File size: 51,335 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 |
""" test positional based indexing with iloc """
from datetime import datetime
import re
import numpy as np
import pytest
from pandas.errors import IndexingError
import pandas.util._test_decorators as td
from pandas import (
NA,
Categorical,
CategoricalDtype,
DataFrame,
Index,
Interval,
NaT,
Series,
Timestamp,
array,
concat,
date_range,
interval_range,
isna,
to_datetime,
)
import pandas._testing as tm
from pandas.api.types import is_scalar
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises
# We pass through the error message from numpy
_slice_iloc_msg = re.escape(
"only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) "
"and integer or boolean arrays are valid indices"
)
class TestiLoc:
@pytest.mark.parametrize("key", [2, -1, [0, 1, 2]])
@pytest.mark.parametrize("kind", ["series", "frame"])
@pytest.mark.parametrize(
"col",
["labels", "mixed", "ts", "floats", "empty"],
)
def test_iloc_getitem_int_and_list_int(self, key, kind, col, request):
obj = request.getfixturevalue(f"{kind}_{col}")
check_indexing_smoketest_or_raises(
obj,
"iloc",
key,
fails=IndexError,
)
# array of ints (GH5006), make sure that a single indexer is returning
# the correct type
class TestiLocBaseIndependent:
"""Tests Independent Of Base Class"""
@pytest.mark.parametrize(
"key",
[
slice(None),
slice(3),
range(3),
[0, 1, 2],
Index(range(3)),
np.asarray([0, 1, 2]),
],
)
@pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager):
frame = DataFrame({0: range(3)}, dtype=object)
cat = Categorical(["alpha", "beta", "gamma"])
if not using_array_manager:
assert frame._mgr.blocks[0]._can_hold_element(cat)
df = frame.copy()
orig_vals = df.values
indexer(df)[key, 0] = cat
expected = DataFrame({0: cat}).astype(object)
if not using_array_manager:
assert np.shares_memory(df[0].values, orig_vals)
tm.assert_frame_equal(df, expected)
# check we dont have a view on cat (may be undesired GH#39986)
df.iloc[0, 0] = "gamma"
assert cat[0] != "gamma"
# pre-2.0 with mixed dataframe ("split" path) we always overwrote the
# column. as of 2.0 we correctly write "into" the column, so
# we retain the object dtype.
frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)})
df = frame.copy()
indexer(df)[key, 0] = cat
expected = DataFrame({0: Series(cat.astype(object), dtype=object), 1: range(3)})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("box", [array, Series])
def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write):
# GH#38952 Case with not setting a full column
# IntegerArray without NAs
arr = array([1, 2, 3, 4])
obj = frame_or_series(arr.to_numpy("i8"))
if frame_or_series is Series:
values = obj.values
else:
values = obj._mgr.arrays[0]
if frame_or_series is Series:
obj.iloc[:2] = box(arr[2:])
else:
obj.iloc[:2, 0] = box(arr[2:])
expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8"))
tm.assert_equal(obj, expected)
# Check that we are actually in-place
if frame_or_series is Series:
if using_copy_on_write:
assert obj.values is not values
assert np.shares_memory(obj.values, values)
else:
assert obj.values is values
else:
assert np.shares_memory(obj[0].values, values)
def test_is_scalar_access(self):
# GH#32085 index with duplicates doesn't matter for _is_scalar_access
index = Index([1, 2, 1])
ser = Series(range(3), index=index)
assert ser.iloc._is_scalar_access((1,))
df = ser.to_frame()
assert df.iloc._is_scalar_access((1, 0))
def test_iloc_exceeds_bounds(self):
# GH6296
# iloc should allow indexers that exceed the bounds
df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE"))
