraint["fun"],
                    "type": constraint["type"],
                    "args": constraint.get("args", ()),
                }
            )
        else:
            raise TypeError(
                "The constraints must be instances of "
                "scipy.optimize.LinearConstraint, "
                "scipy.optimize.NonlinearConstraint, or dict."
            )
    return linear_constraints, nonlinear_constraints


def _set_default_options(options, n):
    """
    Set the default options.
    """
    if Options.RHOBEG in options and options[Options.RHOBEG] <= 0.0:
        raise ValueError("The initial trust-region radius must be positive.")
    if Options.RHOEND in options and options[Options.RHOEND] < 0.0:
        raise ValueError("The final trust-region radius must be nonnegative.")
    if Options.RHOBEG in options and Options.RHOEND in options:
        if options[Options.RHOBEG] < options[Options.RHOEND]:
            raise ValueError(
                "The initial trust-region radius must be greater "
                "than or equal to the final trust-region radius."
            )
    elif Options.RHOBEG in options:
        options[Options.RHOEND.value] = np.min(
            [
                DEFAULT_OPTIONS[Options.RHOEND],
                options[Options.RHOBEG],
            ]
        )
    elif Options.RHOEND in options:
        options[Options.RHOBEG.value] = np.max(
            [
                DEFAULT_OPTIONS[Options.RHOBEG],
                options[Options.RHOEND],
            ]
        )
    else:
        options[Options.RHOBEG.value] = DEFAULT_OPTIONS[Options.RHOBEG]
        options[Options.RHOEND.value] = DEFAULT_OPTIONS[Options.RHOEND]
    options[Options.RHOBEG.value] = float(options[Options.RHOBEG])
    options[Options.RHOEND.value] = float(options[Options.RHOEND])
    if Options.NPT in options and options[Options.NPT] <= 0:
        raise ValueError("The number of interpolation points must be "
                         "positive.")
    if (
        Options.NPT in options
        and options[Options.NPT] > ((n + 1) * (n + 2)) // 2
    ):
        raise ValueError(
            f"The number of interpolation points must be at most "
            f"{((n + 1) * (n + 2)) // 2}."
        )
    options.setdefault(Options.NPT.value, DEFAULT_OPTIONS[Options.NPT](n))
    options[Options.NPT.value] = int(options[Options.NPT])
    if Options.MAX_EVAL in options and options[Options.MAX_EVAL] <= 0:
        raise ValueError(
            "The maximum number of function evaluations must be positive."
        )
    options.setdefault(
        Options.MAX_EVAL.value,
        np.max(
            [
                DEFAULT_OPTIONS[Options.MAX_EVAL](n),
                options[Options.NPT] + 1,
            ]
        ),
    )
    options[Options.MAX_EVAL.value] = int(options[Options.MAX_EVAL])
    if Options.MAX_ITER in options and options[Options.MAX_ITER] <= 0:
        raise ValueError("The maximum number of iterations must be positive.")
    options.setdefault(
        Options.MAX_ITER.value,
        DEFAULT_OPTIONS[Options.MAX_ITER](n),
    )
    options[Options.MAX_ITER.value] = int(options[Options.MAX_ITER])
    options.setdefault(Options.TARGET.value, DEFAULT_OPTIONS[Options.TARGET])
    options[Options.TARGET.value] = float(options[Options.TARGET])
    options.setdefault(
        Options.FEASIBILITY_TOL.value,
        DEFAULT_OPTIONS[Options.FEASIBILITY_TOL],
    )
    options[Options.FEASIBILITY_TOL.value] = float(
        options[Options.FEASIBILITY_TOL]
    )
    options.setdefault(Options.VERBOSE.value, DEFAULT_OPTIONS[Options.VERBOSE])
    options[Options.VERBOSE.value] = bool(options[Options.VERBOSE])
    options.setdefault(Options.SCALE.value, DEFAULT_OPTIONS[Options.SCALE])
    options[Options.SCALE.value] = bool(options[Options.SCALE])
    options.setdefault(
        Options.FILTER_SIZE.value,
        DEFAULT_OPTIONS[Options.FILTER_SIZE],
    )
    options[Options.FILTER_SIZE.value] = int(options[Options.FILTER_SIZE])
    options.setdefault(
        Options.STORE_HISTORY.value,
        DEFAULT_OPTIONS[Options.STORE_HISTORY],
    )
    options[Options.STORE_HISTORY.value] = bool(options[Options.STORE_HISTORY])
    options.setdefault(
        Options.HISTORY_SIZE.value,
        DEFAULT_OPTIONS[Options.HISTORY_SIZE],
    )
    options[Options.HISTORY_SIZE.value] = int(options[Options.HISTORY_SIZE])
    options.setdefault(Options.DEBUG.value, DEFAULT_OPTIONS[Options.DEBUG])
    options[Options.DEBUG.value] = bool(options[Options.DEBUG])

    # Check whether they are any unknown options.
    for key in options:
        if key not in Options.__members__.values():
            warnings.warn(f"Unknown option: {key}.", RuntimeWarning, 3)


def _set_default_constants(**kwargs):
    """
    Set the default constants.
