File size: 26,723 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
import inspect
import operator
import numpy as np
import pytest
from pandas._typing import Dtype
from pandas.core.dtypes.common import is_bool_dtype
from pandas.core.dtypes.dtypes import NumpyEADtype
from pandas.core.dtypes.missing import na_value_for_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.sorting import nargsort
class BaseMethodsTests:
"""Various Series and DataFrame methods."""
def test_hash_pandas_object(self, data):
# _hash_pandas_object should return a uint64 ndarray of the same length
# as the data
from pandas.core.util.hashing import _default_hash_key
res = data._hash_pandas_object(
encoding="utf-8", hash_key=_default_hash_key, categorize=False
)
assert res.dtype == np.uint64
assert res.shape == data.shape
def test_value_counts_default_dropna(self, data):
# make sure we have consistent default dropna kwarg
if not hasattr(data, "value_counts"):
pytest.skip(f"value_counts is not implemented for {type(data)}")
sig = inspect.signature(data.value_counts)
kwarg = sig.parameters["dropna"]
assert kwarg.default is True
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = all_data[~all_data.isna()]
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
# GH 33172
data = data[:10].unique()
values = np.array(data[~data.isna()])
ser = pd.Series(data, dtype=data.dtype)
result = ser.value_counts(normalize=True).sort_index()
if not isinstance(data, pd.Categorical):
expected = pd.Series(
[1 / len(values)] * len(values), index=result.index, name="proportion"
)
else:
expected = pd.Series(0.0, index=result.index, name="proportion")
expected[result > 0] = 1 / len(values)
if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance(
data.dtype, pd.ArrowDtype
):
# TODO: avoid special-casing
expected = expected.astype("double[pyarrow]")
elif getattr(data.dtype, "storage", "") == "pyarrow_numpy":
# TODO: avoid special-casing
expected = expected.astype("float64")
elif na_value_for_dtype(data.dtype) is pd.NA:
# TODO(GH#44692): avoid special-casing
expected = expected.astype("Float64")
tm.assert_series_equal(result, expected)
def test_count(self, data_missing):
df = pd.DataFrame({"A": data_missing})
result = df.count(axis="columns")
expected = pd.Series([0, 1])
tm.assert_series_equal(result, expected)
def test_series_count(self, data_missing):
# GH#26835
ser = pd.Series(data_missing)
result = ser.count()
expected = 1
assert result == expected
def test_apply_simple_series(self, data):
result = pd.Series(data).apply(id)
assert isinstance(result, pd.Series)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map(self, data_missing, na_action):
result = data_missing.map(lambda x: x, na_action=na_action)
expected = data_missing.to_numpy()
tm.assert_numpy_array_equal(result, expected)
def test_argsort(self, data_for_sorting):
result = pd.Series(data_for_sorting).argsort()
# argsort result gets passed to take, so should be np.intp
expected = pd.Series(np.array([2, 0, 1], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argsort_missing_array(self, data_missing_for_sorting):
result = data_missing_for_sorting.argsort()
# argsort result gets passed to take, so should be np.intp
expected = np.array([2, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_argsort_missing(self, data_missing_for_sorting):
msg = "The behavior of Series.argsort in the presence of NA values"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = pd.Series(data_missing_for_sorting).argsort()
expected = pd.Series(np.array([1, -1, 0], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value):
# GH 24382
is_bool = data_for_sorting.dtype._is_boolean
exp_argmax = 1
exp_argmax_repeated = 3
if is_bool:
# See data_for_sorting docstring
exp_argmax = 0
exp_argmax_repeated = 1
# data_for_sorting -> [B, C, A] with A < B < C
assert data_for_sorting.argmax() == exp_argmax
assert data_for_sorting.argmin() == 2
# with repeated values -> first occurrence
data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
assert data.argmax() == exp_argmax_repeated
assert data.argmin() == 0
# with missing values
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
assert data_missing_for_sorting.argmax() == 0
assert data_missing_for_sorting.argmin() == 2
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_empty_array(self, method, data):
# GH 24382
err_msg = "attempt to get"
with pytest.raises(ValueError, match=err_msg):
getattr(data[:0], method)()