# lists of positions should raise IndexError!
msg = "positional indexers are out-of-bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[:, [0, 1, 2, 3, 4, 5]]
with pytest.raises(IndexError, match=msg):
df.iloc[[1, 30]]
with pytest.raises(IndexError, match=msg):
df.iloc[[1, -30]]
with pytest.raises(IndexError, match=msg):
df.iloc[[100]]
s = df["A"]
with pytest.raises(IndexError, match=msg):
s.iloc[[100]]
with pytest.raises(IndexError, match=msg):
s.iloc[[-100]]
# still raise on a single indexer
msg = "single positional indexer is out-of-bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[30]
with pytest.raises(IndexError, match=msg):
df.iloc[-30]
# GH10779
# single positive/negative indexer exceeding Series bounds should raise
# an IndexError
with pytest.raises(IndexError, match=msg):
s.iloc[30]
with pytest.raises(IndexError, match=msg):
s.iloc[-30]
# slices are ok
result = df.iloc[:, 4:10] # 0 < start < len < stop
expected = df.iloc[:, 4:]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -4:-10] # stop < 0 < start < len
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down)
expected = df.iloc[:, :4:-1]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down)
expected = df.iloc[:, 4::-1]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -10:4] # start < 0 < stop < len
expected = df.iloc[:, :4]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:4] # 0 < stop < len < start
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down)
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 10:11] # 0 < len < start < stop
expected = df.iloc[:, :0]
tm.assert_frame_equal(result, expected)
# slice bounds exceeding is ok
result = s.iloc[18:30]
expected = s.iloc[18:]
tm.assert_series_equal(result, expected)
result = s.iloc[30:]
expected = s.iloc[:0]
tm.assert_series_equal(result, expected)
result = s.iloc[30::-1]
expected = s.iloc[::-1]
tm.assert_series_equal(result, expected)
# doc example
dfl = DataFrame(
np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB")
)
tm.assert_frame_equal(
dfl.iloc[:, 2:3],
DataFrame(index=dfl.index, columns=Index([], dtype=dfl.columns.dtype)),
)
tm.assert_frame_equal(dfl.iloc[:, 1:3], dfl.iloc[:, [1]])
tm.assert_frame_equal(dfl.iloc[4:6], dfl.iloc[[4]])
msg = "positional indexers are out-of-bounds"
with pytest.raises(IndexError, match=msg):
dfl.iloc[[4, 5, 6]]
msg = "single positional indexer is out-of-bounds"
with pytest.raises(IndexError, match=msg):
dfl.iloc[:, 4]
@pytest.mark.parametrize("index,columns", [(np.arange(20), list("ABCDE"))])
@pytest.mark.parametrize(
"index_vals,column_vals",
[
([slice(None), ["A", "D"]]),
(["1", "2"], slice(None)),
([datetime(2019, 1, 1)], slice(None)),
],
)
def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals):
# GH 25753
df = DataFrame(
np.random.default_rng(2).standard_normal((len(index), len(columns))),
index=index,
columns=columns,
)
msg = ".iloc requires numeric indexers, got"
with pytest.raises(IndexError, match=msg):
df.iloc[index_vals, column_vals]
def test_iloc_getitem_invalid_scalar(self, frame_or_series):
# GH 21982
obj = DataFrame(np.arange(100).reshape(10, 10))
obj = tm.get_obj(obj, frame_or_series)
with pytest.raises(TypeError, match="Cannot index by location index"):
obj.iloc["a"]
def test_iloc_array_not_mutating_negative_indices(self):
# GH 21867
array_with_neg_numbers = np.array([1, 2, -1])
array_copy = array_with_neg_numbers.copy()
df = DataFrame(
{"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]},
index=[1, 2, 3],
)
df.iloc[array_with_neg_numbers]
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
df.iloc[:, array_with_neg_numbers]
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
def test_iloc_getitem_neg_int_can_reach_first_index(self):
# GH10547 and GH10779
# negative integers should be able to reach index 0
df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]})
s = df["A"]
expected = df.iloc[0]
result = df.iloc[-3]
tm.assert_series_equal(result, expected)
expected = df.iloc[[0]]
result = df.iloc[[-3]]
tm.assert_frame_equal(result, expected)
expected = s.iloc[0]
result = s.iloc[-3]
assert result == expected
expected = s.iloc[[0]]
result = s.iloc[[-3]]
tm.assert_series_equal(result, expected)
# check the length 1 Series case highlighted in GH10547
expected = Series(["a"], index=["A"])
result = expected.iloc[[-1]]
tm.assert_series_equal(result, expected)
def test_iloc_getitem_dups(self):
# GH 6766
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
# cross-sectional indexing
result = df.iloc[0, 0]
assert isna(result)
result = df.iloc[0, :]
expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0)
tm.assert_series_equal(result, expected)
def test_iloc_getitem_array(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}])
tm.assert_frame_equal(df.iloc[[0]], expected)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