    """
    constants = dict(kwargs)
    constants.setdefault(
        Constants.DECREASE_RADIUS_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_FACTOR],
    )
    constants[Constants.DECREASE_RADIUS_FACTOR.value] = float(
        constants[Constants.DECREASE_RADIUS_FACTOR]
    )
    if (
        constants[Constants.DECREASE_RADIUS_FACTOR] <= 0.0
        or constants[Constants.DECREASE_RADIUS_FACTOR] >= 1.0
    ):
        raise ValueError(
            "The constant decrease_radius_factor must be in the interval "
            "(0, 1)."
        )
    constants.setdefault(
        Constants.INCREASE_RADIUS_THRESHOLD.value,
        DEFAULT_CONSTANTS[Constants.INCREASE_RADIUS_THRESHOLD],
    )
    constants[Constants.INCREASE_RADIUS_THRESHOLD.value] = float(
        constants[Constants.INCREASE_RADIUS_THRESHOLD]
    )
    if constants[Constants.INCREASE_RADIUS_THRESHOLD] <= 1.0:
        raise ValueError(
            "The constant increase_radius_threshold must be greater than 1."
        )
    if (
        Constants.INCREASE_RADIUS_FACTOR in constants
        and constants[Constants.INCREASE_RADIUS_FACTOR] <= 1.0
    ):
        raise ValueError(
            "The constant increase_radius_factor must be greater than 1."
        )
    if (
        Constants.DECREASE_RADIUS_THRESHOLD in constants
        and constants[Constants.DECREASE_RADIUS_THRESHOLD] <= 1.0
    ):
        raise ValueError(
            "The constant decrease_radius_threshold must be greater than 1."
        )
    if (
        Constants.INCREASE_RADIUS_FACTOR in constants
        and Constants.DECREASE_RADIUS_THRESHOLD in constants
    ):
        if (
            constants[Constants.DECREASE_RADIUS_THRESHOLD]
            >= constants[Constants.INCREASE_RADIUS_FACTOR]
        ):
            raise ValueError(
                "The constant decrease_radius_threshold must be "
                "less than increase_radius_factor."
            )
    elif Constants.INCREASE_RADIUS_FACTOR in constants:
        constants[Constants.DECREASE_RADIUS_THRESHOLD.value] = np.min(
            [
                DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_THRESHOLD],
                0.5 * (1.0 + constants[Constants.INCREASE_RADIUS_FACTOR]),
            ]
        )
    elif Constants.DECREASE_RADIUS_THRESHOLD in constants:
        constants[Constants.INCREASE_RADIUS_FACTOR.value] = np.max(
            [
                DEFAULT_CONSTANTS[Constants.INCREASE_RADIUS_FACTOR],
                2.0 * constants[Constants.DECREASE_RADIUS_THRESHOLD],
            ]
        )
    else:
        constants[Constants.INCREASE_RADIUS_FACTOR.value] = DEFAULT_CONSTANTS[
            Constants.INCREASE_RADIUS_FACTOR
        ]
        constants[Constants.DECREASE_RADIUS_THRESHOLD.value] = (
            DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_THRESHOLD])
    constants.setdefault(
        Constants.DECREASE_RESOLUTION_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.DECREASE_RESOLUTION_FACTOR],
    )
    constants[Constants.DECREASE_RESOLUTION_FACTOR.value] = float(
        constants[Constants.DECREASE_RESOLUTION_FACTOR]
    )
    if (
        constants[Constants.DECREASE_RESOLUTION_FACTOR] <= 0.0
        or constants[Constants.DECREASE_RESOLUTION_FACTOR] >= 1.0
    ):
        raise ValueError(
            "The constant decrease_resolution_factor must be in the interval "
            "(0, 1)."
        )
    if (
        Constants.LARGE_RESOLUTION_THRESHOLD in constants
        and constants[Constants.LARGE_RESOLUTION_THRESHOLD] <= 1.0
    ):
        raise ValueError(
            "The constant large_resolution_threshold must be greater than 1."
