File size: 25,201 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
""" Test cases for misc plot functions """
import os

import numpy as np
import pytest

import pandas.util._test_decorators as td

from pandas import (
    DataFrame,
    Index,
    Series,
    Timestamp,
    date_range,
    interval_range,
    period_range,
    plotting,
    read_csv,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
    _check_colors,
    _check_legend_labels,
    _check_plot_works,
    _check_text_labels,
    _check_ticks_props,
)

mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")
cm = pytest.importorskip("matplotlib.cm")


@pytest.fixture
def iris(datapath) -> DataFrame:
    """
    The iris dataset as a DataFrame.
    """
    return read_csv(datapath("io", "data", "csv", "iris.csv"))


@td.skip_if_installed("matplotlib")
def test_import_error_message():
    # GH-19810
    df = DataFrame({"A": [1, 2]})

    with pytest.raises(ImportError, match="matplotlib is required for plotting"):
        df.plot()


def test_get_accessor_args():
    func = plotting._core.PlotAccessor._get_call_args

    msg = "Called plot accessor for type list, expected Series or DataFrame"
    with pytest.raises(TypeError, match=msg):
        func(backend_name="", data=[], args=[], kwargs={})

    msg = "should not be called with positional arguments"
    with pytest.raises(TypeError, match=msg):
        func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={})

    x, y, kind, kwargs = func(
        backend_name="",
        data=DataFrame(),
        args=["x"],
        kwargs={"y": "y", "kind": "bar", "grid": False},
    )
    assert x == "x"
    assert y == "y"
    assert kind == "bar"
    assert kwargs == {"grid": False}

    x, y, kind, kwargs = func(
        backend_name="pandas.plotting._matplotlib",
        data=Series(dtype=object),
        args=[],
        kwargs={},
    )
    assert x is None
    assert y is None
    assert kind == "line"
    assert len(kwargs) == 24


@pytest.mark.parametrize("kind", plotting.PlotAccessor._all_kinds)
@pytest.mark.parametrize(
    "data", [DataFrame(np.arange(15).reshape(5, 3)), Series(range(5))]
)
@pytest.mark.parametrize(
    "index",
    [
        Index(range(5)),
        date_range("2020-01-01", periods=5),
        period_range("2020-01-01", periods=5),
    ],
)
def test_savefig(kind, data, index):
    fig, ax = plt.subplots()
    data.index = index
    kwargs = {}
    if kind in ["hexbin", "scatter", "pie"]:
        if isinstance(data, Series):
            pytest.skip(f"{kind} not supported with Series")
        kwargs = {"x": 0, "y": 1}
    data.plot(kind=kind, ax=ax, **kwargs)
    fig.savefig(os.devnull)


class TestSeriesPlots:
    def test_autocorrelation_plot(self):
        from pandas.plotting import autocorrelation_plot

        ser = Series(
            np.arange(10, dtype=np.float64),
            index=date_range("2020-01-01", periods=10),
            name="ts",
        )
        # Ensure no UserWarning when making plot
        with tm.assert_produces_warning(None):
            _check_plot_works(autocorrelation_plot, series=ser)
            _check_plot_works(autocorrelation_plot, series=ser.values)

            ax = autocorrelation_plot(ser, label="Test")
        _check_legend_labels(ax, labels=["Test"])

    @pytest.mark.parametrize("kwargs", [{}, {"lag": 5}])
    def test_lag_plot(self, kwargs):
        from pandas.plotting import lag_plot

        ser = Series(
            np.arange(10, dtype=np.float64),
            index=date_range("2020-01-01", periods=10),
            name="ts",
        )
        _check_plot_works(lag_plot, series=ser, **kwargs)

    def test_bootstrap_plot(self):
        from pandas.plotting import bootstrap_plot

        ser = Series(
            np.arange(10, dtype=np.float64),
            index=date_range("2020-01-01", periods=10),
            name="ts",
        )
        _check_plot_works(bootstrap_plot, series=ser, size=10)


class TestDataFramePlots:
    @pytest.mark.parametrize("pass_axis", [False, True])
    def test_scatter_matrix_axis(self, pass_axis):
        pytest.importorskip("scipy")
        scatter_matrix = plotting.scatter_matrix

        ax = None
        if pass_axis:
            _, ax = mpl.pyplot.subplots(3, 3)

        df = DataFrame(np.random.default_rng(2).standard_normal((100, 3)))