tm.assert_frame_equal(df.iloc[[0, 1]], expected)
expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2])
result = df.iloc[[0, 2], [1, 2]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_bool(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
result = df.iloc[[True, True, False]]
tm.assert_frame_equal(result, expected)
expected = DataFrame(
[{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2]
)
result = df.iloc[lambda x: x.index % 2 == 0]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index", [[True, False], [True, False, True, False]])
def test_iloc_getitem_bool_diff_len(self, index):
# GH26658
s = Series([1, 2, 3])
msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}"
with pytest.raises(IndexError, match=msg):
s.iloc[index]
def test_iloc_getitem_slice(self):
df = DataFrame(
[
{"A": 1, "B": 2, "C": 3},
{"A": 100, "B": 200, "C": 300},
{"A": 1000, "B": 2000, "C": 3000},
]
)
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
result = df.iloc[:2]
tm.assert_frame_equal(result, expected)
expected = DataFrame([{"A": 100, "B": 200}], index=[1])
result = df.iloc[1:2, 0:2]
tm.assert_frame_equal(result, expected)
expected = DataFrame(
[{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}]
)
result = df.iloc[:, lambda df: [0, 2]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_slice_dups(self):
df1 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=["A", "A", "B", "B"],
)
df2 = DataFrame(
np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
columns=["A", "C"],
)
# axis=1
df = concat([df1, df2], axis=1)
tm.assert_frame_equal(df.iloc[:, :4], df1)
tm.assert_frame_equal(df.iloc[:, 4:], df2)
df = concat([df2, df1], axis=1)
tm.assert_frame_equal(df.iloc[:, :2], df2)
tm.assert_frame_equal(df.iloc[:, 2:], df1)
exp = concat([df2, df1.iloc[:, [0]]], axis=1)
tm.assert_frame_equal(df.iloc[:, 0:3], exp)
# axis=0
df = concat([df, df], axis=0)
tm.assert_frame_equal(df.iloc[0:10, :2], df2)
tm.assert_frame_equal(df.iloc[0:10, 2:], df1)
tm.assert_frame_equal(df.iloc[10:, :2], df2)
tm.assert_frame_equal(df.iloc[10:, 2:], df1)
def test_iloc_setitem(self, warn_copy_on_write):
df = DataFrame(
np.random.default_rng(2).standard_normal((4, 4)),
index=np.arange(0, 8, 2),
columns=np.arange(0, 12, 3),
)
df.iloc[1, 1] = 1
result = df.iloc[1, 1]
assert result == 1
df.iloc[:, 2:3] = 0
expected = df.iloc[:, 2:3]
result = df.iloc[:, 2:3]
tm.assert_frame_equal(result, expected)
# GH5771
s = Series(0, index=[4, 5, 6])
s.iloc[1:2] += 1
expected = Series([0, 1, 0], index=[4, 5, 6])
tm.assert_series_equal(s, expected)
def test_iloc_setitem_axis_argument(self):
# GH45032
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
df[1] = df[1].astype(object)
expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]])
expected[1] = expected[1].astype(object)
df.iloc(axis=0)[2] = 5
tm.assert_frame_equal(df, expected)
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
df[1] = df[1].astype(object)
expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]])
expected[1] = expected[1].astype(object)
df.iloc(axis=1)[2] = 5
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_list(self):
# setitem with an iloc list
df = DataFrame(
np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]
)
df.iloc[[0, 1], [1, 2]]
df.iloc[[0, 1], [1, 2]] += 100
expected = DataFrame(
np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)),
index=["A", "B", "C"],
columns=["A", "B", "C"],
)
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_pandas_object(self):
# GH 17193
s_orig = Series([0, 1, 2, 3])
expected = Series([0, -1, -2, 3])
s = s_orig.copy()
s.iloc[Series([1, 2])] = [-1, -2]
tm.assert_series_equal(s, expected)
s = s_orig.copy()
s.iloc[Index([1, 2])] = [-1, -2]
tm.assert_series_equal(s, expected)
def test_iloc_setitem_dups(self):
# GH 6766
# iloc with a mask aligning from another iloc
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
expected = df.fillna(3)
inds = np.isnan(df.iloc[:, 0])
mask = inds[inds].index
df.iloc[mask, 0] = df.iloc[mask, 2]
tm.assert_frame_equal(df, expected)
# del a dup column across blocks
expected = DataFrame({0: [1, 2], 1: [3, 4]})
expected.columns = ["B", "B"]
del df["A"]
tm.assert_frame_equal(df, expected)
# assign back to self
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
tm.assert_frame_equal(df, expected)
# reversed x 2
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_frame_duplicate_columns_multiple_blocks(
self, using_array_manager
):
# Same as the "assign back to self" check in test_iloc_setitem_dups
# but on a DataFrame with multiple blocks
df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"])
# setting float values that can be held by existing integer arrays
# is inplace
df.iloc[:, 0] = df.iloc[:, 0].astype("f8")
if not using_array_manager:
