File size: 5,703 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import re

import pytest

import pandas as pd
from pandas import (
    DataFrame,
    Index,
    Series,
    Timestamp,
    date_range,
)
import pandas._testing as tm


class TestDatetimeIndex:
    def test_get_loc_naive_dti_aware_str_deprecated(self):
        # GH#46903
        ts = Timestamp("20130101")._value
        dti = pd.DatetimeIndex([ts + 50 + i for i in range(100)])
        ser = Series(range(100), index=dti)

        key = "2013-01-01 00:00:00.000000050+0000"
        msg = re.escape(repr(key))
        with pytest.raises(KeyError, match=msg):
            ser[key]

        with pytest.raises(KeyError, match=msg):
            dti.get_loc(key)

    def test_indexing_with_datetime_tz(self):
        # GH#8260
        # support datetime64 with tz

        idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
        dr = date_range("20130110", periods=3)
        df = DataFrame({"A": idx, "B": dr})
        df["C"] = idx
        df.iloc[1, 1] = pd.NaT
        df.iloc[1, 2] = pd.NaT

        expected = Series(
            [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
            index=list("ABC"),
            dtype="object",
            name=1,
        )

        # indexing
        result = df.iloc[1]
        tm.assert_series_equal(result, expected)
        result = df.loc[1]
        tm.assert_series_equal(result, expected)

    def test_indexing_fast_xs(self):
        # indexing - fast_xs
        df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
        result = df.iloc[5]
        expected = Series(
            [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")],
            index=["a"],
            name=5,
            dtype="M8[ns, UTC]",
        )
        tm.assert_series_equal(result, expected)

        result = df.loc[5]
        tm.assert_series_equal(result, expected)

        # indexing - boolean
        result = df[df.a > df.a[3]]
        expected = df.iloc[4:]
        tm.assert_frame_equal(result, expected)

    def test_consistency_with_tz_aware_scalar(self):
        # xef gh-12938
        # various ways of indexing the same tz-aware scalar
        df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame()

        df = pd.concat([df, df]).reset_index(drop=True)
        expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels")

        result = df[0][0]
        assert result == expected

        result = df.iloc[0, 0]
        assert result == expected

        result = df.loc[0, 0]
        assert result == expected

        result = df.iat[0, 0]
        assert result == expected

        result = df.at[0, 0]
        assert result == expected

        result = df[0].loc[0]
        assert result == expected

        result = df[0].at[0]
        assert result == expected

    def test_indexing_with_datetimeindex_tz(self, indexer_sl):
        # GH 12050
        # indexing on a series with a datetimeindex with tz
        index = date_range("2015-01-01", periods=2, tz="utc")

        ser = Series(range(2), index=index, dtype="int64")

        # list-like indexing

        for sel in (index, list(index)):
            # getitem
            result = indexer_sl(ser)[sel]
            expected = ser.copy()
            if sel is not index:
                expected.index = expected.index._with_freq(None)
            tm.assert_series_equal(result, expected)

            # setitem
            result = ser.copy()
            indexer_sl(result)[sel] = 1
            expected = Series(1, index=index)
            tm.assert_series_equal(result, expected)

        # single element indexing

        # getitem
        assert indexer_sl(ser)[index[1]] == 1

        # setitem
        result = ser.copy()
        indexer_sl(result)[index[1]] = 5
        expected = Series([0, 5], index=index)
        tm.assert_series_equal(result, expected)

    def test_nanosecond_getitem_setitem_with_tz(self):
        # GH 11679
        data = ["2016-06-28 08:30:00.123456789"]
        index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]")
        df = DataFrame({"a": [10]}, index=index)
        result = df.loc[df.index[0]]
        expected = Series(10, index=["a"], name=df.index[0])
        tm.assert_series_equal(result, expected)

        result = df.copy()
        result.loc[df.index[0], "a"] = -1
        expected = DataFrame(-1, index=index, columns=["a"])
        tm.assert_frame_equal(result, expected)

    def test_getitem_str_slice_millisecond_resolution(self, frame_or_series):
        # GH#33589

        keys = [
            "2017-10-25T16:25:04.151",
            "2017-10-25T16:25:04.252",
            "2017-10-25T16:50:05.237",
            "2017-10-25T16:50:05.238",
        ]
        obj = frame_or_series(
            [1, 2, 3, 4],
            index=[Timestamp(x) for x in keys],
        )
        result = obj[keys[1] : keys[2]]
        expected = frame_or_series(
            [2, 3],
            index=[
                Timestamp(keys[1]),
                Timestamp(keys[2]),
            ],
        )
        tm.assert_equal(result, expected)

    def test_getitem_pyarrow_index(self, frame_or_series):
        # GH 53644
        pytest.importorskip("pyarrow")
        obj = frame_or_series(
            range(5),
            index=date_range("2020", freq="D", periods=5).astype(
                "timestamp[us][pyarrow]"
            ),
        )
        result = obj.loc[obj.index[:-3]]
        expected = frame_or_series(
            range(2),
            index=date_range("2020", freq="D", periods=2).astype(
                "timestamp[us][pyarrow]"
            ),
        )
        tm.assert_equal(result, expected)