        )
    if (
        Constants.MODERATE_RESOLUTION_THRESHOLD in constants
        and constants[Constants.MODERATE_RESOLUTION_THRESHOLD] <= 1.0
    ):
        raise ValueError(
            "The constant moderate_resolution_threshold must be greater than "
            "1."
        )
    if (
        Constants.LARGE_RESOLUTION_THRESHOLD in constants
        and Constants.MODERATE_RESOLUTION_THRESHOLD in constants
    ):
        if (
            constants[Constants.MODERATE_RESOLUTION_THRESHOLD]
            > constants[Constants.LARGE_RESOLUTION_THRESHOLD]
        ):
            raise ValueError(
                "The constant moderate_resolution_threshold "
                "must be at most large_resolution_threshold."
            )
    elif Constants.LARGE_RESOLUTION_THRESHOLD in constants:
        constants[Constants.MODERATE_RESOLUTION_THRESHOLD.value] = np.min(
            [
                DEFAULT_CONSTANTS[Constants.MODERATE_RESOLUTION_THRESHOLD],
                constants[Constants.LARGE_RESOLUTION_THRESHOLD],
            ]
        )
    elif Constants.MODERATE_RESOLUTION_THRESHOLD in constants:
        constants[Constants.LARGE_RESOLUTION_THRESHOLD.value] = np.max(
            [
                DEFAULT_CONSTANTS[Constants.LARGE_RESOLUTION_THRESHOLD],
                constants[Constants.MODERATE_RESOLUTION_THRESHOLD],
            ]
        )
    else:
        constants[Constants.LARGE_RESOLUTION_THRESHOLD.value] = (
            DEFAULT_CONSTANTS[Constants.LARGE_RESOLUTION_THRESHOLD]
        )
        constants[Constants.MODERATE_RESOLUTION_THRESHOLD.value] = (
            DEFAULT_CONSTANTS[Constants.MODERATE_RESOLUTION_THRESHOLD]
        )
    if Constants.LOW_RATIO in constants and (
        constants[Constants.LOW_RATIO] <= 0.0
        or constants[Constants.LOW_RATIO] >= 1.0
    ):
        raise ValueError(
            "The constant low_ratio must be in the interval (0, 1)."
        )
    if Constants.HIGH_RATIO in constants and (
        constants[Constants.HIGH_RATIO] <= 0.0
        or constants[Constants.HIGH_RATIO] >= 1.0
    ):
        raise ValueError(
            "The constant high_ratio must be in the interval (0, 1)."
        )
    if Constants.LOW_RATIO in constants and Constants.HIGH_RATIO in constants:
        if constants[Constants.LOW_RATIO] > constants[Constants.HIGH_RATIO]:
            raise ValueError(
                "The constant low_ratio must be at most high_ratio."
            )
    elif Constants.LOW_RATIO in constants:
        constants[Constants.HIGH_RATIO.value] = np.max(
            [
                DEFAULT_CONSTANTS[Constants.HIGH_RATIO],
                constants[Constants.LOW_RATIO],
            ]
        )
    elif Constants.HIGH_RATIO in constants:
        constants[Constants.LOW_RATIO.value] = np.min(
            [
                DEFAULT_CONSTANTS[Constants.LOW_RATIO],
                constants[Constants.HIGH_RATIO],
            ]
        )
    else:
        constants[Constants.LOW_RATIO.value] = DEFAULT_CONSTANTS[
            Constants.LOW_RATIO
        ]
        constants[Constants.HIGH_RATIO.value] = DEFAULT_CONSTANTS[
            Constants.HIGH_RATIO
        ]
    constants.setdefault(
        Constants.VERY_LOW_RATIO.value,
        DEFAULT_CONSTANTS[Constants.VERY_LOW_RATIO],
    )
    constants[Constants.VERY_LOW_RATIO.value] = float(
        constants[Constants.VERY_LOW_RATIO]
    )
    if (
        constants[Constants.VERY_LOW_RATIO] <= 0.0
        or constants[Constants.VERY_LOW_RATIO] >= 1.0
    ):
        raise ValueError(
            "The constant very_low_ratio must be in the interval (0, 1)."
        )
    if (
        Constants.PENALTY_INCREASE_THRESHOLD in constants
        and constants[Constants.PENALTY_INCREASE_THRESHOLD] < 1.0
    ):
        raise ValueError(
            "The constant penalty_increase_threshold must be "
            "greater than or equal to 1."