assert len(df._mgr.blocks) == 1
# if the assigned values cannot be held by existing integer arrays,
# we cast
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
df.iloc[:, 0] = df.iloc[:, 0] + 0.5
if not using_array_manager:
assert len(df._mgr.blocks) == 2
expected = df.copy()
# assign back to self
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
tm.assert_frame_equal(df, expected)
# TODO: GH#27620 this test used to compare iloc against ix; check if this
# is redundant with another test comparing iloc against loc
def test_iloc_getitem_frame(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=range(0, 20, 2),
columns=range(0, 8, 2),
)
result = df.iloc[2]
exp = df.loc[4]
tm.assert_series_equal(result, exp)
result = df.iloc[2, 2]
exp = df.loc[4, 4]
assert result == exp
# slice
result = df.iloc[4:8]
expected = df.loc[8:14]
tm.assert_frame_equal(result, expected)
result = df.iloc[:, 2:3]
expected = df.loc[:, 4:5]
tm.assert_frame_equal(result, expected)
# list of integers
result = df.iloc[[0, 1, 3]]
expected = df.loc[[0, 2, 6]]
tm.assert_frame_equal(result, expected)
result = df.iloc[[0, 1, 3], [0, 1]]
expected = df.loc[[0, 2, 6], [0, 2]]
tm.assert_frame_equal(result, expected)
# neg indices
result = df.iloc[[-1, 1, 3], [-1, 1]]
expected = df.loc[[18, 2, 6], [6, 2]]
tm.assert_frame_equal(result, expected)
# dups indices
result = df.iloc[[-1, -1, 1, 3], [-1, 1]]
expected = df.loc[[18, 18, 2, 6], [6, 2]]
tm.assert_frame_equal(result, expected)
# with index-like
s = Series(index=range(1, 5), dtype=object)
result = df.iloc[s.index]
expected = df.loc[[2, 4, 6, 8]]
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_labelled_frame(self):
# try with labelled frame
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=list("abcdefghij"),
columns=list("ABCD"),
)
result = df.iloc[1, 1]
exp = df.loc["b", "B"]
assert result == exp
result = df.iloc[:, 2:3]
expected = df.loc[:, ["C"]]
tm.assert_frame_equal(result, expected)
# negative indexing
result = df.iloc[-1, -1]
exp = df.loc["j", "D"]
assert result == exp
# out-of-bounds exception
msg = "index 5 is out of bounds for axis 0 with size 4|index out of bounds"
with pytest.raises(IndexError, match=msg):
df.iloc[10, 5]
# trying to use a label
msg = (
r"Location based indexing can only have \[integer, integer "
r"slice \(START point is INCLUDED, END point is EXCLUDED\), "
r"listlike of integers, boolean array\] types"
)
with pytest.raises(ValueError, match=msg):
df.iloc["j", "D"]
def test_iloc_getitem_doc_issue(self, using_array_manager):
# multi axis slicing issue with single block
# surfaced in GH 6059
arr = np.random.default_rng(2).standard_normal((6, 4))
index = date_range("20130101", periods=6)
columns = list("ABCD")
df = DataFrame(arr, index=index, columns=columns)
# defines ref_locs
df.describe()
result = df.iloc[3:5, 0:2]
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2])
tm.assert_frame_equal(result, expected)
# for dups
df.columns = list("aaaa")
result = df.iloc[3:5, 0:2]
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa"))
tm.assert_frame_equal(result, expected)
# related
arr = np.random.default_rng(2).standard_normal((6, 4))
index = list(range(0, 12, 2))
columns = list(range(0, 8, 2))
df = DataFrame(arr, index=index, columns=columns)
if not using_array_manager:
df._mgr.blocks[0].mgr_locs
result = df.iloc[1:5, 2:4]
expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4])
tm.assert_frame_equal(result, expected)
def test_iloc_setitem_series(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
index=list("abcdefghij"),
columns=list("ABCD"),
)
df.iloc[1, 1] = 1
result = df.iloc[1, 1]
assert result == 1
df.iloc[:, 2:3] = 0
expected = df.iloc[:, 2:3]
result = df.iloc[:, 2:3]
tm.assert_frame_equal(result, expected)
s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2))
s.iloc[1] = 1
result = s.iloc[1]
assert result == 1
s.iloc[:4] = 0
expected = s.iloc[:4]
result = s.iloc[:4]
tm.assert_series_equal(result, expected)
s = Series([-1] * 6)
s.iloc[0::2] = [0, 2, 4]
s.iloc[1::2] = [1, 3, 5]
result = s
expected = Series([0, 1, 2, 3, 4, 5])
tm.assert_series_equal(result, expected)
def test_iloc_setitem_list_of_lists(self):
# GH 7551
# list-of-list is set incorrectly in mixed vs. single dtyped frames
df = DataFrame(
{"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")}
)
df.iloc[2:4] = [[10, 11], [12, 13]]
expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]})
tm.assert_frame_equal(df, expected)
df = DataFrame(
{"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")}
)
df.iloc[2:4] = [["x", 11], ["y", 13]]
expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [[0], slice(None, 1, None), np.array([0])])
@pytest.mark.parametrize("value", [["Z"], np.array(["Z"])])
def test_iloc_setitem_with_scalar_index(self, indexer, value):
