File size: 10,588 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import numpy as np
import pytest

from pandas.errors import UnsupportedFunctionCall
import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
    DataFrame,
    Series,
)
import pandas._testing as tm


@pytest.fixture(
    params=[np.int32, np.int64, np.float32, np.float64, "Int64", "Float64"],
    ids=["np.int32", "np.int64", "np.float32", "np.float64", "Int64", "Float64"],
)
def dtypes_for_minmax(request):
    """
    Fixture of dtypes with min and max values used for testing
    cummin and cummax
    """
    dtype = request.param

    np_type = dtype
    if dtype == "Int64":
        np_type = np.int64
    elif dtype == "Float64":
        np_type = np.float64

    min_val = (
        np.iinfo(np_type).min
        if np.dtype(np_type).kind == "i"
        else np.finfo(np_type).min
    )
    max_val = (
        np.iinfo(np_type).max
        if np.dtype(np_type).kind == "i"
        else np.finfo(np_type).max
    )

    return (dtype, min_val, max_val)


def test_groupby_cumprod():
    # GH 4095
    df = DataFrame({"key": ["b"] * 10, "value": 2})

    actual = df.groupby("key")["value"].cumprod()
    expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
    expected.name = "value"
    tm.assert_series_equal(actual, expected)

    df = DataFrame({"key": ["b"] * 100, "value": 2})
    df["value"] = df["value"].astype(float)
    actual = df.groupby("key")["value"].cumprod()
    expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
    expected.name = "value"
    tm.assert_series_equal(actual, expected)


@pytest.mark.skip_ubsan
def test_groupby_cumprod_overflow():
    # GH#37493 if we overflow we return garbage consistent with numpy
    df = DataFrame({"key": ["b"] * 4, "value": 100_000})
    actual = df.groupby("key")["value"].cumprod()
    expected = Series(
        [100_000, 10_000_000_000, 1_000_000_000_000_000, 7766279631452241920],
        name="value",
    )
    tm.assert_series_equal(actual, expected)

    numpy_result = df.groupby("key", group_keys=False)["value"].apply(
        lambda x: x.cumprod()
    )
    numpy_result.name = "value"
    tm.assert_series_equal(actual, numpy_result)


def test_groupby_cumprod_nan_influences_other_columns():
    # GH#48064
    df = DataFrame(
        {
            "a": 1,
            "b": [1, np.nan, 2],
            "c": [1, 2, 3.0],
        }
    )
    result = df.groupby("a").cumprod(numeric_only=True, skipna=False)
    expected = DataFrame({"b": [1, np.nan, np.nan], "c": [1, 2, 6.0]})
    tm.assert_frame_equal(result, expected)


def test_cummin(dtypes_for_minmax):
    dtype = dtypes_for_minmax[0]
    min_val = dtypes_for_minmax[1]

    # GH 15048
    base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
    expected_mins = [3, 3, 3, 2, 2, 2, 2, 1]

    df = base_df.astype(dtype)

    expected = DataFrame({"B": expected_mins}).astype(dtype)
    result = df.groupby("A").cummin()
    tm.assert_frame_equal(result, expected)
    result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
    tm.assert_frame_equal(result, expected)

    # Test w/ min value for dtype
    df.loc[[2, 6], "B"] = min_val
    df.loc[[1, 5], "B"] = min_val + 1
    expected.loc[[2, 3, 6, 7], "B"] = min_val
    expected.loc[[1, 5], "B"] = min_val + 1  # should not be rounded to min_val
    result = df.groupby("A").cummin()
    tm.assert_frame_equal(result, expected, check_exact=True)
    expected = (
        df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
    )
    tm.assert_frame_equal(result, expected, check_exact=True)

    # Test nan in some values
    # Explicit cast to float to avoid implicit cast when setting nan
    base_df = base_df.astype({"B": "float"})
    base_df.loc[[0, 2, 4, 6], "B"] = np.nan
    expected = DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
    result = base_df.groupby("A").cummin()
    tm.assert_frame_equal(result, expected)
    expected = (
        base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
    )
    tm.assert_frame_equal(result, expected)

    # GH 15561
    df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
    expected = Series(pd.to_datetime("2001"), index=[0], name="b")

    result = df.groupby("a")["b"].cummin()
    tm.assert_series_equal(expected, result)

    # GH 15635
    df = DataFrame({"a": [1, 2, 1], "b": [1, 2, 2]})
    result = df.groupby("a").b.cummin()
    expected = Series([1, 2, 1], name="b")
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize("dtype", ["UInt64", "Int64", "Float64", "float", "boolean"])
def test_cummin_max_all_nan_column(method, dtype):
    base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
    base_df["B"] = base_df["B"].astype(dtype)
    grouped = base_df.groupby("A")

    expected = DataFrame({"B": [np.nan] * 8}, dtype=dtype)
    result = getattr(grouped, method)()
    tm.assert_frame_equal(expected, result)

    result = getattr(grouped["B"], method)().to_frame()
    tm.assert_frame_equal(expected, result)


def test_cummax(dtypes_for_minmax):
    dtype = dtypes_for_minmax[0]
    max_val = dtypes_for_minmax[2]