        )
    if (
        Constants.PENALTY_INCREASE_FACTOR in constants
        and constants[Constants.PENALTY_INCREASE_FACTOR] <= 1.0
    ):
        raise ValueError(
            "The constant penalty_increase_factor must be greater than 1."
        )
    if (
        Constants.PENALTY_INCREASE_THRESHOLD in constants
        and Constants.PENALTY_INCREASE_FACTOR in constants
    ):
        if (
            constants[Constants.PENALTY_INCREASE_FACTOR]
            < constants[Constants.PENALTY_INCREASE_THRESHOLD]
        ):
            raise ValueError(
                "The constant penalty_increase_factor must be "
                "greater than or equal to "
                "penalty_increase_threshold."
            )
    elif Constants.PENALTY_INCREASE_THRESHOLD in constants:
        constants[Constants.PENALTY_INCREASE_FACTOR.value] = np.max(
            [
                DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_FACTOR],
                constants[Constants.PENALTY_INCREASE_THRESHOLD],
            ]
        )
    elif Constants.PENALTY_INCREASE_FACTOR in constants:
        constants[Constants.PENALTY_INCREASE_THRESHOLD.value] = np.min(
            [
                DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_THRESHOLD],
                constants[Constants.PENALTY_INCREASE_FACTOR],
            ]
        )
    else:
        constants[Constants.PENALTY_INCREASE_THRESHOLD.value] = (
            DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_THRESHOLD]
        )
        constants[Constants.PENALTY_INCREASE_FACTOR.value] = DEFAULT_CONSTANTS[
            Constants.PENALTY_INCREASE_FACTOR
        ]
    constants.setdefault(
        Constants.SHORT_STEP_THRESHOLD.value,
        DEFAULT_CONSTANTS[Constants.SHORT_STEP_THRESHOLD],
    )
    constants[Constants.SHORT_STEP_THRESHOLD.value] = float(
        constants[Constants.SHORT_STEP_THRESHOLD]
    )
    if (
        constants[Constants.SHORT_STEP_THRESHOLD] <= 0.0
        or constants[Constants.SHORT_STEP_THRESHOLD] >= 1.0
    ):
        raise ValueError(
            "The constant short_step_threshold must be in the interval (0, 1)."
        )
    constants.setdefault(
        Constants.LOW_RADIUS_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.LOW_RADIUS_FACTOR],
    )
    constants[Constants.LOW_RADIUS_FACTOR.value] = float(
        constants[Constants.LOW_RADIUS_FACTOR]
    )
    if (
        constants[Constants.LOW_RADIUS_FACTOR] <= 0.0
        or constants[Constants.LOW_RADIUS_FACTOR] >= 1.0
    ):
        raise ValueError(
            "The constant low_radius_factor must be in the interval (0, 1)."
        )
    constants.setdefault(
        Constants.BYRD_OMOJOKUN_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.BYRD_OMOJOKUN_FACTOR],
    )
    constants[Constants.BYRD_OMOJOKUN_FACTOR.value] = float(
        constants[Constants.BYRD_OMOJOKUN_FACTOR]
    )
    if (
        constants[Constants.BYRD_OMOJOKUN_FACTOR] <= 0.0
        or constants[Constants.BYRD_OMOJOKUN_FACTOR] >= 1.0
    ):
        raise ValueError(
            "The constant byrd_omojokun_factor must be in the interval (0, 1)."
        )
    constants.setdefault(
        Constants.THRESHOLD_RATIO_CONSTRAINTS.value,
        DEFAULT_CONSTANTS[Constants.THRESHOLD_RATIO_CONSTRAINTS],
    )
    constants[Constants.THRESHOLD_RATIO_CONSTRAINTS.value] = float(
        constants[Constants.THRESHOLD_RATIO_CONSTRAINTS]
    )
    if constants[Constants.THRESHOLD_RATIO_CONSTRAINTS] <= 1.0:
        raise ValueError(
            "The constant threshold_ratio_constraints must be greater than 1."
        )
    constants.setdefault(
        Constants.LARGE_SHIFT_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.LARGE_SHIFT_FACTOR],
    )
    constants[Constants.LARGE_SHIFT_FACTOR.value] = float(
        constants[Constants.LARGE_SHIFT_FACTOR]
    )
    if constants[Constants.LARGE_SHIFT_FACTOR] < 0.0:
        raise ValueError("The constant large_shift_factor must be "
                         "nonnegative.")
    constants.setdefault(
        Constants.LARGE_GRADIENT_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.LARGE_GRADIENT_FACTOR],
    )
    constants[Constants.LARGE_GRADIENT_FACTOR.value] = float(
        constants[Constants.LARGE_GRADIENT_FACTOR]
    )
    if constants[Constants.LARGE_GRADIENT_FACTOR] <= 1.0:
        raise ValueError(
            "The constant large_gradient_factor must be greater than 1."
