File size: 16,046 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import numpy as np
import pytest

from pandas.errors import NumbaUtilError
import pandas.util._test_decorators as td

from pandas import (
    DataFrame,
    Series,
    option_context,
    to_datetime,
)
import pandas._testing as tm

pytestmark = pytest.mark.single_cpu


@pytest.fixture(params=["single", "table"])
def method(request):
    """method keyword in rolling/expanding/ewm constructor"""
    return request.param


@pytest.fixture(
    params=[
        ["sum", {}],
        ["mean", {}],
        ["median", {}],
        ["max", {}],
        ["min", {}],
        ["var", {}],
        ["var", {"ddof": 0}],
        ["std", {}],
        ["std", {"ddof": 0}],
    ]
)
def arithmetic_numba_supported_operators(request):
    return request.param


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestEngine:
    @pytest.mark.parametrize("jit", [True, False])
    def test_numba_vs_cython_apply(self, jit, nogil, parallel, nopython, center, step):
        def f(x, *args):
            arg_sum = 0
            for arg in args:
                arg_sum += arg
            return np.mean(x) + arg_sum

        if jit:
            import numba

            f = numba.jit(f)

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
        args = (2,)

        s = Series(range(10))
        result = s.rolling(2, center=center, step=step).apply(
            f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True
        )
        expected = s.rolling(2, center=center, step=step).apply(
            f, engine="cython", args=args, raw=True
        )
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "data",
        [
            DataFrame(np.eye(5)),
            DataFrame(
                [
                    [5, 7, 7, 7, np.nan, np.inf, 4, 3, 3, 3],
                    [5, 7, 7, 7, np.nan, np.inf, 7, 3, 3, 3],
                    [np.nan, np.nan, 5, 6, 7, 5, 5, 5, 5, 5],
                ]
            ).T,
            Series(range(5), name="foo"),
            Series([20, 10, 10, np.inf, 1, 1, 2, 3]),
            Series([20, 10, 10, np.nan, 10, 1, 2, 3]),
        ],
    )
    def test_numba_vs_cython_rolling_methods(
        self,
        data,
        nogil,
        parallel,
        nopython,
        arithmetic_numba_supported_operators,
        step,
    ):
        method, kwargs = arithmetic_numba_supported_operators

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        roll = data.rolling(3, step=step)
        result = getattr(roll, method)(
            engine="numba", engine_kwargs=engine_kwargs, **kwargs
        )
        expected = getattr(roll, method)(engine="cython", **kwargs)
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize(
        "data", [DataFrame(np.eye(5)), Series(range(5), name="foo")]
    )
    def test_numba_vs_cython_expanding_methods(
        self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators
    ):
        method, kwargs = arithmetic_numba_supported_operators

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        data = DataFrame(np.eye(5))
        expand = data.expanding()
        result = getattr(expand, method)(
            engine="numba", engine_kwargs=engine_kwargs, **kwargs
        )
        expected = getattr(expand, method)(engine="cython", **kwargs)
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize("jit", [True, False])
    def test_cache_apply(self, jit, nogil, parallel, nopython, step):
        # Test that the functions are cached correctly if we switch functions
        def func_1(x):
            return np.mean(x) + 4

        def func_2(x):
            return np.std(x) * 5

        if jit:
            import numba

            func_1 = numba.jit(func_1)
            func_2 = numba.jit(func_2)

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        roll = Series(range(10)).rolling(2, step=step)
        result = roll.apply(
            func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
        )
        expected = roll.apply(func_1, engine="cython", raw=True)
        tm.assert_series_equal(result, expected)

        result = roll.apply(
            func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True
        )
        expected = roll.apply(func_2, engine="cython", raw=True)
        tm.assert_series_equal(result, expected)
        # This run should use the cached func_1
        result = roll.apply(
            func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
        )
        expected = roll.apply(func_1, engine="cython", raw=True)
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "window,window_kwargs",
        [
            ["rolling", {"window": 3, "min_periods": 0}],
            ["expanding", {}],
        ],
    )
    def test_dont_cache_args(
        self, window, window_kwargs, nogil, parallel, nopython, method
    ):
        # GH 42287

