File size: 6,326 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import datetime
from pathlib import Path
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.util.version import Version
pyreadstat = pytest.importorskip("pyreadstat")
# TODO(CoW) - detection of chained assignment in cython
# https://github.com/pandas-dev/pandas/issues/51315
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
def test_spss_labelled_num(path_klass, datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_num_na(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "labelled-num-na.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": ["This is one", None]})
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_str(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "labelled-str.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"gender": ["Male", "Female"]})
expected["gender"] = pd.Categorical(expected["gender"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"gender": ["M", "F"]})
tm.assert_frame_equal(df, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_umlauts(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "umlauts.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame(
{"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
)
expected["var1"] = pd.Categorical(expected["var1"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
tm.assert_frame_equal(df, expected)
def test_spss_usecols(datapath):
# usecols must be list-like
fname = datapath("io", "data", "spss", "labelled-num.sav")
with pytest.raises(TypeError, match="usecols must be list-like."):
pd.read_spss(fname, usecols="VAR00002")
def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
# test file from the Haven project (https://haven.tidyverse.org/)
# Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
fname = datapath("io", "data", "spss", "umlauts.sav")
df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
if dtype_backend == "pyarrow":
pa = pytest.importorskip("pyarrow")
from pandas.arrays import ArrowExtensionArray
expected = pd.DataFrame(
{
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
for col in expected.columns
}
)
tm.assert_frame_equal(df, expected)
def test_invalid_dtype_backend():
msg = (
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
"'pyarrow' are allowed."
)
with pytest.raises(ValueError, match=msg):
pd.read_spss("test", dtype_backend="numpy")
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_metadata(datapath):
# GH 54264
fname = datapath("io", "data", "spss", "labelled-num.sav")
df = pd.read_spss(fname)
metadata = {
"column_names": ["VAR00002"],
"column_labels": [None],
"column_names_to_labels": {"VAR00002": None},
"file_encoding": "UTF-8",
"number_columns": 1,
"number_rows": 1,
"variable_value_labels": {"VAR00002": {1.0: "This is one"}},
"value_labels": {"labels0": {1.0: "This is one"}},
"variable_to_label": {"VAR00002": "labels0"},
"notes": [],
"original_variable_types": {"VAR00002": "F8.0"},
"readstat_variable_types": {"VAR00002": "double"},
"table_name": None,
"missing_ranges": {},
"missing_user_values": {},
"variable_storage_width": {"VAR00002": 8},
"variable_display_width": {"VAR00002": 8},
"variable_alignment": {"VAR00002": "unknown"},
"variable_measure": {"VAR00002": "unknown"},
"file_label": None,
"file_format": "sav/zsav",
}
if Version(pyreadstat.__version__) >= Version("1.2.4"):
metadata.update(
{
"creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
"modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
}
)
assert df.attrs == metadata
|