File size: 19,878 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
from datetime import (
datetime,
timezone,
)
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas.compat import (
is_ci_environment,
is_platform_windows,
)
from pandas.compat.numpy import np_version_lt1p23
import pandas as pd
import pandas._testing as tm
from pandas.core.interchange.column import PandasColumn
from pandas.core.interchange.dataframe_protocol import (
ColumnNullType,
DtypeKind,
)
from pandas.core.interchange.from_dataframe import from_dataframe
from pandas.core.interchange.utils import ArrowCTypes
@pytest.fixture
def data_categorical():
return {
"ordered": pd.Categorical(list("testdata") * 30, ordered=True),
"unordered": pd.Categorical(list("testdata") * 30, ordered=False),
}
@pytest.fixture
def string_data():
return {
"separator data": [
"abC|DeF,Hik",
"234,3245.67",
"gSaf,qWer|Gre",
"asd3,4sad|",
np.nan,
]
}
@pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)])
def test_categorical_dtype(data, data_categorical):
df = pd.DataFrame({"A": (data_categorical[data[0]])})
col = df.__dataframe__().get_column_by_name("A")
assert col.dtype[0] == DtypeKind.CATEGORICAL
assert col.null_count == 0
assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1)
assert col.num_chunks() == 1
desc_cat = col.describe_categorical
assert desc_cat["is_ordered"] == data[1]
assert desc_cat["is_dictionary"] is True
assert isinstance(desc_cat["categories"], PandasColumn)
tm.assert_series_equal(
desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"])
)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
def test_categorical_pyarrow():
# GH 49889
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"]
table = pa.table({"weekday": pa.array(arr).dictionary_encode()})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
weekday = pd.Categorical(
arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
)
expected = pd.DataFrame({"weekday": weekday})
tm.assert_frame_equal(result, expected)
def test_empty_categorical_pyarrow():
# https://github.com/pandas-dev/pandas/issues/53077
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = [None]
table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()})
exchange_df = table.__dataframe__()
result = pd.api.interchange.from_dataframe(exchange_df)
expected = pd.DataFrame({"arr": pd.Categorical([np.nan])})
tm.assert_frame_equal(result, expected)
def test_large_string_pyarrow():
# GH 52795
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = ["Mon", "Tue"]
table = pa.table({"weekday": pa.array(arr, "large_string")})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame({"weekday": ["Mon", "Tue"]})
tm.assert_frame_equal(result, expected)
# check round-trip
assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
@pytest.mark.parametrize(
("offset", "length", "expected_values"),
[
(0, None, [3.3, float("nan"), 2.1]),
(1, None, [float("nan"), 2.1]),
(2, None, [2.1]),
(0, 2, [3.3, float("nan")]),
(0, 1, [3.3]),
(1, 1, [float("nan")]),
],
)
def test_bitmasks_pyarrow(offset, length, expected_values):
# GH 52795
pa = pytest.importorskip("pyarrow", "11.0.0")
arr = [3.3, None, 2.1]
table = pa.table({"arr": arr}).slice(offset, length)
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame({"arr": expected_values})
tm.assert_frame_equal(result, expected)
# check round-trip
assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
@pytest.mark.parametrize(
"data",
[
lambda: np.random.default_rng(2).integers(-100, 100),
lambda: np.random.default_rng(2).integers(1, 100),
lambda: np.random.default_rng(2).random(),
lambda: np.random.default_rng(2).choice([True, False]),
lambda: datetime(
year=np.random.default_rng(2).integers(1900, 2100),
month=np.random.default_rng(2).integers(1, 12),
day=np.random.default_rng(2).integers(1, 20),
),
],
)
def test_dataframe(data):
NCOLS, NROWS = 10, 20
data = {
f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [data() for _ in range(NROWS)]
for i in range(NCOLS)
}
df = pd.DataFrame(data)
df2 = df.__dataframe__()
assert df2.num_columns() == NCOLS
assert df2.num_rows() == NROWS
assert list(df2.column_names()) == list(data.keys())