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            axes = _check_plot_works(
                scatter_matrix,
                frame=df,
                range_padding=0.1,
                ax=ax,
            )
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()
        # GH 5662
        expected = ["-2", "0", "2"]
        _check_text_labels(axes0_labels, expected)
        _check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

    @pytest.mark.parametrize("pass_axis", [False, True])
    def test_scatter_matrix_axis_smaller(self, pass_axis):
        pytest.importorskip("scipy")
        scatter_matrix = plotting.scatter_matrix

        ax = None
        if pass_axis:
            _, ax = mpl.pyplot.subplots(3, 3)

        df = DataFrame(np.random.default_rng(11).standard_normal((100, 3)))
        df[0] = (df[0] - 2) / 3

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            axes = _check_plot_works(
                scatter_matrix,
                frame=df,
                range_padding=0.1,
                ax=ax,
            )
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()
        expected = ["-1.0", "-0.5", "0.0"]
        _check_text_labels(axes0_labels, expected)
        _check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

    @pytest.mark.slow
    def test_andrews_curves_no_warning(self, iris):
        from pandas.plotting import andrews_curves

        df = iris
        # Ensure no UserWarning when making plot
        with tm.assert_produces_warning(None):
            _check_plot_works(andrews_curves, frame=df, class_column="Name")

    @pytest.mark.slow
    @pytest.mark.parametrize(
        "linecolors",
        [
            ("#556270", "#4ECDC4", "#C7F464"),
            ["dodgerblue", "aquamarine", "seagreen"],
        ],
    )
    @pytest.mark.parametrize(
        "df",
        [
            "iris",
            DataFrame(
                {
                    "A": np.random.default_rng(2).standard_normal(10),
                    "B": np.random.default_rng(2).standard_normal(10),
                    "C": np.random.default_rng(2).standard_normal(10),
                    "Name": ["A"] * 10,
                }
            ),
        ],
    )
    def test_andrews_curves_linecolors(self, request, df, linecolors):
        from pandas.plotting import andrews_curves

        if isinstance(df, str):
            df = request.getfixturevalue(df)
        ax = _check_plot_works(
            andrews_curves, frame=df, class_column="Name", color=linecolors
        )
        _check_colors(
            ax.get_lines()[:10], linecolors=linecolors, mapping=df["Name"][:10]
        )

    @pytest.mark.slow
    @pytest.mark.parametrize(
        "df",
        [
            "iris",
            DataFrame(
                {
                    "A": np.random.default_rng(2).standard_normal(10),
                    "B": np.random.default_rng(2).standard_normal(10),
                    "C": np.random.default_rng(2).standard_normal(10),
                    "Name": ["A"] * 10,
                }
            ),
        ],
    )
    def test_andrews_curves_cmap(self, request, df):
        from pandas.plotting import andrews_curves

        if isinstance(df, str):
            df = request.getfixturevalue(df)
        cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
        ax = _check_plot_works(
            andrews_curves, frame=df, class_column="Name", color=cmaps
        )
        _check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])

    @pytest.mark.slow
    def test_andrews_curves_handle(self):
        from pandas.plotting import andrews_curves

        colors = ["b", "g", "r"]
        df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
        ax = andrews_curves(df, "Name", color=colors)
        handles, _ = ax.get_legend_handles_labels()
        _check_colors(handles, linecolors=colors)

    @pytest.mark.slow
    @pytest.mark.parametrize(
        "color",
        [("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
    )
    def test_parallel_coordinates_colors(self, iris, color):
        from pandas.plotting import parallel_coordinates

        df = iris

        ax = _check_plot_works(
            parallel_coordinates, frame=df, class_column="Name", color=color
        )
        _check_colors(ax.get_lines()[:10], linecolors=color, mapping=df["Name"][:10])

    @pytest.mark.slow
    def test_parallel_coordinates_cmap(self, iris):
        from matplotlib import cm

        from pandas.plotting import parallel_coordinates

        df = iris

        ax = _check_plot_works(
            parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
        )
        cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
        _check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])

    @pytest.mark.slow
    def test_parallel_coordinates_line_diff(self, iris):
        from pandas.plotting import parallel_coordinates

        df = iris

        ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
        nlines = len(ax.get_lines())
        nxticks = len(ax.xaxis.get_ticklabels())

        ax = _check_plot_works(
            parallel_coordinates, frame=df, class_column="Name", axvlines=False
        )
        assert len(ax.get_lines()) == (nlines - nxticks)