# GH #19474
# assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated
# elementwisely, not using "setter('A', ['Z'])".
# Set object type to avoid upcast when setting "Z"
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object})
df.iloc[0, indexer] = value
result = df.iloc[0, 0]
assert is_scalar(result) and result == "Z"
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_iloc_mask(self):
# GH 3631, iloc with a mask (of a series) should raise
df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"])
mask = df.a % 2 == 0
msg = "iLocation based boolean indexing cannot use an indexable as a mask"
with pytest.raises(ValueError, match=msg):
df.iloc[mask]
mask.index = range(len(mask))
msg = "iLocation based boolean indexing on an integer type is not available"
with pytest.raises(NotImplementedError, match=msg):
df.iloc[mask]
# ndarray ok
result = df.iloc[np.array([True] * len(mask), dtype=bool)]
tm.assert_frame_equal(result, df)
# the possibilities
locs = np.arange(4)
nums = 2**locs
reps = [bin(num) for num in nums]
df = DataFrame({"locs": locs, "nums": nums}, reps)
expected = {
(None, ""): "0b1100",
(None, ".loc"): "0b1100",
(None, ".iloc"): "0b1100",
("index", ""): "0b11",
("index", ".loc"): "0b11",
("index", ".iloc"): (
"iLocation based boolean indexing cannot use an indexable as a mask"
),
("locs", ""): "Unalignable boolean Series provided as indexer "
"(index of the boolean Series and of the indexed "
"object do not match).",
("locs", ".loc"): "Unalignable boolean Series provided as indexer "
"(index of the boolean Series and of the "
"indexed object do not match).",
("locs", ".iloc"): (
"iLocation based boolean indexing on an "
"integer type is not available"
),
}
# UserWarnings from reindex of a boolean mask
for idx in [None, "index", "locs"]:
mask = (df.nums > 2).values
if idx:
mask_index = getattr(df, idx)[::-1]
mask = Series(mask, list(mask_index))
for method in ["", ".loc", ".iloc"]:
try:
if method:
accessor = getattr(df, method[1:])
else:
accessor = df
answer = str(bin(accessor[mask]["nums"].sum()))
except (ValueError, IndexingError, NotImplementedError) as err:
answer = str(err)
key = (
idx,
method,
)
r = expected.get(key)
if r != answer:
raise AssertionError(
f"[{key}] does not match [{answer}], received [{r}]"
)
def test_iloc_non_unique_indexing(self):
# GH 4017, non-unique indexing (on the axis)
df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000})
idx = np.arange(30) * 99
expected = df.iloc[idx]
df3 = concat([df, 2 * df, 3 * df])
result = df3.iloc[idx]
tm.assert_frame_equal(result, expected)
df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000})
df2 = concat([df2, 2 * df2, 3 * df2])
with pytest.raises(KeyError, match="not in index"):
df2.loc[idx]
def test_iloc_empty_list_indexer_is_ok(self):
df = DataFrame(
np.ones((5, 2)),
index=Index([f"i-{i}" for i in range(5)], name="a"),
columns=Index([f"i-{i}" for i in range(2)], name="a"),
)
# vertical empty
tm.assert_frame_equal(
df.iloc[:, []],
df.iloc[:, :0],
check_index_type=True,
check_column_type=True,
)
# horizontal empty
tm.assert_frame_equal(
df.iloc[[], :],
df.iloc[:0, :],
check_index_type=True,
check_column_type=True,
)
# horizontal empty
tm.assert_frame_equal(
df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True
)
def test_identity_slice_returns_new_object(
self, using_copy_on_write, warn_copy_on_write
):
# GH13873
original_df = DataFrame({"a": [1, 2, 3]})
sliced_df = original_df.iloc[:]
assert sliced_df is not original_df
# should be a shallow copy
assert np.shares_memory(original_df["a"], sliced_df["a"])
# Setting using .loc[:, "a"] sets inplace so alters both sliced and orig
# depending on CoW
with tm.assert_cow_warning(warn_copy_on_write):
original_df.loc[:, "a"] = [4, 4, 4]
if using_copy_on_write:
assert (sliced_df["a"] == [1, 2, 3]).all()
else:
assert (sliced_df["a"] == 4).all()
original_series = Series([1, 2, 3, 4, 5, 6])
sliced_series = original_series.iloc[:]
assert sliced_series is not original_series
# should also be a shallow copy
with tm.assert_cow_warning(warn_copy_on_write):
original_series[:3] = [7, 8, 9]
if using_copy_on_write:
# shallow copy not updated (CoW)
assert all(sliced_series[:3] == [1, 2, 3])
else:
assert all(sliced_series[:3] == [7, 8, 9])
def test_indexing_zerodim_np_array(self):
# GH24919
df = DataFrame([[1, 2], [3, 4]])
result = df.iloc[np.array(0)]
s = Series([1, 2], name=0)
tm.assert_series_equal(result, s)
def test_series_indexing_zerodim_np_array(self):
# GH24919
s = Series([1, 2])
result = s.iloc[np.array(0)]
assert result == 1
def test_iloc_setitem_categorical_updates_inplace(self):
# Mixed dtype ensures we go through take_split_path in setitem_with_indexer
cat = Categorical(["A", "B", "C"])
df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False)
assert tm.shares_memory(df[1], cat)
# With the enforcement of GH#45333 in 2.0, this modifies original
# values inplace
df.iloc[:, 0] = cat[::-1]
assert tm.shares_memory(df[1], cat)
expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"])
tm.assert_categorical_equal(cat, expected)
def test_iloc_with_boolean_operation(self):
# GH 20627
result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]])