indices = (0, 2)
names = tuple(list(data.keys())[idx] for idx in indices)
result = from_dataframe(df2.select_columns(indices))
expected = from_dataframe(df2.select_columns_by_name(names))
tm.assert_frame_equal(result, expected)
assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
def test_missing_from_masked():
df = pd.DataFrame(
{
"x": np.array([1.0, 2.0, 3.0, 4.0, 0.0]),
"y": np.array([1.5, 2.5, 3.5, 4.5, 0]),
"z": np.array([1.0, 0.0, 1.0, 1.0, 1.0]),
}
)
rng = np.random.default_rng(2)
dict_null = {col: rng.integers(low=0, high=len(df)) for col in df.columns}
for col, num_nulls in dict_null.items():
null_idx = df.index[
rng.choice(np.arange(len(df)), size=num_nulls, replace=False)
]
df.loc[null_idx, col] = None
df2 = df.__dataframe__()
assert df2.get_column_by_name("x").null_count == dict_null["x"]
assert df2.get_column_by_name("y").null_count == dict_null["y"]
assert df2.get_column_by_name("z").null_count == dict_null["z"]
@pytest.mark.parametrize(
"data",
[
{"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]},
{"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]},
{
"x": np.array([True, True, False]),
"y": np.array([1, 2, 0]),
"z": np.array([9.2, 10.5, 11.8]),
},
],
)
def test_mixed_data(data):
df = pd.DataFrame(data)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 0
def test_mixed_missing():
df = pd.DataFrame(
{
"x": np.array([True, None, False, None, True]),
"y": np.array([None, 2, None, 1, 2]),
"z": np.array([9.2, 10.5, None, 11.8, None]),
}
)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 2
def test_string(string_data):
test_str_data = string_data["separator data"] + [""]
df = pd.DataFrame({"A": test_str_data})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 6
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
df_sliced = df[1:]
col = df_sliced.__dataframe__().get_column_by_name("A")
assert col.size() == 5
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
def test_nonstring_object():
df = pd.DataFrame({"A": ["a", 10, 1.0, ()]})
col = df.__dataframe__().get_column_by_name("A")
with pytest.raises(NotImplementedError, match="not supported yet"):
col.dtype
def test_datetime():
df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 2
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.DATETIME
assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
@pytest.mark.skipif(np_version_lt1p23, reason="Numpy > 1.23 required")
def test_categorical_to_numpy_dlpack():
# https://github.com/pandas-dev/pandas/issues/48393
df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])})
col = df.__dataframe__().get_column_by_name("A")
result = np.from_dlpack(col.get_buffers()["data"][0])
expected = np.array([0, 1, 0], dtype="int8")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("data", [{}, {"a": []}])
def test_empty_pyarrow(data):
# GH 53155
pytest.importorskip("pyarrow", "11.0.0")
from pyarrow.interchange import from_dataframe as pa_from_dataframe
expected = pd.DataFrame(data)
arrow_df = pa_from_dataframe(expected)
result = from_dataframe(arrow_df)
tm.assert_frame_equal(result, expected)
def test_multi_chunk_pyarrow() -> None:
pa = pytest.importorskip("pyarrow", "11.0.0")
n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
names = ["n_legs"]
table = pa.table([n_legs], names=names)
with pytest.raises(
RuntimeError,
match="To join chunks a copy is required which is "
"forbidden by allow_copy=False",
):
pd.api.interchange.from_dataframe(table, allow_copy=False)
def test_multi_chunk_column() -> None:
pytest.importorskip("pyarrow", "11.0.0")
ser = pd.Series([1, 2, None], dtype="Int64[pyarrow]")
df = pd.concat([ser, ser], ignore_index=True).to_frame("a")
df_orig = df.copy()
with pytest.raises(
RuntimeError, match="Found multi-chunk pyarrow array, but `allow_copy` is False"
):
pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=False))
result = pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=True))
# Interchange protocol defaults to creating numpy-backed columns, so currently this
# is 'float64'.
expected = pd.DataFrame({"a": [1.0, 2.0, None, 1.0, 2.0, None]}, dtype="float64")
tm.assert_frame_equal(result, expected)