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_all_na(self, method, data, na_value):
# all missing with skipna=True is the same as empty
err_msg = "attempt to get"
data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype)
with pytest.raises(ValueError, match=err_msg):
getattr(data_na, method)()
@pytest.mark.parametrize(
"op_name, skipna, expected",
[
("idxmax", True, 0),
("idxmin", True, 2),
("argmax", True, 0),
("argmin", True, 2),
("idxmax", False, np.nan),
("idxmin", False, np.nan),
("argmax", False, -1),
("argmin", False, -1),
],
)
def test_argreduce_series(
self, data_missing_for_sorting, op_name, skipna, expected
):
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
warn = None
msg = "The behavior of Series.argmax/argmin"
if op_name.startswith("arg") and expected == -1:
warn = FutureWarning
if op_name.startswith("idx") and np.isnan(expected):
warn = FutureWarning
msg = f"The behavior of Series.{op_name}"
ser = pd.Series(data_missing_for_sorting)
with tm.assert_produces_warning(warn, match=msg):
result = getattr(ser, op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting):
# GH#38733
data = data_missing_for_sorting
with pytest.raises(NotImplementedError, match=""):
data.argmin(skipna=False)
with pytest.raises(NotImplementedError, match=""):
data.argmax(skipna=False)
@pytest.mark.parametrize(
"na_position, expected",
[
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
],
)
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
# GH 25439
result = nargsort(data_missing_for_sorting, na_position=na_position)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
ser = pd.Series(data_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
expected = ser.iloc[[2, 0, 1]]
if not ascending:
# GH 35922. Expect stable sort
if ser.nunique() == 2:
expected = ser.iloc[[0, 1, 2]]
else:
expected = ser.iloc[[1, 0, 2]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_missing(
self, data_missing_for_sorting, ascending, sort_by_key
):
ser = pd.Series(data_missing_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
if ascending:
expected = ser.iloc[[2, 0, 1]]
else:
expected = ser.iloc[[0, 2, 1]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_frame(self, data_for_sorting, ascending):
df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting})
result = df.sort_values(["A", "B"])
expected = pd.DataFrame(
{"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keep", ["first", "last", False])
def test_duplicated(self, data, keep):
arr = data.take([0, 1, 0, 1])
result = arr.duplicated(keep=keep)
if keep == "first":
expected = np.array([False, False, True, True])
elif keep == "last":
expected = np.array([True, True, False, False])
else:
expected = np.array([True, True, True, True])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
def test_unique(self, data, box, method):
duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype))
result = method(duplicated)
assert len(result) == 1
assert isinstance(result, type(data))
assert result[0] == duplicated[0]
def test_factorize(self, data_for_grouping):
codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True)
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4])
else:
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4, 7])
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_factorize_equivalence(self, data_for_grouping):
codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True)
codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True)
tm.assert_numpy_array_equal(codes_1, codes_2)
tm.assert_extension_array_equal(uniques_1, uniques_2)
assert len(uniques_1) == len(pd.unique(uniques_1))
assert uniques_1.dtype == data_for_grouping.dtype
def test_factorize_empty(self, data):
codes, uniques = pd.factorize(data[:0])
expected_codes = np.array([], dtype=np.intp)
expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype)
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_fillna_copy_frame(self, data_missing):
arr = data_missing.take([1, 1])
df = pd.DataFrame({"A": arr})
df_orig = df.copy()
filled_val = df.iloc[0, 0]
result = df.fillna(filled_val)
result.iloc[0, 0] = filled_val
tm.assert_frame_equal(df, df_orig)
def test_fillna_copy_series(self, data_missing):
arr = data_missing.take([1, 1])
ser = pd.Series(arr, copy=False)
ser_orig = ser.copy()
filled_val = ser[0]
result = ser.fillna(filled_val)
result.iloc[0] = filled_val
tm.assert_series_equal(ser, ser_orig)
def test_fillna_length_mismatch(self, data_missing):
msg = "Length of 'value' does not match."