result.iloc[result.index <= 2] *= 2
expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[result.index > 2] *= 2
expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[[True, True, False, False]] *= 2
expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]])
tm.assert_frame_equal(result, expected)
result.iloc[[False, False, True, True]] /= 2
expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]])
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self):
# GH#29521
df = DataFrame({"x": Categorical("a b c d e".split())})
result = df.iloc[0]
raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"])
expected = Series(raw_cat, index=["x"], name=0, dtype="category")
tm.assert_series_equal(result, expected)
def test_iloc_getitem_categorical_values(self):
# GH#14580
# test iloc() on Series with Categorical data
ser = Series([1, 2, 3]).astype("category")
# get slice
result = ser.iloc[0:2]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get list of indexes
result = ser.iloc[[0, 1]]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get boolean array
result = ser.iloc[[True, False, False]]
expected = Series([1]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("value", [None, NaT, np.nan])
def test_iloc_setitem_td64_values_cast_na(self, value):
# GH#18586
series = Series([0, 1, 2], dtype="timedelta64[ns]")
series.iloc[0] = value
expected = Series([NaT, 1, 2], dtype="timedelta64[ns]")
tm.assert_series_equal(series, expected)
@pytest.mark.parametrize("not_na", [Interval(0, 1), "a", 1.0])
def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture):
# GH#27937
dtype = CategoricalDtype(categories=[not_na])
ser = Series(
[nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype
)
ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture]
exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype)
tm.assert_series_equal(ser, exp)
def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self):
idx = Index([])
obj = DataFrame(
np.random.default_rng(2).standard_normal((len(idx), len(idx))),
index=idx,
columns=idx,
)
nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
msg = f"Cannot set values with ndim > {obj.ndim}"
with pytest.raises(ValueError, match=msg):
obj.iloc[nd3] = 0
@pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
def test_iloc_getitem_read_only_values(self, indexer):
# GH#10043 this is fundamentally a test for iloc, but test loc while
# we're here
rw_array = np.eye(10)
rw_df = DataFrame(rw_array)
ro_array = np.eye(10)
ro_array.setflags(write=False)
ro_df = DataFrame(ro_array)
tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]])
tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]])
tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1])
tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3])
def test_iloc_getitem_readonly_key(self):
# GH#17192 iloc with read-only array raising TypeError
df = DataFrame({"data": np.ones(100, dtype="float64")})
indices = np.array([1, 3, 6])
indices.flags.writeable = False
result = df.iloc[indices]
expected = df.loc[[1, 3, 6]]
tm.assert_frame_equal(result, expected)
result = df["data"].iloc[indices]
expected = df["data"].loc[[1, 3, 6]]
tm.assert_series_equal(result, expected)
def test_iloc_assign_series_to_df_cell(self):
# GH 37593
df = DataFrame(columns=["a"], index=[0])
df.iloc[0, 0] = Series([1, 2, 3])
expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0])
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("klass", [list, np.array])
def test_iloc_setitem_bool_indexer(self, klass):
# GH#36741
df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]})
indexer = klass([True, False, False])
df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2
expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [[1], slice(1, 2)])
def test_iloc_setitem_pure_position_based(self, indexer):
# GH#22046
df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]})
df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
df2.iloc[:, indexer] = df1.iloc[:, [0]]
expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]})
tm.assert_frame_equal(df2, expected)
def test_iloc_setitem_dictionary_value(self):
# GH#37728
df = DataFrame({"x": [1, 2], "y": [2, 2]})
rhs = {"x": 9, "y": 99}
df.iloc[1] = rhs
expected = DataFrame({"x": [1, 9], "y": [2, 99]})
tm.assert_frame_equal(df, expected)
# GH#38335 same thing, mixed dtypes
df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]})
df.iloc[1] = rhs
expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]})
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_float_duplicates(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 3)),
index=[0.1, 0.2, 0.2],
columns=list("abc"),
)
expect = df.iloc[1:]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df.index = [1, 0.2, 0.2]
expect = df.iloc[1:]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df = DataFrame(
np.random.default_rng(2).standard_normal((4, 3)),
index=[1, 0.2, 0.2, 1],
columns=list("abc"),
)
expect = df.iloc[1:-1]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[1:-1, 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
df.index = [0.1, 0.2, 2, 0.2]
expect = df.iloc[[1, -1]]
