File size: 33,812 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
from datetime import (
date,
timedelta,
timezone,
)
from decimal import Decimal
import operator
import numpy as np
import pytest
from pandas._libs import lib
from pandas._libs.tslibs import IncompatibleFrequency
import pandas as pd
from pandas import (
Categorical,
DatetimeTZDtype,
Index,
Series,
Timedelta,
bdate_range,
date_range,
isna,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.computation import expressions as expr
from pandas.core.computation.check import NUMEXPR_INSTALLED
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
def switch_numexpr_min_elements(request, monkeypatch):
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", request.param)
yield
def _permute(obj):
return obj.take(np.random.default_rng(2).permutation(len(obj)))
class TestSeriesFlexArithmetic:
@pytest.mark.parametrize(
"ts",
[
(lambda x: x, lambda x: x * 2, False),
(lambda x: x, lambda x: x[::2], False),
(lambda x: x, lambda x: 5, True),
(
lambda x: Series(range(10), dtype=np.float64),
lambda x: Series(range(10), dtype=np.float64),
True,
),
],
)
@pytest.mark.parametrize(
"opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"]
)
def test_flex_method_equivalence(self, opname, ts):
# check that Series.{opname} behaves like Series.__{opname}__,
tser = Series(
np.arange(20, dtype=np.float64),
index=date_range("2020-01-01", periods=20),
name="ts",
)
series = ts[0](tser)
other = ts[1](tser)
check_reverse = ts[2]
op = getattr(Series, opname)
alt = getattr(operator, opname)
result = op(series, other)
expected = alt(series, other)
tm.assert_almost_equal(result, expected)
if check_reverse:
rop = getattr(Series, "r" + opname)
result = rop(series, other)
expected = alt(other, series)
tm.assert_almost_equal(result, expected)
def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators):
# GH 13208
class MySeries(Series):
_metadata = ["x"]
@property
def _constructor(self):
return MySeries
opname = all_arithmetic_operators
op = getattr(Series, opname)
m = MySeries([1, 2, 3], name="test")
m.x = 42
result = op(m, 1)
assert result.x == 42
def test_flex_add_scalar_fill_value(self):
# GH12723
ser = Series([0, 1, np.nan, 3, 4, 5])
exp = ser.fillna(0).add(2)
res = ser.add(2, fill_value=0)
tm.assert_series_equal(res, exp)
pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)]
for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]:
fv = 0
lop = getattr(Series, op)
lequiv = getattr(operator, op)
rop = getattr(Series, "r" + op)
# bind op at definition time...
requiv = lambda x, y, op=op: getattr(operator, op)(y, x)
pairings.append((lop, lequiv, fv))
pairings.append((rop, requiv, fv))
@pytest.mark.parametrize("op, equiv_op, fv", pairings)
def test_operators_combine(self, op, equiv_op, fv):
def _check_fill(meth, op, a, b, fill_value=0):
exp_index = a.index.union(b.index)
a = a.reindex(exp_index)
b = b.reindex(exp_index)
amask = isna(a)
bmask = isna(b)
exp_values = []
for i in range(len(exp_index)):
with np.errstate(all="ignore"):
if amask[i]:
if bmask[i]:
exp_values.append(np.nan)
continue
exp_values.append(op(fill_value, b[i]))
elif bmask[i]:
if amask[i]:
exp_values.append(np.nan)
continue
exp_values.append(op(a[i], fill_value))
else:
exp_values.append(op(a[i], b[i]))
result = meth(a, b, fill_value=fill_value)
expected = Series(exp_values, exp_index)
tm.assert_series_equal(result, expected)
a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5))
b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6))
result = op(a, b)
exp = equiv_op(a, b)
tm.assert_series_equal(result, exp)
_check_fill(op, equiv_op, a, b, fill_value=fv)
# should accept axis=0 or axis='rows'
op(a, b, axis=0)
class TestSeriesArithmetic:
# Some of these may end up in tests/arithmetic, but are not yet sorted
def test_add_series_with_period_index(self):
rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y")
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
result = ts + ts[::2]
expected = ts + ts
expected.iloc[1::2] = np.nan
tm.assert_series_equal(result, expected)
result = ts + _permute(ts[::2])
tm.assert_series_equal(result, expected)
msg = "Input has different freq=D from Period\\(freq=Y-DEC\\)"
with pytest.raises(IncompatibleFrequency, match=msg):
ts + ts.asfreq("D", how="end")
@pytest.mark.parametrize(
"target_add,input_value,expected_value",
[
("!", ["hello", "world"], ["hello!", "world!"]),
("m", ["hello", "world"], ["hellom", "worldm"]),
],
)
def test_string_addition(self, target_add, input_value, expected_value):
# GH28658 - ensure adding 'm' does not raise an error
a = Series(input_value)
result = a + target_add
expected = Series(expected_value)
tm.assert_series_equal(result, expected)
def test_divmod(self):
# GH#25557
a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"])
b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"])
result = a.divmod(b)
expected = divmod(a, b)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
result = a.rdivmod(b)
expected = divmod(b, a)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
@pytest.mark.parametrize("index", [None, range(9)])
def test_series_integer_mod(self, index):
# GH#24396
s1 = Series(range(1, 10))
s2 = Series("foo", index=index)
msg = "not all arguments converted during string formatting|mod not"
with pytest.raises((TypeError, NotImplementedError), match=msg):
s2 % s1
def test_add_with_duplicate_index(self):
# GH14227
s1 = Series([1, 2], index=[1, 1])
s2 = Series([10, 10], index=[1, 2])
result = s1 + s2
expected = Series([11, 12, np.nan], index=[1, 1, 2])
tm.assert_series_equal(result, expected)
def test_add_na_handling(self):
ser = Series(
[Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)]
)
result = ser + ser.shift(1)
result2 = ser.shift(1) + ser
assert isna(result.iloc[0])
assert isna(result2.iloc[0])
def test_add_corner_cases(self, datetime_series):
empty = Series([], index=Index([]), dtype=np.float64)
result = datetime_series + empty
assert np.isnan(result).all()
result = empty + empty.copy()
assert len(result) == 0
def test_add_float_plus_int(self, datetime_series):
# float + int
int_ts = datetime_series.astype(int)[:-5]
added = datetime_series + int_ts
expected = Series(
datetime_series.values[:-5] + int_ts.values,
index=datetime_series.index[:-5],
name="ts",
)
tm.assert_series_equal(added[:-5], expected)
def test_mul_empty_int_corner_case(self):
s1 = Series([], [], dtype=np.int32)
s2 = Series({"x": 0.0})
tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"]))
def test_sub_datetimelike_align(self):
# GH#7500
# datetimelike ops need to align
dt = Series(date_range("2012-1-1", periods=3, freq="D"))
dt.iloc[2] = np.nan
dt2 = dt[::-1]
expected = Series([timedelta(0), timedelta(0), pd.NaT])
# name is reset
result = dt2 - dt
tm.assert_series_equal(result, expected)
expected = Series(expected, name=0)
result = (dt2.to_frame() - dt.to_frame())[0]
tm.assert_series_equal(result, expected)
def test_alignment_doesnt_change_tz(self):
# GH#33671
dti = date_range("2016-01-01", periods=10, tz="CET")
dti_utc = dti.tz_convert("UTC")
ser = Series(10, index=dti)
ser_utc = Series(10, index=dti_utc)
# we don't care about the result, just that original indexes are unchanged
ser * ser_utc
assert ser.index is dti
assert ser_utc.index is dti_utc
def test_alignment_categorical(self):
# GH13365
cat = Categorical(["3z53", "3z53", "LoJG", "LoJG", "LoJG", "N503"])
ser1 = Series(2, index=cat)
ser2 = Series(2, index=cat[:-1])
result = ser1 * ser2