with pytest.raises(ValueError, match=msg):
data_missing.fillna(data_missing.take([1]))
# Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool]
_combine_le_expected_dtype: Dtype = NumpyEADtype("bool")
def test_combine_le(self, data_repeated):
# GH 20825
# Test that combine works when doing a <= (le) comparison
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= val for a in list(orig_data1)],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
def test_combine_add(self, data_repeated):
# GH 20825
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
# Check if the operation is supported pointwise for our scalars. If not,
# we will expect Series.combine to raise as well.
try:
with np.errstate(over="ignore"):
expected = pd.Series(
orig_data1._from_sequence(
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
)
)
except TypeError:
# If the operation is not supported pointwise for our scalars,
# then Series.combine should also raise
with pytest.raises(TypeError):
s1.combine(s2, lambda x1, x2: x1 + x2)
return
result = s1.combine(s2, lambda x1, x2: x1 + x2)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series(
orig_data1._from_sequence([a + val for a in list(orig_data1)])
)
tm.assert_series_equal(result, expected)
def test_combine_first(self, data):
# https://github.com/pandas-dev/pandas/issues/24147
a = pd.Series(data[:3])
b = pd.Series(data[2:5], index=[2, 3, 4])
result = a.combine_first(b)
expected = pd.Series(data[:5])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("frame", [True, False])
@pytest.mark.parametrize(
"periods, indices",
[(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])],
)
def test_container_shift(self, data, frame, periods, indices):
# https://github.com/pandas-dev/pandas/issues/22386
subset = data[:5]
data = pd.Series(subset, name="A")
expected = pd.Series(subset.take(indices, allow_fill=True), name="A")
if frame:
result = data.to_frame(name="A").assign(B=1).shift(periods)
expected = pd.concat(
[expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1
)
compare = tm.assert_frame_equal
else:
result = data.shift(periods)
compare = tm.assert_series_equal
compare(result, expected)
def test_shift_0_periods(self, data):
# GH#33856 shifting with periods=0 should return a copy, not same obj
result = data.shift(0)
assert data[0] != data[1] # otherwise below is invalid
data[0] = data[1]
assert result[0] != result[1] # i.e. not the same object/view
@pytest.mark.parametrize("periods", [1, -2])
def test_diff(self, data, periods):
data = data[:5]
if is_bool_dtype(data.dtype):
op = operator.xor
else:
op = operator.sub
try:
# does this array implement ops?
op(data, data)
except Exception:
pytest.skip(f"{type(data)} does not support diff")
s = pd.Series(data)
result = s.diff(periods)
expected = pd.Series(op(data, data.shift(periods)))
tm.assert_series_equal(result, expected)
df = pd.DataFrame({"A": data, "B": [1.0] * 5})
result = df.diff(periods)
if periods == 1:
b = [np.nan, 0, 0, 0, 0]
else:
b = [0, 0, 0, np.nan, np.nan]
expected = pd.DataFrame({"A": expected, "B": b})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"periods, indices",
[[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]],
)
def test_shift_non_empty_array(self, data, periods, indices):
# https://github.com/pandas-dev/pandas/issues/23911
subset = data[:2]
result = subset.shift(periods)
expected = subset.take(indices, allow_fill=True)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4])
def test_shift_empty_array(self, data, periods):
# https://github.com/pandas-dev/pandas/issues/23911
empty = data[:0]
result = empty.shift(periods)
expected = empty
tm.assert_extension_array_equal(result, expected)
def test_shift_zero_copies(self, data):
# GH#31502
result = data.shift(0)
assert result is not data
result = data[:0].shift(2)
assert result is not data
def test_shift_fill_value(self, data):
arr = data[:4]
fill_value = data[0]
result = arr.shift(1, fill_value=fill_value)
expected = data.take([0, 0, 1, 2])
tm.assert_extension_array_equal(result, expected)
result = arr.shift(-2, fill_value=fill_value)
expected = data.take([2, 3, 0, 0])
tm.assert_extension_array_equal(result, expected)
def test_not_hashable(self, data):
# We are in general mutable, so not hashable
with pytest.raises(TypeError, match="unhashable type"):
hash(data)
def test_hash_pandas_object_works(self, data, as_frame):
# https://github.com/pandas-dev/pandas/issues/23066
data = pd.Series(data)
if as_frame:
data = data.to_frame()
a = pd.util.hash_pandas_object(data)
b = pd.util.hash_pandas_object(data)
tm.assert_equal(a, b)
def test_searchsorted(self, data_for_sorting, as_series):
if data_for_sorting.dtype._is_boolean:
return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series)
b, c, a = data_for_sorting
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
assert arr.searchsorted(c) == 2
assert arr.searchsorted(c, side="right") == 3
result = arr.searchsorted(arr.take([0, 2]))
expected = np.array([0, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 2, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series):