        def add(values, x):
            return np.sum(values) + x

        engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
        df = DataFrame({"value": [0, 0, 0]})
        result = getattr(df, window)(method=method, **window_kwargs).apply(
            add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(1,)
        )
        expected = DataFrame({"value": [1.0, 1.0, 1.0]})
        tm.assert_frame_equal(result, expected)

        result = getattr(df, window)(method=method, **window_kwargs).apply(
            add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(2,)
        )
        expected = DataFrame({"value": [2.0, 2.0, 2.0]})
        tm.assert_frame_equal(result, expected)

    def test_dont_cache_engine_kwargs(self):
        # If the user passes a different set of engine_kwargs don't return the same
        # jitted function
        nogil = False
        parallel = True
        nopython = True

        def func(x):
            return nogil + parallel + nopython

        engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
        df = DataFrame({"value": [0, 0, 0]})
        result = df.rolling(1).apply(
            func, raw=True, engine="numba", engine_kwargs=engine_kwargs
        )
        expected = DataFrame({"value": [2.0, 2.0, 2.0]})
        tm.assert_frame_equal(result, expected)

        parallel = False
        engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
        result = df.rolling(1).apply(
            func, raw=True, engine="numba", engine_kwargs=engine_kwargs
        )
        expected = DataFrame({"value": [1.0, 1.0, 1.0]})
        tm.assert_frame_equal(result, expected)


@td.skip_if_no("numba")
class TestEWM:
    @pytest.mark.parametrize(
        "grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"]
    )
    @pytest.mark.parametrize("method", ["mean", "sum"])
    def test_invalid_engine(self, grouper, method):
        df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
        with pytest.raises(ValueError, match="engine must be either"):
            getattr(grouper(df).ewm(com=1.0), method)(engine="foo")

    @pytest.mark.parametrize(
        "grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"]
    )
    @pytest.mark.parametrize("method", ["mean", "sum"])
    def test_invalid_engine_kwargs(self, grouper, method):
        df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
        with pytest.raises(ValueError, match="cython engine does not"):
            getattr(grouper(df).ewm(com=1.0), method)(
                engine="cython", engine_kwargs={"nopython": True}
            )

    @pytest.mark.parametrize("grouper", ["None", "groupby"])
    @pytest.mark.parametrize("method", ["mean", "sum"])
    def test_cython_vs_numba(
        self, grouper, method, nogil, parallel, nopython, ignore_na, adjust
    ):
        df = DataFrame({"B": range(4)})
        if grouper == "None":
            grouper = lambda x: x
        else:
            df["A"] = ["a", "b", "a", "b"]
            grouper = lambda x: x.groupby("A")
        if method == "sum":
            adjust = True
        ewm = grouper(df).ewm(com=1.0, adjust=adjust, ignore_na=ignore_na)

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
        result = getattr(ewm, method)(engine="numba", engine_kwargs=engine_kwargs)
        expected = getattr(ewm, method)(engine="cython")

        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("grouper", ["None", "groupby"])
    def test_cython_vs_numba_times(self, grouper, nogil, parallel, nopython, ignore_na):
        # GH 40951

        df = DataFrame({"B": [0, 0, 1, 1, 2, 2]})
        if grouper == "None":
            grouper = lambda x: x
        else:
            grouper = lambda x: x.groupby("A")
            df["A"] = ["a", "b", "a", "b", "b", "a"]

        halflife = "23 days"
        times = to_datetime(
            [
                "2020-01-01",
                "2020-01-01",
                "2020-01-02",
                "2020-01-10",
                "2020-02-23",
                "2020-01-03",
            ]
        )
        ewm = grouper(df).ewm(
            halflife=halflife, adjust=True, ignore_na=ignore_na, times=times
        )

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        result = ewm.mean(engine="numba", engine_kwargs=engine_kwargs)
        expected = ewm.mean(engine="cython")

        tm.assert_frame_equal(result, expected)


@td.skip_if_no("numba")
def test_use_global_config():
    def f(x):
        return np.mean(x) + 2

    s = Series(range(10))
    with option_context("compute.use_numba", True):
        result = s.rolling(2).apply(f, engine=None, raw=True)
    expected = s.rolling(2).apply(f, engine="numba", raw=True)
    tm.assert_series_equal(expected, result)


@td.skip_if_no("numba")
def test_invalid_kwargs_nopython():
    with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"):
        Series(range(1)).rolling(1).apply(
            lambda x: x, kwargs={"a": 1}, engine="numba", raw=True
        )