        )
    constants.setdefault(
        Constants.RESOLUTION_FACTOR.value,
        DEFAULT_CONSTANTS[Constants.RESOLUTION_FACTOR],
    )
    constants[Constants.RESOLUTION_FACTOR.value] = float(
        constants[Constants.RESOLUTION_FACTOR]
    )
    if constants[Constants.RESOLUTION_FACTOR] <= 1.0:
        raise ValueError(
            "The constant resolution_factor must be greater than 1."
        )
    constants.setdefault(
        Constants.IMPROVE_TCG.value,
        DEFAULT_CONSTANTS[Constants.IMPROVE_TCG],
    )
    constants[Constants.IMPROVE_TCG.value] = bool(
        constants[Constants.IMPROVE_TCG]
    )

    # Check whether they are any unknown options.
    for key in kwargs:
        if key not in Constants.__members__.values():
            warnings.warn(f"Unknown constant: {key}.", RuntimeWarning, 3)
    return constants


def _eval(pb, framework, step, options):
    """
    Evaluate the objective and constraint functions.
    """
    if pb.n_eval >= options[Options.MAX_EVAL]:
        raise MaxEvalError
    x_eval = framework.x_best + step
    fun_val, cub_val, ceq_val = pb(x_eval, framework.penalty)
    r_val = pb.maxcv(x_eval, cub_val, ceq_val)
    if (
        fun_val <= options[Options.TARGET]
        and r_val <= options[Options.FEASIBILITY_TOL]
    ):
        raise TargetSuccess
    if pb.is_feasibility and r_val <= options[Options.FEASIBILITY_TOL]:
        raise FeasibleSuccess
    return fun_val, cub_val, ceq_val


def _build_result(pb, penalty, success, status, n_iter, options):
    """
    Build the result of the optimization process.
    """
    # Build the result.
    x, fun, maxcv = pb.best_eval(penalty)
    success = success and np.isfinite(fun) and np.isfinite(maxcv)
    if status not in [ExitStatus.TARGET_SUCCESS, ExitStatus.FEASIBLE_SUCCESS]:
        success = success and maxcv <= options[Options.FEASIBILITY_TOL]
    result = OptimizeResult()
    result.message = {
        ExitStatus.RADIUS_SUCCESS: "The lower bound for the trust-region "
                                   "radius has been reached",
        ExitStatus.TARGET_SUCCESS: "The target objective function value has "
                                   "been reached",
        ExitStatus.FIXED_SUCCESS: "All variables are fixed by the bound "
                                  "constraints",
        ExitStatus.CALLBACK_SUCCESS: "The callback requested to stop the "
                                     "optimization procedure",
        ExitStatus.FEASIBLE_SUCCESS: "The feasibility problem received has "
                                     "been solved successfully",
        ExitStatus.MAX_EVAL_WARNING: "The maximum number of function "
                                     "evaluations has been exceeded",
        ExitStatus.MAX_ITER_WARNING: "The maximum number of iterations has "
                                     "been exceeded",
        ExitStatus.INFEASIBLE_ERROR: "The bound constraints are infeasible",
        ExitStatus.LINALG_ERROR: "A linear algebra error occurred",
    }.get(status, "Unknown exit status")
    result.success = success
    result.status = status.value
    result.x = pb.build_x(x)
    result.fun = fun
    result.maxcv = maxcv
    result.nfev = pb.n_eval
    result.nit = n_iter
    if options[Options.STORE_HISTORY]:
        result.fun_history = pb.fun_history
        result.maxcv_history = pb.maxcv_history

    # Print the result if requested.
    if options[Options.VERBOSE]:
        _print_step(
            result.message,
            pb,
            result.x,
            result.fun,
            result.maxcv,
            result.nfev,
            result.nit,
        )
    return result


def _print_step(message, pb, x, fun_val, r_val, n_eval, n_iter):
    """
    Print information about the current state of the optimization process.
    """
    print()
    print(f"{message}.")
    print(f"Number of function evaluations: {n_eval}.")
    print(f"Number of iterations: {n_iter}.")
    if not pb.is_feasibility:
        print(f"Least value of {pb.fun_name}: {fun_val}.")
    print(f"Maximum constraint violation: {r_val}.")
    with np.printoptions(**PRINT_OPTIONS):
        print(f"Corresponding point: {x}.")