# We call this from test_searchsorted in cases where we have a
# boolean-like dtype. The non-bool test assumes we have more than 2
# unique values.
dtype = data_for_sorting.dtype
data_for_sorting = pd.array([True, False], dtype=dtype)
b, a = data_for_sorting
arr = type(data_for_sorting)._from_sequence([a, b])
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
result = arr.searchsorted(arr.take([0, 1]))
expected = np.array([0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def test_where_series(self, data, na_value, as_frame):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
ser = orig.copy()
cond = np.array([True, True, False, False])
if as_frame:
ser = ser.to_frame(name="a")
cond = cond.reshape(-1, 1)
result = ser.where(cond)
expected = pd.Series(
cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype)
)
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, inplace=True)
tm.assert_equal(ser, expected)
# array other
ser = orig.copy()
if as_frame:
ser = ser.to_frame(name="a")
cond = np.array([True, False, True, True])
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
if as_frame:
other = pd.DataFrame({"a": other})
cond = pd.DataFrame({"a": cond})
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, other, inplace=True)
tm.assert_equal(ser, expected)
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
def test_repeat(self, data, repeats, as_series, use_numpy):
arr = type(data)._from_sequence(data[:3], dtype=data.dtype)
if as_series:
arr = pd.Series(arr)
result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats)
repeats = [repeats] * 3 if isinstance(repeats, int) else repeats
expected = [x for x, n in zip(arr, repeats) for _ in range(n)]
expected = type(data)._from_sequence(expected, dtype=data.dtype)
if as_series:
expected = pd.Series(expected, index=arr.index.repeat(repeats))
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"repeats, kwargs, error, msg",
[
(2, {"axis": 1}, ValueError, "axis"),
(-1, {}, ValueError, "negative"),
([1, 2], {}, ValueError, "shape"),
(2, {"foo": "bar"}, TypeError, "'foo'"),
],
)
def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy):
with pytest.raises(error, match=msg):
if use_numpy:
np.repeat(data, repeats, **kwargs)
else:
data.repeat(repeats, **kwargs)
def test_delete(self, data):
result = data.delete(0)
expected = data[1:]
tm.assert_extension_array_equal(result, expected)
result = data.delete([1, 3])
expected = data._concat_same_type([data[[0]], data[[2]], data[4:]])
tm.assert_extension_array_equal(result, expected)
def test_insert(self, data):
# insert at the beginning
result = data[1:].insert(0, data[0])
tm.assert_extension_array_equal(result, data)
result = data[1:].insert(-len(data[1:]), data[0])
tm.assert_extension_array_equal(result, data)
# insert at the middle
result = data[:-1].insert(4, data[-1])
taker = np.arange(len(data))
taker[5:] = taker[4:-1]
taker[4] = len(data) - 1
expected = data.take(taker)
tm.assert_extension_array_equal(result, expected)
def test_insert_invalid(self, data, invalid_scalar):
item = invalid_scalar
with pytest.raises((TypeError, ValueError)):
data.insert(0, item)
with pytest.raises((TypeError, ValueError)):
data.insert(4, item)
with pytest.raises((TypeError, ValueError)):
data.insert(len(data) - 1, item)
def test_insert_invalid_loc(self, data):
ub = len(data)
with pytest.raises(IndexError):
data.insert(ub + 1, data[0])
with pytest.raises(IndexError):
data.insert(-ub - 1, data[0])
with pytest.raises(TypeError):
# we expect TypeError here instead of IndexError to match np.insert
data.insert(1.5, data[0])
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
def test_equals(self, data, na_value, as_series, box):
data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype)
data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype)
data = tm.box_expected(data, box, transpose=False)
data2 = tm.box_expected(data2, box, transpose=False)
data_na = tm.box_expected(data_na, box, transpose=False)
# we are asserting with `is True/False` explicitly, to test that the
# result is an actual Python bool, and not something "truthy"
assert data.equals(data) is True
assert data.equals(data.copy()) is True
# unequal other data
assert data.equals(data2) is False
assert data.equals(data_na) is False
# different length
assert data[:2].equals(data[:3]) is False
# empty are equal
assert data[:0].equals(data[:0]) is True
# other types
assert data.equals(None) is False
assert data[[0]].equals(data[0]) is False
def test_equals_same_data_different_object(self, data):
# https://github.com/pandas-dev/pandas/issues/34660
assert pd.Series(data).equals(pd.Series(data))
|