    @pytest.mark.slow
    def test_parallel_coordinates_handles(self, iris):
        from pandas.plotting import parallel_coordinates

        df = iris
        colors = ["b", "g", "r"]
        df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
        ax = parallel_coordinates(df, "Name", color=colors)
        handles, _ = ax.get_legend_handles_labels()
        _check_colors(handles, linecolors=colors)

    # not sure if this is indicative of a problem
    @pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
    def test_parallel_coordinates_with_sorted_labels(self):
        """For #15908"""
        from pandas.plotting import parallel_coordinates

        df = DataFrame(
            {
                "feat": list(range(30)),
                "class": [2 for _ in range(10)]
                + [3 for _ in range(10)]
                + [1 for _ in range(10)],
            }
        )
        ax = parallel_coordinates(df, "class", sort_labels=True)
        polylines, labels = ax.get_legend_handles_labels()
        color_label_tuples = zip(
            [polyline.get_color() for polyline in polylines], labels
        )
        ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
        prev_next_tupels = zip(
            list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:])
        )
        for prev, nxt in prev_next_tupels:
            # labels and colors are ordered strictly increasing
            assert prev[1] < nxt[1] and prev[0] < nxt[0]

    def test_radviz_no_warning(self, iris):
        from pandas.plotting import radviz

        df = iris
        # Ensure no UserWarning when making plot
        with tm.assert_produces_warning(None):
            _check_plot_works(radviz, frame=df, class_column="Name")

    @pytest.mark.parametrize(
        "color",
        [("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
    )
    def test_radviz_color(self, iris, color):
        from pandas.plotting import radviz

        df = iris
        ax = _check_plot_works(radviz, frame=df, class_column="Name", color=color)
        # skip Circle drawn as ticks
        patches = [p for p in ax.patches[:20] if p.get_label() != ""]
        _check_colors(patches[:10], facecolors=color, mapping=df["Name"][:10])

    def test_radviz_color_cmap(self, iris):
        from matplotlib import cm

        from pandas.plotting import radviz

        df = iris
        ax = _check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
        cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
        patches = [p for p in ax.patches[:20] if p.get_label() != ""]
        _check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])

    def test_radviz_colors_handles(self):
        from pandas.plotting import radviz

        colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
        df = DataFrame(
            {"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
        )
        ax = radviz(df, "Name", color=colors)
        handles, _ = ax.get_legend_handles_labels()
        _check_colors(handles, facecolors=colors)

    def test_subplot_titles(self, iris):
        df = iris.drop("Name", axis=1).head()
        # Use the column names as the subplot titles
        title = list(df.columns)

        # Case len(title) == len(df)
        plot = df.plot(subplots=True, title=title)
        assert [p.get_title() for p in plot] == title

    def test_subplot_titles_too_much(self, iris):
        df = iris.drop("Name", axis=1).head()
        # Use the column names as the subplot titles
        title = list(df.columns)
        # Case len(title) > len(df)
        msg = (
            "The length of `title` must equal the number of columns if "
            "using `title` of type `list` and `subplots=True`"
        )
        with pytest.raises(ValueError, match=msg):
            df.plot(subplots=True, title=title + ["kittens > puppies"])

    def test_subplot_titles_too_little(self, iris):
        df = iris.drop("Name", axis=1).head()
        # Use the column names as the subplot titles
        title = list(df.columns)
        msg = (
            "The length of `title` must equal the number of columns if "
            "using `title` of type `list` and `subplots=True`"
        )
        # Case len(title) < len(df)
        with pytest.raises(ValueError, match=msg):
            df.plot(subplots=True, title=title[:2])

    def test_subplot_titles_subplots_false(self, iris):
        df = iris.drop("Name", axis=1).head()
        # Use the column names as the subplot titles
        title = list(df.columns)
        # Case subplots=False and title is of type list
        msg = (
            "Using `title` of type `list` is not supported unless "
            "`subplots=True` is passed"
        )
        with pytest.raises(ValueError, match=msg):
            df.plot(subplots=False, title=title)

    def test_subplot_titles_numeric_square_layout(self, iris):
        df = iris.drop("Name", axis=1).head()
        # Use the column names as the subplot titles
        title = list(df.columns)
        # Case df with 3 numeric columns but layout of (2,2)
        plot = df.drop("SepalWidth", axis=1).plot(
            subplots=True, layout=(2, 2), title=title[:-1]
        )
        title_list = [ax.get_title() for sublist in plot for ax in sublist]
        assert title_list == title[:3] + [""]

    def test_get_standard_colors_random_seed(self):
        # GH17525
        df = DataFrame(np.zeros((10, 10)))