tm.assert_frame_equal(df.loc[0.2], expect)
expect = df.iloc[[1, -1], 0]
tm.assert_series_equal(df.loc[0.2, "a"], expect)
def test_iloc_setitem_custom_object(self):
# iloc with an object
class TO:
def __init__(self, value) -> None:
self.value = value
def __str__(self) -> str:
return f"[{self.value}]"
__repr__ = __str__
def __eq__(self, other) -> bool:
return self.value == other.value
def view(self):
return self
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = TO(1)
df.iloc[1, 0] = TO(2)
result = DataFrame(index=[0, 1], columns=[0])
result.iloc[1, 0] = TO(2)
tm.assert_frame_equal(result, df)
# remains object dtype even after setting it back
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = TO(1)
df.iloc[1, 0] = np.nan
result = DataFrame(index=[0, 1], columns=[0])
tm.assert_frame_equal(result, df)
def test_iloc_getitem_with_duplicates(self):
df = DataFrame(
np.random.default_rng(2).random((3, 3)),
columns=list("ABC"),
index=list("aab"),
)
result = df.iloc[0]
assert isinstance(result, Series)
tm.assert_almost_equal(result.values, df.values[0])
result = df.T.iloc[:, 0]
assert isinstance(result, Series)
tm.assert_almost_equal(result.values, df.values[0])
def test_iloc_getitem_with_duplicates2(self):
# GH#2259
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
result = df.iloc[:, [0]]
expected = df.take([0], axis=1)
tm.assert_frame_equal(result, expected)
def test_iloc_interval(self):
# GH#17130
df = DataFrame({Interval(1, 2): [1, 2]})
result = df.iloc[0]
expected = Series({Interval(1, 2): 1}, name=0)
tm.assert_series_equal(result, expected)
result = df.iloc[:, 0]
expected = Series([1, 2], name=Interval(1, 2))
tm.assert_series_equal(result, expected)
result = df.copy()
result.iloc[:, 0] += 1
expected = DataFrame({Interval(1, 2): [2, 3]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("indexing_func", [list, np.array])
@pytest.mark.parametrize("rhs_func", [list, np.array])
def test_loc_setitem_boolean_list(self, rhs_func, indexing_func):
# GH#20438 testing specifically list key, not arraylike
ser = Series([0, 1, 2])
ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10])
expected = Series([5, 1, 10])
tm.assert_series_equal(ser, expected)
df = DataFrame({"a": [0, 1, 2]})
df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]])
expected = DataFrame({"a": [5, 1, 10]})
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_slice_negative_step_ea_block(self):
# GH#44551
df = DataFrame({"A": [1, 2, 3]}, dtype="Int64")
res = df.iloc[:, ::-1]
tm.assert_frame_equal(res, df)
df["B"] = "foo"
res = df.iloc[:, ::-1]
expected = DataFrame({"B": df["B"], "A": df["A"]})
tm.assert_frame_equal(res, expected)
def test_iloc_setitem_2d_ndarray_into_ea_block(self):
# GH#44703
df = DataFrame({"status": ["a", "b", "c"]}, dtype="category")
df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]])
expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype)
tm.assert_frame_equal(df, expected)
@td.skip_array_manager_not_yet_implemented
def test_iloc_getitem_int_single_ea_block_view(self):
# GH#45241
# TODO: make an extension interface test for this?
arr = interval_range(1, 10.0)._values
df = DataFrame(arr)
# ser should be a *view* on the DataFrame data
ser = df.iloc[2]
# if we have a view, then changing arr[2] should also change ser[0]
assert arr[2] != arr[-1] # otherwise the rest isn't meaningful
arr[2] = arr[-1]
assert ser[0] == arr[-1]
def test_iloc_setitem_multicolumn_to_datetime(self):
# GH#20511
df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]})
df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])})
expected = DataFrame(
{
"A": [
Timestamp("2021-01-01 00:00:00"),
Timestamp("2022-01-01 00:00:00"),
],
"B": ["2021", "2022"],
}
)
tm.assert_frame_equal(df, expected, check_dtype=False)
class TestILocErrors:
# NB: this test should work for _any_ Series we can pass as
# series_with_simple_index
def test_iloc_float_raises(
self, series_with_simple_index, frame_or_series, warn_copy_on_write
):
# GH#4892
# float_indexers should raise exceptions
# on appropriate Index types & accessors
# this duplicates the code below
# but is specifically testing for the error
# message
obj = series_with_simple_index
if frame_or_series is DataFrame:
obj = obj.to_frame()
msg = "Cannot index by location index with a non-integer key"
with pytest.raises(TypeError, match=msg):
obj.iloc[3.0]
with pytest.raises(IndexError, match=_slice_iloc_msg):
with tm.assert_cow_warning(
warn_copy_on_write and frame_or_series is DataFrame
):
obj.iloc[3.0] = 0
def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame):
with pytest.raises(IndexingError, match="Too many indexers"):
float_frame.iloc[:, :, :]
with pytest.raises(IndexError, match="too many indices for array"):
# GH#32257 we let numpy do validation, get their exception
float_frame.iloc[:, :, :] = 1
def test_iloc_frame_indexer(self):
# GH#39004
df = DataFrame({"a": [1, 2, 3]})
indexer = DataFrame({"a": [True, False, True]})
msg = "DataFrame indexer for .iloc is not supported. Consider using .loc"
with pytest.raises(TypeError, match=msg):
df.iloc[indexer] = 1
msg = (
"DataFrame indexer is not allowed for .iloc\n"
"Consider using .loc for automatic alignment."