# Check that the rechunking we did didn't modify the original DataFrame.
tm.assert_frame_equal(df, df_orig)
assert len(df["a"].array._pa_array.chunks) == 2
assert len(df_orig["a"].array._pa_array.chunks) == 2
def test_timestamp_ns_pyarrow():
# GH 56712
pytest.importorskip("pyarrow", "11.0.0")
timestamp_args = {
"year": 2000,
"month": 1,
"day": 1,
"hour": 1,
"minute": 1,
"second": 1,
}
df = pd.Series(
[datetime(**timestamp_args)],
dtype="timestamp[ns][pyarrow]",
name="col0",
).to_frame()
dfi = df.__dataframe__()
result = pd.api.interchange.from_dataframe(dfi)["col0"].item()
expected = pd.Timestamp(**timestamp_args)
assert result == expected
@pytest.mark.parametrize("tz", ["UTC", "US/Pacific"])
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
def test_datetimetzdtype(tz, unit):
# GH 54239
tz_data = (
pd.date_range("2018-01-01", periods=5, freq="D").tz_localize(tz).as_unit(unit)
)
df = pd.DataFrame({"ts_tz": tz_data})
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
def test_interchange_from_non_pandas_tz_aware(request):
# GH 54239, 54287
pa = pytest.importorskip("pyarrow", "11.0.0")
import pyarrow.compute as pc
if is_platform_windows() and is_ci_environment():
mark = pytest.mark.xfail(
raises=pa.ArrowInvalid,
reason=(
"TODO: Set ARROW_TIMEZONE_DATABASE environment variable "
"on CI to path to the tzdata for pyarrow."
),
)
request.applymarker(mark)
arr = pa.array([datetime(2020, 1, 1), None, datetime(2020, 1, 2)])
arr = pc.assume_timezone(arr, "Asia/Kathmandu")
table = pa.table({"arr": arr})
exchange_df = table.__dataframe__()
result = from_dataframe(exchange_df)
expected = pd.DataFrame(
["2020-01-01 00:00:00+05:45", "NaT", "2020-01-02 00:00:00+05:45"],
columns=["arr"],
dtype="datetime64[us, Asia/Kathmandu]",
)
tm.assert_frame_equal(expected, result)
def test_interchange_from_corrected_buffer_dtypes(monkeypatch) -> None:
# https://github.com/pandas-dev/pandas/issues/54781
df = pd.DataFrame({"a": ["foo", "bar"]}).__dataframe__()
interchange = df.__dataframe__()
column = interchange.get_column_by_name("a")
buffers = column.get_buffers()
buffers_data = buffers["data"]
buffer_dtype = buffers_data[1]
buffer_dtype = (
DtypeKind.UINT,
8,
ArrowCTypes.UINT8,
buffer_dtype[3],
)
buffers["data"] = (buffers_data[0], buffer_dtype)
column.get_buffers = lambda: buffers
interchange.get_column_by_name = lambda _: column
monkeypatch.setattr(df, "__dataframe__", lambda allow_copy: interchange)
pd.api.interchange.from_dataframe(df)
def test_empty_string_column():
# https://github.com/pandas-dev/pandas/issues/56703
df = pd.DataFrame({"a": []}, dtype=str)
df2 = df.__dataframe__()
result = pd.api.interchange.from_dataframe(df2)
tm.assert_frame_equal(df, result)
def test_large_string():
# GH#56702
pytest.importorskip("pyarrow")
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]")
result = pd.api.interchange.from_dataframe(df.__dataframe__())
expected = pd.DataFrame({"a": ["x"]}, dtype="object")
tm.assert_frame_equal(result, expected)
def test_non_str_names():
# https://github.com/pandas-dev/pandas/issues/56701
df = pd.Series([1, 2, 3], name=0).to_frame()
names = df.__dataframe__().column_names()
assert names == ["0"]
def test_non_str_names_w_duplicates():
# https://github.com/pandas-dev/pandas/issues/56701
df = pd.DataFrame({"0": [1, 2, 3], 0: [4, 5, 6]})
dfi = df.__dataframe__()
with pytest.raises(
TypeError,
match=(
"Expected a Series, got a DataFrame. This likely happened because you "
"called __dataframe__ on a DataFrame which, after converting column "
r"names to string, resulted in duplicated names: Index\(\['0', '0'\], "
r"dtype='object'\). Please rename these columns before using the "
"interchange protocol."