@td.skip_if_no("numba")
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestTableMethod:
    def test_table_series_valueerror(self):
        def f(x):
            return np.sum(x, axis=0) + 1

        with pytest.raises(
            ValueError, match="method='table' not applicable for Series objects."
        ):
            Series(range(1)).rolling(1, method="table").apply(
                f, engine="numba", raw=True
            )

    def test_table_method_rolling_methods(
        self,
        axis,
        nogil,
        parallel,
        nopython,
        arithmetic_numba_supported_operators,
        step,
    ):
        method, kwargs = arithmetic_numba_supported_operators

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        df = DataFrame(np.eye(3))
        roll_table = df.rolling(2, method="table", axis=axis, min_periods=0, step=step)
        if method in ("var", "std"):
            with pytest.raises(NotImplementedError, match=f"{method} not supported"):
                getattr(roll_table, method)(
                    engine_kwargs=engine_kwargs, engine="numba", **kwargs
                )
        else:
            roll_single = df.rolling(
                2, method="single", axis=axis, min_periods=0, step=step
            )
            result = getattr(roll_table, method)(
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
            )
            expected = getattr(roll_single, method)(
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
            )
            tm.assert_frame_equal(result, expected)

    def test_table_method_rolling_apply(self, axis, nogil, parallel, nopython, step):
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        def f(x):
            return np.sum(x, axis=0) + 1

        df = DataFrame(np.eye(3))
        result = df.rolling(
            2, method="table", axis=axis, min_periods=0, step=step
        ).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba")
        expected = df.rolling(
            2, method="single", axis=axis, min_periods=0, step=step
        ).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba")
        tm.assert_frame_equal(result, expected)

    def test_table_method_rolling_weighted_mean(self, step):
        def weighted_mean(x):
            arr = np.ones((1, x.shape[1]))
            arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum()
            return arr

        df = DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]])
        result = df.rolling(2, method="table", min_periods=0, step=step).apply(
            weighted_mean, raw=True, engine="numba"
        )
        expected = DataFrame(
            [
                [1.0, 2.0, 1.0],
                [1.8, 2.0, 1.0],
                [3.333333, 2.333333, 1.0],
                [1.555556, 7, 1.0],
            ]
        )[::step]
        tm.assert_frame_equal(result, expected)

    def test_table_method_expanding_apply(self, axis, nogil, parallel, nopython):
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        def f(x):
            return np.sum(x, axis=0) + 1

        df = DataFrame(np.eye(3))
        result = df.expanding(method="table", axis=axis).apply(
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
        )
        expected = df.expanding(method="single", axis=axis).apply(
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
        )
        tm.assert_frame_equal(result, expected)

    def test_table_method_expanding_methods(
        self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators
    ):
        method, kwargs = arithmetic_numba_supported_operators

        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        df = DataFrame(np.eye(3))
        expand_table = df.expanding(method="table", axis=axis)
        if method in ("var", "std"):
            with pytest.raises(NotImplementedError, match=f"{method} not supported"):
                getattr(expand_table, method)(
                    engine_kwargs=engine_kwargs, engine="numba", **kwargs
                )
        else:
            expand_single = df.expanding(method="single", axis=axis)
            result = getattr(expand_table, method)(
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
            )
            expected = getattr(expand_single, method)(
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
            )
            tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("data", [np.eye(3), np.ones((2, 3)), np.ones((3, 2))])
    @pytest.mark.parametrize("method", ["mean", "sum"])
    def test_table_method_ewm(self, data, method, axis, nogil, parallel, nopython):
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}

        df = DataFrame(data)

        result = getattr(df.ewm(com=1, method="table", axis=axis), method)(
            engine_kwargs=engine_kwargs, engine="numba"
        )
        expected = getattr(df.ewm(com=1, method="single", axis=axis), method)(
            engine_kwargs=engine_kwargs, engine="numba"
        )
        tm.assert_frame_equal(result, expected)


@td.skip_if_no("numba")
def test_npfunc_no_warnings():
    df = DataFrame({"col1": [1, 2, 3, 4, 5]})
    with tm.assert_produces_warning(False):
        df.col1.rolling(2).apply(np.prod, raw=True, engine="numba")