        # Make sure that the random seed isn't reset by get_standard_colors
        plotting.parallel_coordinates(df, 0)
        rand1 = np.random.default_rng(None).random()
        plotting.parallel_coordinates(df, 0)
        rand2 = np.random.default_rng(None).random()
        assert rand1 != rand2

    def test_get_standard_colors_consistency(self):
        # GH17525
        # Make sure it produces the same colors every time it's called
        from pandas.plotting._matplotlib.style import get_standard_colors

        color1 = get_standard_colors(1, color_type="random")
        color2 = get_standard_colors(1, color_type="random")
        assert color1 == color2

    def test_get_standard_colors_default_num_colors(self):
        from pandas.plotting._matplotlib.style import get_standard_colors

        # Make sure the default color_types returns the specified amount
        color1 = get_standard_colors(1, color_type="default")
        color2 = get_standard_colors(9, color_type="default")
        color3 = get_standard_colors(20, color_type="default")
        assert len(color1) == 1
        assert len(color2) == 9
        assert len(color3) == 20

    def test_plot_single_color(self):
        # Example from #20585. All 3 bars should have the same color
        df = DataFrame(
            {
                "account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
                "client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
                "balance": [-1432.32, 10.43, 30000.00],
                "db-id": [1234, 2424, 251],
                "proxy-id": [525, 1525, 2542],
                "rank": [52, 525, 32],
            }
        )
        ax = df.client.value_counts().plot.bar()
        colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
        assert all(color == colors[0] for color in colors)

    def test_get_standard_colors_no_appending(self):
        # GH20726

        # Make sure not to add more colors so that matplotlib can cycle
        # correctly.
        from matplotlib import cm

        from pandas.plotting._matplotlib.style import get_standard_colors

        color_before = cm.gnuplot(range(5))
        color_after = get_standard_colors(1, color=color_before)
        assert len(color_after) == len(color_before)

        df = DataFrame(
            np.random.default_rng(2).standard_normal((48, 4)), columns=list("ABCD")
        )

        color_list = cm.gnuplot(np.linspace(0, 1, 16))
        p = df.A.plot.bar(figsize=(16, 7), color=color_list)
        assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()

    @pytest.mark.parametrize("kind", ["bar", "line"])
    def test_dictionary_color(self, kind):
        # issue-8193
        # Test plot color dictionary format
        data_files = ["a", "b"]

        expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)]

        df1 = DataFrame(np.random.default_rng(2).random((2, 2)), columns=data_files)
        dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)}

        ax = df1.plot(kind=kind, color=dic_color)
        if kind == "bar":
            colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]]
        else:
            colors = [rect.get_color() for rect in ax.get_lines()[0:2]]
        assert all(color == expected[index] for index, color in enumerate(colors))

    def test_bar_plot(self):
        # GH38947
        # Test bar plot with string and int index
        from matplotlib.text import Text

        expected = [Text(0, 0, "0"), Text(1, 0, "Total")]

        df = DataFrame(
            {
                "a": [1, 2],
            },
            index=Index([0, "Total"]),
        )
        plot_bar = df.plot.bar()
        assert all(
            (a.get_text() == b.get_text())
            for a, b in zip(plot_bar.get_xticklabels(), expected)
        )

    def test_barh_plot_labels_mixed_integer_string(self):
        # GH39126
        # Test barh plot with string and integer at the same column
        from matplotlib.text import Text

        df = DataFrame([{"word": 1, "value": 0}, {"word": "knowledge", "value": 2}])
        plot_barh = df.plot.barh(x="word", legend=None)
        expected_yticklabels = [Text(0, 0, "1"), Text(0, 1, "knowledge")]
        assert all(
            actual.get_text() == expected.get_text()
            for actual, expected in zip(
                plot_barh.get_yticklabels(), expected_yticklabels
            )
        )

    def test_has_externally_shared_axis_x_axis(self):
        # GH33819
        # Test _has_externally_shared_axis() works for x-axis
        func = plotting._matplotlib.tools._has_externally_shared_axis

        fig = mpl.pyplot.figure()
        plots = fig.subplots(2, 4)