    # GH 15048
    base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
    expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3]

    df = base_df.astype(dtype)

    expected = DataFrame({"B": expected_maxs}).astype(dtype)
    result = df.groupby("A").cummax()
    tm.assert_frame_equal(result, expected)
    result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
    tm.assert_frame_equal(result, expected)

    # Test w/ max value for dtype
    df.loc[[2, 6], "B"] = max_val
    expected.loc[[2, 3, 6, 7], "B"] = max_val
    result = df.groupby("A").cummax()
    tm.assert_frame_equal(result, expected)
    expected = (
        df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
    )
    tm.assert_frame_equal(result, expected)

    # Test nan in some values
    # Explicit cast to float to avoid implicit cast when setting nan
    base_df = base_df.astype({"B": "float"})
    base_df.loc[[0, 2, 4, 6], "B"] = np.nan
    expected = DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]})
    result = base_df.groupby("A").cummax()
    tm.assert_frame_equal(result, expected)
    expected = (
        base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
    )
    tm.assert_frame_equal(result, expected)

    # GH 15561
    df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
    expected = Series(pd.to_datetime("2001"), index=[0], name="b")

    result = df.groupby("a")["b"].cummax()
    tm.assert_series_equal(expected, result)

    # GH 15635
    df = DataFrame({"a": [1, 2, 1], "b": [2, 1, 1]})
    result = df.groupby("a").b.cummax()
    expected = Series([2, 1, 2], name="b")
    tm.assert_series_equal(result, expected)


def test_cummax_i8_at_implementation_bound():
    # the minimum value used to be treated as NPY_NAT+1 instead of NPY_NAT
    #  for int64 dtype GH#46382
    ser = Series([pd.NaT._value + n for n in range(5)])
    df = DataFrame({"A": 1, "B": ser, "C": ser._values.view("M8[ns]")})
    gb = df.groupby("A")

    res = gb.cummax()
    exp = df[["B", "C"]]
    tm.assert_frame_equal(res, exp)


@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize("dtype", ["float", "Int64", "Float64"])
@pytest.mark.parametrize(
    "groups,expected_data",
    [
        ([1, 1, 1], [1, None, None]),
        ([1, 2, 3], [1, None, 2]),
        ([1, 3, 3], [1, None, None]),
    ],
)
def test_cummin_max_skipna(method, dtype, groups, expected_data):
    # GH-34047
    df = DataFrame({"a": Series([1, None, 2], dtype=dtype)})
    orig = df.copy()
    gb = df.groupby(groups)["a"]

    result = getattr(gb, method)(skipna=False)
    expected = Series(expected_data, dtype=dtype, name="a")

    # check we didn't accidentally alter df
    tm.assert_frame_equal(df, orig)

    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("method", ["cummin", "cummax"])
def test_cummin_max_skipna_multiple_cols(method):
    # Ensure missing value in "a" doesn't cause "b" to be nan-filled
    df = DataFrame({"a": [np.nan, 2.0, 2.0], "b": [2.0, 2.0, 2.0]})
    gb = df.groupby([1, 1, 1])[["a", "b"]]

    result = getattr(gb, method)(skipna=False)
    expected = DataFrame({"a": [np.nan, np.nan, np.nan], "b": [2.0, 2.0, 2.0]})

    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("func", ["cumprod", "cumsum"])
def test_numpy_compat(func):
    # see gh-12811
    df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
    g = df.groupby("A")

    msg = "numpy operations are not valid with groupby"

    with pytest.raises(UnsupportedFunctionCall, match=msg):
        getattr(g, func)(1, 2, 3)
    with pytest.raises(UnsupportedFunctionCall, match=msg):
        getattr(g, func)(foo=1)


@td.skip_if_32bit
@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize(
    "dtype,val", [("UInt64", np.iinfo("uint64").max), ("Int64", 2**53 + 1)]
)
def test_nullable_int_not_cast_as_float(method, dtype, val):
    data = [val, pd.NA]
    df = DataFrame({"grp": [1, 1], "b": data}, dtype=dtype)
    grouped = df.groupby("grp")

    result = grouped.transform(method)
    expected = DataFrame({"b": data}, dtype=dtype)

    tm.assert_frame_equal(result, expected)


def test_cython_api2():
    # this takes the fast apply path

    # cumsum (GH5614)
    df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"])
    expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"])
    result = df.groupby("A").cumsum()
    tm.assert_frame_equal(result, expected)

    # GH 5755 - cumsum is a transformer and should ignore as_index
    result = df.groupby("A", as_index=False).cumsum()
    tm.assert_frame_equal(result, expected)

    # GH 13994
    msg = "DataFrameGroupBy.cumsum with axis=1 is deprecated"
    with tm.assert_produces_warning(FutureWarning, match=msg):
        result = df.groupby("A").cumsum(axis=1)
    expected = df.cumsum(axis=1)
    tm.assert_frame_equal(result, expected)

    msg = "DataFrameGroupBy.cumprod with axis=1 is deprecated"
    with tm.assert_produces_warning(FutureWarning, match=msg):
        result = df.groupby("A").cumprod(axis=1)
    expected = df.cumprod(axis=1)
    tm.assert_frame_equal(result, expected)