exp_index = ["3z53"] * 4 + ["LoJG"] * 9 + ["N503"]
exp_index = pd.CategoricalIndex(exp_index, categories=cat.categories)
exp_values = [4.0] * 13 + [np.nan]
expected = Series(exp_values, exp_index)
tm.assert_series_equal(result, expected)
def test_arithmetic_with_duplicate_index(self):
# GH#8363
# integer ops with a non-unique index
index = [2, 2, 3, 3, 4]
ser = Series(np.arange(1, 6, dtype="int64"), index=index)
other = Series(np.arange(5, dtype="int64"), index=index)
result = ser - other
expected = Series(1, index=[2, 2, 3, 3, 4])
tm.assert_series_equal(result, expected)
# GH#8363
# datetime ops with a non-unique index
ser = Series(date_range("20130101 09:00:00", periods=5), index=index)
other = Series(date_range("20130101", periods=5), index=index)
result = ser - other
expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4])
tm.assert_series_equal(result, expected)
def test_masked_and_non_masked_propagate_na(self):
# GH#45810
ser1 = Series([0, np.nan], dtype="float")
ser2 = Series([0, 1], dtype="Int64")
result = ser1 * ser2
expected = Series([0, pd.NA], dtype="Float64")
tm.assert_series_equal(result, expected)
def test_mask_div_propagate_na_for_non_na_dtype(self):
# GH#42630
ser1 = Series([15, pd.NA, 5, 4], dtype="Int64")
ser2 = Series([15, 5, np.nan, 4])
result = ser1 / ser2
expected = Series([1.0, pd.NA, pd.NA, 1.0], dtype="Float64")
tm.assert_series_equal(result, expected)
result = ser2 / ser1
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("val, dtype", [(3, "Int64"), (3.5, "Float64")])
def test_add_list_to_masked_array(self, val, dtype):
# GH#22962
ser = Series([1, None, 3], dtype="Int64")
result = ser + [1, None, val]
expected = Series([2, None, 3 + val], dtype=dtype)
tm.assert_series_equal(result, expected)
result = [1, None, val] + ser
tm.assert_series_equal(result, expected)
def test_add_list_to_masked_array_boolean(self, request):
# GH#22962
warning = (
UserWarning
if request.node.callspec.id == "numexpr" and NUMEXPR_INSTALLED
else None
)
ser = Series([True, None, False], dtype="boolean")
with tm.assert_produces_warning(warning):
result = ser + [True, None, True]
expected = Series([True, None, True], dtype="boolean")
tm.assert_series_equal(result, expected)
with tm.assert_produces_warning(warning):
result = [True, None, True] + ser
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Comparisons
class TestSeriesFlexComparison:
@pytest.mark.parametrize("axis", [0, None, "index"])
def test_comparison_flex_basic(self, axis, comparison_op):
left = Series(np.random.default_rng(2).standard_normal(10))
right = Series(np.random.default_rng(2).standard_normal(10))
result = getattr(left, comparison_op.__name__)(right, axis=axis)
expected = comparison_op(left, right)
tm.assert_series_equal(result, expected)
def test_comparison_bad_axis(self, comparison_op):
left = Series(np.random.default_rng(2).standard_normal(10))
right = Series(np.random.default_rng(2).standard_normal(10))
msg = "No axis named 1 for object type"
with pytest.raises(ValueError, match=msg):
getattr(left, comparison_op.__name__)(right, axis=1)
@pytest.mark.parametrize(
"values, op",
[
([False, False, True, False], "eq"),
([True, True, False, True], "ne"),
([False, False, True, False], "le"),
([False, False, False, False], "lt"),
([False, True, True, False], "ge"),
([False, True, False, False], "gt"),
],
)
def test_comparison_flex_alignment(self, values, op):
left = Series([1, 3, 2], index=list("abc"))
right = Series([2, 2, 2], index=list("bcd"))
result = getattr(left, op)(right)
expected = Series(values, index=list("abcd"))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"values, op, fill_value",
[
([False, False, True, True], "eq", 2),
([True, True, False, False], "ne", 2),