        # Create *externally* shared axes for first and third columns
        plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
        plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])

        # Create *internally* shared axes for second and third columns
        plots[0][1].twinx()
        plots[0][2].twinx()

        # First  column is only externally shared
        # Second column is only internally shared
        # Third  column is both
        # Fourth column is neither
        assert func(plots[0][0], "x")
        assert not func(plots[0][1], "x")
        assert func(plots[0][2], "x")
        assert not func(plots[0][3], "x")

    def test_has_externally_shared_axis_y_axis(self):
        # GH33819
        # Test _has_externally_shared_axis() works for y-axis
        func = plotting._matplotlib.tools._has_externally_shared_axis

        fig = mpl.pyplot.figure()
        plots = fig.subplots(4, 2)

        # Create *externally* shared axes for first and third rows
        plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
        plots[2][0] = fig.add_subplot(325, sharey=plots[2][1])

        # Create *internally* shared axes for second and third rows
        plots[1][0].twiny()
        plots[2][0].twiny()

        # First  row is only externally shared
        # Second row is only internally shared
        # Third  row is both
        # Fourth row is neither
        assert func(plots[0][0], "y")
        assert not func(plots[1][0], "y")
        assert func(plots[2][0], "y")
        assert not func(plots[3][0], "y")

    def test_has_externally_shared_axis_invalid_compare_axis(self):
        # GH33819
        # Test _has_externally_shared_axis() raises an exception when
        # passed an invalid value as compare_axis parameter
        func = plotting._matplotlib.tools._has_externally_shared_axis

        fig = mpl.pyplot.figure()
        plots = fig.subplots(4, 2)

        # Create arbitrary axes
        plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])

        # Check that an invalid compare_axis value triggers the expected exception
        msg = "needs 'x' or 'y' as a second parameter"
        with pytest.raises(ValueError, match=msg):
            func(plots[0][0], "z")

    def test_externally_shared_axes(self):
        # Example from GH33819
        # Create data
        df = DataFrame(
            {
                "a": np.random.default_rng(2).standard_normal(1000),
                "b": np.random.default_rng(2).standard_normal(1000),
            }
        )

        # Create figure
        fig = mpl.pyplot.figure()
        plots = fig.subplots(2, 3)

        # Create *externally* shared axes
        plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
        # note: no plots[0][1] that's the twin only case
        plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])

        # Create *internally* shared axes
        # note: no plots[0][0] that's the external only case
        twin_ax1 = plots[0][1].twinx()
        twin_ax2 = plots[0][2].twinx()

        # Plot data to primary axes
        df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel(
            "this label should never be visible"
        )
        df["a"].plot(ax=plots[1][0])

        df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel(
            "this label should always be visible"
        )
        df["a"].plot(ax=plots[1][1])

        df["a"].plot(ax=plots[0][2], title="Both").set_xlabel(
            "this label should never be visible"
        )
        df["a"].plot(ax=plots[1][2])

        # Plot data to twinned axes
        df["b"].plot(ax=twin_ax1, color="green")
        df["b"].plot(ax=twin_ax2, color="yellow")

        assert not plots[0][0].xaxis.get_label().get_visible()
        assert plots[0][1].xaxis.get_label().get_visible()
        assert not plots[0][2].xaxis.get_label().get_visible()

    def test_plot_bar_axis_units_timestamp_conversion(self):
        # GH 38736
        # Ensure string x-axis from the second plot will not be converted to datetime
        # due to axis data from first plot
        df = DataFrame(
            [1.0],
            index=[Timestamp("2022-02-22 22:22:22")],
        )
        _check_plot_works(df.plot)
        s = Series({"A": 1.0})
        _check_plot_works(s.plot.bar)

    def test_bar_plt_xaxis_intervalrange(self):
        # GH 38969
        # Ensure IntervalIndex x-axis produces a bar plot as expected
        from matplotlib.text import Text

        expected = [Text(0, 0, "([0, 1],)"), Text(1, 0, "([1, 2],)")]
        s = Series(
            [1, 2],
            index=[interval_range(0, 2, closed="both")],
        )
        _check_plot_works(s.plot.bar)
        assert all(
            (a.get_text() == b.get_text())
            for a, b in zip(s.plot.bar().get_xticklabels(), expected)
        )