),
):
pd.api.interchange.from_dataframe(dfi, allow_copy=False)
@pytest.mark.parametrize(
("data", "dtype", "expected_dtype"),
[
([1, 2, None], "Int64", "int64"),
([1, 2, None], "Int64[pyarrow]", "int64"),
([1, 2, None], "Int8", "int8"),
([1, 2, None], "Int8[pyarrow]", "int8"),
(
[1, 2, None],
"UInt64",
"uint64",
),
(
[1, 2, None],
"UInt64[pyarrow]",
"uint64",
),
([1.0, 2.25, None], "Float32", "float32"),
([1.0, 2.25, None], "Float32[pyarrow]", "float32"),
([True, False, None], "boolean", "bool"),
([True, False, None], "boolean[pyarrow]", "bool"),
(["much ado", "about", None], "string[pyarrow_numpy]", "large_string"),
(["much ado", "about", None], "string[pyarrow]", "large_string"),
(
[datetime(2020, 1, 1), datetime(2020, 1, 2), None],
"timestamp[ns][pyarrow]",
"timestamp[ns]",
),
(
[datetime(2020, 1, 1), datetime(2020, 1, 2), None],
"timestamp[us][pyarrow]",
"timestamp[us]",
),
(
[
datetime(2020, 1, 1, tzinfo=timezone.utc),
datetime(2020, 1, 2, tzinfo=timezone.utc),
None,
],
"timestamp[us, Asia/Kathmandu][pyarrow]",
"timestamp[us, tz=Asia/Kathmandu]",
),
],
)
def test_pandas_nullable_with_missing_values(
data: list, dtype: str, expected_dtype: str
) -> None:
# https://github.com/pandas-dev/pandas/issues/57643
# https://github.com/pandas-dev/pandas/issues/57664
pa = pytest.importorskip("pyarrow", "11.0.0")
import pyarrow.interchange as pai
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]":
expected_dtype = pa.timestamp("us", "Asia/Kathmandu")
df = pd.DataFrame({"a": data}, dtype=dtype)
result = pai.from_dataframe(df.__dataframe__())["a"]
assert result.type == expected_dtype
assert result[0].as_py() == data[0]
assert result[1].as_py() == data[1]
assert result[2].as_py() is None
@pytest.mark.parametrize(
("data", "dtype", "expected_dtype"),
[
([1, 2, 3], "Int64", "int64"),
([1, 2, 3], "Int64[pyarrow]", "int64"),
([1, 2, 3], "Int8", "int8"),
([1, 2, 3], "Int8[pyarrow]", "int8"),
(
[1, 2, 3],
"UInt64",
"uint64",
),
(
[1, 2, 3],
"UInt64[pyarrow]",
"uint64",
),
([1.0, 2.25, 5.0], "Float32", "float32"),
([1.0, 2.25, 5.0], "Float32[pyarrow]", "float32"),
([True, False, False], "boolean", "bool"),
([True, False, False], "boolean[pyarrow]", "bool"),
(["much ado", "about", "nothing"], "string[pyarrow_numpy]", "large_string"),
(["much ado", "about", "nothing"], "string[pyarrow]", "large_string"),
(
[datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3)],
"timestamp[ns][pyarrow]",
"timestamp[ns]",
),
(
[datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3)],
"timestamp[us][pyarrow]",
"timestamp[us]",
),
(
[
datetime(2020, 1, 1, tzinfo=timezone.utc),
datetime(2020, 1, 2, tzinfo=timezone.utc),
datetime(2020, 1, 3, tzinfo=timezone.utc),
],
"timestamp[us, Asia/Kathmandu][pyarrow]",
"timestamp[us, tz=Asia/Kathmandu]",
),
],
)
def test_pandas_nullable_without_missing_values(
data: list, dtype: str, expected_dtype: str
) -> None:
# https://github.com/pandas-dev/pandas/issues/57643
pa = pytest.importorskip("pyarrow", "11.0.0")
import pyarrow.interchange as pai
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]":
expected_dtype = pa.timestamp("us", "Asia/Kathmandu")
df = pd.DataFrame({"a": data}, dtype=dtype)
result = pai.from_dataframe(df.__dataframe__())["a"]
assert result.type == expected_dtype
assert result[0].as_py() == data[0]
assert result[1].as_py() == data[1]
assert result[2].as_py() == data[2]
def test_string_validity_buffer() -> None:
# https://github.com/pandas-dev/pandas/issues/57761
pytest.importorskip("pyarrow", "11.0.0")
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]")
result = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"]
assert result is None
def test_string_validity_buffer_no_missing() -> None:
# https://github.com/pandas-dev/pandas/issues/57762
pytest.importorskip("pyarrow", "11.0.0")
df = pd.DataFrame({"a": ["x", None]}, dtype="large_string[pyarrow]")
validity = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"]
assert validity is not None
result = validity[1]
expected = (DtypeKind.BOOL, 1, ArrowCTypes.BOOL, "=")
assert result == expected
def test_empty_dataframe():
# https://github.com/pandas-dev/pandas/issues/56700
df = pd.DataFrame({"a": []}, dtype="int8")
dfi = df.__dataframe__()
result = pd.api.interchange.from_dataframe(dfi, allow_copy=False)
expected = pd.DataFrame({"a": []}, dtype="int8")
tm.assert_frame_equal(result, expected)
|