([False, False, True, True], "le", 0),
([False, False, False, True], "lt", 0),
([True, True, True, False], "ge", 0),
([True, True, False, False], "gt", 0),
],
)
def test_comparison_flex_alignment_fill(self, values, op, fill_value):
left = Series([1, 3, 2], index=list("abc"))
right = Series([2, 2, 2], index=list("bcd"))
result = getattr(left, op)(right, fill_value=fill_value)
expected = Series(values, index=list("abcd"))
tm.assert_series_equal(result, expected)
class TestSeriesComparison:
def test_comparison_different_length(self):
a = Series(["a", "b", "c"])
b = Series(["b", "a"])
msg = "only compare identically-labeled Series"
with pytest.raises(ValueError, match=msg):
a < b
a = Series([1, 2])
b = Series([2, 3, 4])
with pytest.raises(ValueError, match=msg):
a == b
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes(self, opname):
# GH#15115
ser = Series([1, 3, 2], index=range(3))
const = 2
result = getattr(ser, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes_empty(self, opname):
# GH#15115 empty Series case
ser = Series([1, 3, 2], index=range(3))
empty = ser.iloc[:0]
const = 2
result = getattr(empty, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize(
"names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")]
)
def test_ser_cmp_result_names(self, names, comparison_op):
# datetime64 dtype
op = comparison_op
dti = date_range("1949-06-07 03:00:00", freq="h", periods=5, name=names[0])
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# datetime64tz dtype
dti = dti.tz_localize("US/Central")
dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# timedelta64 dtype
tdi = dti - dti.shift(1)
ser = Series(tdi).rename(names[1])
result = op(ser, tdi)
assert result.name == names[2]
# interval dtype
if op in [operator.eq, operator.ne]:
# interval dtype comparisons not yet implemented
ii = pd.interval_range(start=0, periods=5, name=names[0])
ser = Series(ii).rename(names[1])
result = op(ser, ii)
assert result.name == names[2]
# categorical
if op in [operator.eq, operator.ne]:
# categorical dtype comparisons raise for inequalities
cidx = tdi.astype("category")
ser = Series(cidx).rename(names[1])
result = op(ser, cidx)
assert result.name == names[2]
def test_comparisons(self, using_infer_string):
s = Series(["a", "b", "c"])
s2 = Series([False, True, False])
# it works!
exp = Series([False, False, False])
if using_infer_string:
import pyarrow as pa
msg = "has no kernel"
# TODO(3.0) GH56008
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
s == s2
with tm.assert_produces_warning(
DeprecationWarning, match="comparison", check_stacklevel=False
):
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
s2 == s
else:
tm.assert_series_equal(s == s2, exp)
tm.assert_series_equal(s2 == s, exp)
# -----------------------------------------------------------------
# Categorical Dtype Comparisons
def test_categorical_comparisons(self):
# GH#8938
# allow equality comparisons
a = Series(list("abc"), dtype="category")
b = Series(list("abc"), dtype="object")
c = Series(["a", "b", "cc"], dtype="object")
d = Series(list("acb"), dtype="object")
e = Categorical(list("abc"))
f = Categorical(list("acb"))
# vs scalar
assert not (a == "a").all()
assert ((a != "a") == ~(a == "a")).all()
assert not ("a" == a).all()
assert (a == "a")[0]
assert ("a" == a)[0]
assert not ("a" != a)[0]
# vs list-like
assert (a == a).all()
assert not (a != a).all()
assert (a == list(a)).all()
assert (a == b).all()
assert (b == a).all()
assert ((~(a == b)) == (a != b)).all()
assert ((~(b == a)) == (b != a)).all()
assert not (a == c).all()
assert not (c == a).all()
assert not (a == d).all()
assert not (d == a).all()
# vs a cat-like
assert (a == e).all()
assert (e == a).all()
assert not (a == f).all()