)
with pytest.raises(IndexError, match=msg):
df.iloc[indexer]
class TestILocSetItemDuplicateColumns:
def test_iloc_setitem_scalar_duplicate_columns(self):
# GH#15686, duplicate columns and mixed dtype
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
df = concat([df1, df2], axis=1)
df.iloc[0, 0] = -1
assert df.iloc[0, 0] == -1
assert df.iloc[0, 2] == 3
assert df.dtypes.iloc[2] == np.int64
def test_iloc_setitem_list_duplicate_columns(self):
# GH#22036 setting with same-sized list
df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"])
df.iloc[:, 2] = ["str3"]
expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"])
tm.assert_frame_equal(df, expected)
def test_iloc_setitem_series_duplicate_columns(self):
df = DataFrame(
np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"]
)
df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64)
assert df.dtypes.iloc[2] == np.int64
@pytest.mark.parametrize(
["dtypes", "init_value", "expected_value"],
[("int64", "0", 0), ("float", "1.2", 1.2)],
)
def test_iloc_setitem_dtypes_duplicate_columns(
self, dtypes, init_value, expected_value
):
# GH#22035
df = DataFrame(
[[init_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object
)
# with the enforcement of GH#45333 in 2.0, this sets values inplace,
# so we retain object dtype
df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes)
expected_df = DataFrame(
[[expected_value, "str", "str2"]],
columns=["a", "b", "b"],
dtype=object,
)
tm.assert_frame_equal(df, expected_df)
class TestILocCallable:
def test_frame_iloc_getitem_callable(self):
# GH#11485
df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
# return location
res = df.iloc[lambda x: [1, 3]]
tm.assert_frame_equal(res, df.iloc[[1, 3]])
res = df.iloc[lambda x: [1, 3], :]
tm.assert_frame_equal(res, df.iloc[[1, 3], :])
res = df.iloc[lambda x: [1, 3], lambda x: 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[lambda x: [1, 3], lambda x: [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
# mixture
res = df.iloc[[1, 3], lambda x: 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[[1, 3], lambda x: [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
res = df.iloc[lambda x: [1, 3], 0]
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
res = df.iloc[lambda x: [1, 3], [0]]
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
def test_frame_iloc_setitem_callable(self):
# GH#11485
df = DataFrame(
{"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)},
index=list("ABCD"),
)
# return location
res = df.copy()
res.iloc[lambda x: [1, 3]] = 0
exp = df.copy()
exp.iloc[[1, 3]] = 0
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], :] = -1
exp = df.copy()
exp.iloc[[1, 3], :] = -1
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], lambda x: 0] = 5
exp = df.copy()
exp.iloc[[1, 3], 0] = 5
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], lambda x: [0]] = 25
exp = df.copy()
exp.iloc[[1, 3], [0]] = 25
tm.assert_frame_equal(res, exp)
# mixture
res = df.copy()
res.iloc[[1, 3], lambda x: 0] = -3
exp = df.copy()
exp.iloc[[1, 3], 0] = -3
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[[1, 3], lambda x: [0]] = -5
exp = df.copy()
exp.iloc[[1, 3], [0]] = -5
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], 0] = 10
exp = df.copy()
exp.iloc[[1, 3], 0] = 10
tm.assert_frame_equal(res, exp)
res = df.copy()
res.iloc[lambda x: [1, 3], [0]] = [-5, -5]
exp = df.copy()
exp.iloc[[1, 3], [0]] = [-5, -5]
tm.assert_frame_equal(res, exp)
class TestILocSeries:
def test_iloc(self, using_copy_on_write, warn_copy_on_write):
ser = Series(
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
)
ser_original = ser.copy()
for i in range(len(ser)):
result = ser.iloc[i]
exp = ser[ser.index[i]]
tm.assert_almost_equal(result, exp)
# pass a slice
result = ser.iloc[slice(1, 3)]
expected = ser.loc[2:4]
tm.assert_series_equal(result, expected)
# test slice is a view
with tm.assert_produces_warning(None):
# GH#45324 make sure we aren't giving a spurious FutureWarning
with tm.assert_cow_warning(warn_copy_on_write):
result[:] = 0
if using_copy_on_write:
tm.assert_series_equal(ser, ser_original)
else:
assert (ser.iloc[1:3] == 0).all()
# list of integers
result = ser.iloc[[0, 2, 3, 4, 5]]
expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]])
tm.assert_series_equal(result, expected)
def test_iloc_getitem_nonunique(self):
ser = Series([0, 1, 2], index=[0, 1, 0])
assert ser.iloc[2] == 2
def test_iloc_setitem_pure_position_based(self):
# GH#22046
ser1 = Series([1, 2, 3])
ser2 = Series([4, 5, 6], index=[1, 0, 2])
ser1.iloc[1:3] = ser2.iloc[1:3]
expected = Series([1, 5, 6])
tm.assert_series_equal(ser1, expected)
def test_iloc_nullable_int64_size_1_nan(self):
# GH 31861
result = DataFrame({"a": ["test"], "b": [np.nan]})
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
result.loc[:, "b"] = result.loc[:, "b"].astype("Int64")
expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")})
tm.assert_frame_equal(result, expected)
|