assert not (f == a).all()
assert (~(a == e) == (a != e)).all()
assert (~(e == a) == (e != a)).all()
assert (~(a == f) == (a != f)).all()
assert (~(f == a) == (f != a)).all()
# non-equality is not comparable
msg = "can only compare equality or not"
with pytest.raises(TypeError, match=msg):
a < b
with pytest.raises(TypeError, match=msg):
b < a
with pytest.raises(TypeError, match=msg):
a > b
with pytest.raises(TypeError, match=msg):
b > a
def test_unequal_categorical_comparison_raises_type_error(self):
# unequal comparison should raise for unordered cats
cat = Series(Categorical(list("abc")))
msg = "can only compare equality or not"
with pytest.raises(TypeError, match=msg):
cat > "b"
cat = Series(Categorical(list("abc"), ordered=False))
with pytest.raises(TypeError, match=msg):
cat > "b"
# https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
# and following comparisons with scalars not in categories should raise
# for unequal comps, but not for equal/not equal
cat = Series(Categorical(list("abc"), ordered=True))
msg = "Invalid comparison between dtype=category and str"
with pytest.raises(TypeError, match=msg):
cat < "d"
with pytest.raises(TypeError, match=msg):
cat > "d"
with pytest.raises(TypeError, match=msg):
"d" < cat
with pytest.raises(TypeError, match=msg):
"d" > cat
tm.assert_series_equal(cat == "d", Series([False, False, False]))
tm.assert_series_equal(cat != "d", Series([True, True, True]))
# -----------------------------------------------------------------
def test_comparison_tuples(self):
# GH#11339
# comparisons vs tuple
s = Series([(1, 1), (1, 2)])
result = s == (1, 2)
expected = Series([False, True])
tm.assert_series_equal(result, expected)
result = s != (1, 2)
expected = Series([True, False])
tm.assert_series_equal(result, expected)
result = s == (0, 0)
expected = Series([False, False])
tm.assert_series_equal(result, expected)
result = s != (0, 0)
expected = Series([True, True])
tm.assert_series_equal(result, expected)
s = Series([(1, 1), (1, 1)])
result = s == (1, 1)
expected = Series([True, True])
tm.assert_series_equal(result, expected)
result = s != (1, 1)
expected = Series([False, False])
tm.assert_series_equal(result, expected)
def test_comparison_frozenset(self):
ser = Series([frozenset([1]), frozenset([1, 2])])
result = ser == frozenset([1])
expected = Series([True, False])
tm.assert_series_equal(result, expected)
def test_comparison_operators_with_nas(self, comparison_op):
ser = Series(bdate_range("1/1/2000", periods=10), dtype=object)
ser[::2] = np.nan
# test that comparisons work
val = ser[5]
result = comparison_op(ser, val)
expected = comparison_op(ser.dropna(), val).reindex(ser.index)
msg = "Downcasting object dtype arrays"
with tm.assert_produces_warning(FutureWarning, match=msg):
if comparison_op is operator.ne:
expected = expected.fillna(True).astype(bool)
else:
expected = expected.fillna(False).astype(bool)
tm.assert_series_equal(result, expected)
def test_ne(self):
ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float)
expected = np.array([True, True, False, True, True])
tm.assert_numpy_array_equal(ts.index != 5, expected)
tm.assert_numpy_array_equal(~(ts.index == 5), expected)
@pytest.mark.parametrize(
"left, right",
[
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2], index=list("ABD"), name="x"),
),
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
),
],
)
def test_comp_ops_df_compat(self, left, right, frame_or_series):
# GH 1134
# GH 50083 to clarify that index and columns must be identically labeled
if frame_or_series is not Series:
msg = (
rf"Can only compare identically-labeled \(both index and columns\) "
f"{frame_or_series.__name__} objects"
)
left = left.to_frame()
right = right.to_frame()
else:
msg = (
f"Can only compare identically-labeled {frame_or_series.__name__} "
f"objects"
)
with pytest.raises(ValueError, match=msg):
left == right
with pytest.raises(ValueError, match=msg):
right == left
with pytest.raises(ValueError, match=msg):
left != right
with pytest.raises(ValueError, match=msg):
right != left
with pytest.raises(ValueError, match=msg):
left < right
with pytest.raises(ValueError, match=msg):
right < left
def test_compare_series_interval_keyword(self):
# GH#25338
ser = Series(["IntervalA", "IntervalB", "IntervalC"])
result = ser == "IntervalA"
expected = Series([True, False, False])
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Unsorted
# These arithmetic tests were previously in other files, eventually
# should be parametrized and put into tests.arithmetic
class TestTimeSeriesArithmetic:
def test_series_add_tz_mismatch_converts_to_utc(self):
rng = date_range("1/1/2011", periods=100, freq="h", tz="utc")
perm = np.random.default_rng(2).permutation(100)[:90]
ser1 = Series(
np.random.default_rng(2).standard_normal(90),
index=rng.take(perm).tz_convert("US/Eastern"),
)
perm = np.random.default_rng(2).permutation(100)[:90]
ser2 = Series(
np.random.default_rng(2).standard_normal(90),
index=rng.take(perm).tz_convert("Europe/Berlin"),
)
result = ser1 + ser2
uts1 = ser1.tz_convert("utc")
uts2 = ser2.tz_convert("utc")
expected = uts1 + uts2
# sort since input indexes are not equal
expected = expected.sort_index()
assert result.index.tz is timezone.utc
tm.assert_series_equal(result, expected)
def test_series_add_aware_naive_raises(self):
rng = date_range("1/1/2011", periods=10, freq="h")
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ser_utc = ser.tz_localize("utc")
msg = "Cannot join tz-naive with tz-aware DatetimeIndex"
with pytest.raises(Exception, match=msg):
ser + ser_utc
with pytest.raises(Exception, match=msg):
ser_utc + ser
# TODO: belongs in tests/arithmetic?
def test_datetime_understood(self, unit):
# Ensures it doesn't fail to create the right series
# reported in issue#16726
series = Series(date_range("2012-01-01", periods=3, unit=unit))
offset = pd.offsets.DateOffset(days=6)
result = series - offset
exp_dti = pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]).as_unit(
unit
)
expected = Series(exp_dti)
tm.assert_series_equal(result, expected)
def test_align_date_objects_with_datetimeindex(self):
rng = date_range("1/1/2000", periods=20)
ts = Series(np.random.default_rng(2).standard_normal(20), index=rng)
ts_slice = ts[5:]
ts2 = ts_slice.copy()
ts2.index = [x.date() for x in ts2.index]
result = ts + ts2
result2 = ts2 + ts
expected = ts + ts[5:]
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
class TestNamePreservation:
@pytest.mark.parametrize("box", [list, tuple, np.array, Index, Series, pd.array])
@pytest.mark.parametrize("flex", [True, False])
def test_series_ops_name_retention(self, flex, box, names, all_binary_operators):
# GH#33930 consistent name-retention
op = all_binary_operators
left = Series(range(10), name=names[0])
right = Series(range(10), name=names[1])
name = op.__name__.strip("_")
is_logical = name in ["and", "rand", "xor", "rxor", "or", "ror"]
msg = (
r"Logical ops \(and, or, xor\) between Pandas objects and "
"dtype-less sequences"
)
warn = None
if box in [list, tuple] and is_logical:
warn = FutureWarning
right = box(right)
if flex:
if is_logical:
# Series doesn't have these as flex methods
return
result = getattr(left, name)(right)
else:
# GH#37374 logical ops behaving as set ops deprecated
with tm.assert_produces_warning(warn, match=msg):
result = op(left, right)
assert isinstance(result, Series)
if box in [Index, Series]:
assert result.name is names[2] or result.name == names[2]
else:
assert result.name is names[0] or result.name == names[0]
def test_binop_maybe_preserve_name(self, datetime_series):
# names match, preserve
result = datetime_series * datetime_series
assert result.name == datetime_series.name
result = datetime_series.mul(datetime_series)
assert result.name == datetime_series.name
result = datetime_series * datetime_series[:-2]
assert result.name == datetime_series.name
# names don't match, don't preserve
cp = datetime_series.copy()
cp.name = "something else"
result = datetime_series + cp
assert result.name is None
result = datetime_series.add(cp)
assert result.name is None
ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"]
ops = ops + ["r" + op for op in ops]
for op in ops:
# names match, preserve
ser = datetime_series.copy()
result = getattr(ser, op)(ser)
assert result.name == datetime_series.name
# names don't match, don't preserve
cp = datetime_series.copy()
cp.name = "changed"
result = getattr(ser, op)(cp)
assert result.name is None
def test_scalarop_preserve_name(self, datetime_series):
result = datetime_series * 2
assert result.name == datetime_series.name
class TestInplaceOperations:
@pytest.mark.parametrize(
"dtype1, dtype2, dtype_expected, dtype_mul",
(
("Int64", "Int64", "Int64", "Int64"),
("float", "float", "float", "float"),
("Int64", "float", "Float64", "Float64"),
("Int64", "Float64", "Float64", "Float64"),
),
)
def test_series_inplace_ops(self, dtype1, dtype2, dtype_expected, dtype_mul):
# GH 37910
ser1 = Series([1], dtype=dtype1)
ser2 = Series([2], dtype=dtype2)
ser1 += ser2
expected = Series([3], dtype=dtype_expected)
tm.assert_series_equal(ser1, expected)
ser1 -= ser2
expected = Series([1], dtype=dtype_expected)
tm.assert_series_equal(ser1, expected)
ser1 *= ser2
expected = Series([2], dtype=dtype_mul)
tm.assert_series_equal(ser1, expected)
def test_none_comparison(request, series_with_simple_index):
series = series_with_simple_index
if len(series) < 1:
request.applymarker(
pytest.mark.xfail(reason="Test doesn't make sense on empty data")
)
# bug brought up by #1079
# changed from TypeError in 0.17.0
series.iloc[0] = np.nan
# noinspection PyComparisonWithNone
result = series == None # noqa: E711
assert not result.iat[0]
assert not result.iat[1]
# noinspection PyComparisonWithNone
result = series != None # noqa: E711
assert result.iat[0]
assert result.iat[1]
result = None == series # noqa: E711
assert not result.iat[0]
assert not result.iat[1]
result = None != series # noqa: E711
assert result.iat[0]
assert result.iat[1]
if lib.is_np_dtype(series.dtype, "M") or isinstance(series.dtype, DatetimeTZDtype):
# Following DatetimeIndex (and Timestamp) convention,
# inequality comparisons with Series[datetime64] raise
msg = "Invalid comparison"
with pytest.raises(TypeError, match=msg):
None > series
with pytest.raises(TypeError, match=msg):
series > None
else:
result = None > series
assert not result.iat[0]
assert not result.iat[1]
result = series < None
assert not result.iat[0]
assert not result.iat[1]
def test_series_varied_multiindex_alignment():
# GH 20414
s1 = Series(
range(8),
index=pd.MultiIndex.from_product(
[list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"]
),
)
s2 = Series(
[1000 * i for i in range(1, 5)],
index=pd.MultiIndex.from_product([list("xy"), [1, 2]], names=["xy", "num"]),
)
result = s1.loc[pd.IndexSlice[["a"], :, :]] + s2
expected = Series(
[1000, 2001, 3002, 4003],
index=pd.MultiIndex.from_tuples(
[("a", "x", 1), ("a", "x", 2), ("a", "y", 1), ("a", "y", 2)],
names=["ab", "xy", "num"],
),
)
tm.assert_series_equal(result, expected)
def test_rmod_consistent_large_series():
# GH 29602
result = Series([2] * 10001).rmod(-1)
expected = Series([1] * 10001)
tm.assert_series_equal(result, expected)
|