File size: 10,673 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from datetime import timedelta

import numpy as np
import pytest

import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core.arrays import (
    DatetimeArray,
    TimedeltaArray,
)


class TestNonNano:
    @pytest.fixture(params=["s", "ms", "us"])
    def unit(self, request):
        return request.param

    @pytest.fixture
    def tda(self, unit):
        arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
        return TimedeltaArray._simple_new(arr, dtype=arr.dtype)

    def test_non_nano(self, unit):
        arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
        tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype)

        assert tda.dtype == arr.dtype
        assert tda[0].unit == unit

    def test_as_unit_raises(self, tda):
        # GH#50616
        with pytest.raises(ValueError, match="Supported units"):
            tda.as_unit("D")

        tdi = pd.Index(tda)
        with pytest.raises(ValueError, match="Supported units"):
            tdi.as_unit("D")

    @pytest.mark.parametrize("field", TimedeltaArray._field_ops)
    def test_fields(self, tda, field):
        as_nano = tda._ndarray.astype("m8[ns]")
        tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)

        result = getattr(tda, field)
        expected = getattr(tda_nano, field)
        tm.assert_numpy_array_equal(result, expected)

    def test_to_pytimedelta(self, tda):
        as_nano = tda._ndarray.astype("m8[ns]")
        tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)

        result = tda.to_pytimedelta()
        expected = tda_nano.to_pytimedelta()
        tm.assert_numpy_array_equal(result, expected)

    def test_total_seconds(self, unit, tda):
        as_nano = tda._ndarray.astype("m8[ns]")
        tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)

        result = tda.total_seconds()
        expected = tda_nano.total_seconds()
        tm.assert_numpy_array_equal(result, expected)

    def test_timedelta_array_total_seconds(self):
        # GH34290
        expected = Timedelta("2 min").total_seconds()

        result = pd.array([Timedelta("2 min")]).total_seconds()[0]
        assert result == expected

    def test_total_seconds_nanoseconds(self):
        # issue #48521
        start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]")
        end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]")
        expected = (end_time - start_time).values / np.timedelta64(1, "s")
        result = (end_time - start_time).dt.total_seconds().values
        assert result == expected

    @pytest.mark.parametrize(
        "nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")]
    )
    def test_add_nat_datetimelike_scalar(self, nat, tda):
        result = tda + nat
        assert isinstance(result, DatetimeArray)
        assert result._creso == tda._creso
        assert result.isna().all()

        result = nat + tda
        assert isinstance(result, DatetimeArray)
        assert result._creso == tda._creso
        assert result.isna().all()

    def test_add_pdnat(self, tda):
        result = tda + pd.NaT
        assert isinstance(result, TimedeltaArray)
        assert result._creso == tda._creso
        assert result.isna().all()

        result = pd.NaT + tda
        assert isinstance(result, TimedeltaArray)
        assert result._creso == tda._creso
        assert result.isna().all()

    # TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert
    #  or tz_localize with non-nano; implement tests specific to that.
    def test_add_datetimelike_scalar(self, tda, tz_naive_fixture):
        ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns")

        expected = tda.as_unit("ns") + ts
        res = tda + ts
        tm.assert_extension_array_equal(res, expected)
        res = ts + tda
        tm.assert_extension_array_equal(res, expected)

        ts += Timedelta(1)  # case where we can't cast losslessly

        exp_values = tda._ndarray + ts.asm8
        expected = (
            DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype)
            .tz_localize("UTC")
            .tz_convert(ts.tz)
        )

        result = tda + ts
        tm.assert_extension_array_equal(result, expected)

        result = ts + tda
        tm.assert_extension_array_equal(result, expected)

    def test_mul_scalar(self, tda):
        other = 2
        result = tda * other
        expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
        tm.assert_extension_array_equal(result, expected)
        assert result._creso == tda._creso

    def test_mul_listlike(self, tda):
        other = np.arange(len(tda))
        result = tda * other
        expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
        tm.assert_extension_array_equal(result, expected)
        assert result._creso == tda._creso

    def test_mul_listlike_object(self, tda):
        other = np.arange(len(tda))
        result = tda * other.astype(object)
        expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
        tm.assert_extension_array_equal(result, expected)
        assert result._creso == tda._creso

    def test_div_numeric_scalar(self, tda):
        other = 2
        result = tda / other
        expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
        tm.assert_extension_array_equal(result, expected)
        assert result._creso == tda._creso

    def test_div_td_scalar(self, tda):
        other = timedelta(seconds=1)
        result = tda / other
        expected = tda._ndarray / np.timedelta64(1, "s")
        tm.assert_numpy_array_equal(result, expected)

    def test_div_numeric_array(self, tda):
        other = np.arange(len(tda))
        result = tda / other
        expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
        tm.assert_extension_array_equal(result, expected)
        assert result._creso == tda._creso

    def test_div_td_array(self, tda):
        other = tda._ndarray + tda._ndarray[-1]
        result = tda / other
        expected = tda._ndarray / other
        tm.assert_numpy_array_equal(result, expected)

    def test_add_timedeltaarraylike(self, tda):
        tda_nano = tda.astype("m8[ns]")

        expected = tda_nano * 2
        res = tda_nano + tda
        tm.assert_extension_array_equal(res, expected)
        res = tda + tda_nano
        tm.assert_extension_array_equal(res, expected)

        expected = tda_nano * 0
        res = tda - tda_nano
        tm.assert_extension_array_equal(res, expected)

        res = tda_nano - tda
        tm.assert_extension_array_equal(res, expected)


class TestTimedeltaArray:
    @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
    def test_astype_int(self, dtype):
        arr = TimedeltaArray._from_sequence(
            [Timedelta("1h"), Timedelta("2h")], dtype="m8[ns]"
        )

        if np.dtype(dtype) != np.int64:
            with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
                arr.astype(dtype)
            return

        result = arr.astype(dtype)
        expected = arr._ndarray.view("i8")
        tm.assert_numpy_array_equal(result, expected)

    def test_setitem_clears_freq(self):
        a = pd.timedelta_range("1h", periods=2, freq="h")._data
        a[0] = Timedelta("1h")
        assert a.freq is None

    @pytest.mark.parametrize(
        "obj",
        [
            Timedelta(seconds=1),
            Timedelta(seconds=1).to_timedelta64(),
            Timedelta(seconds=1).to_pytimedelta(),
        ],
    )
    def test_setitem_objects(self, obj):
        # make sure we accept timedelta64 and timedelta in addition to Timedelta
        tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
        arr = tdi._data

        arr[0] = obj
        assert arr[0] == Timedelta(seconds=1)

    @pytest.mark.parametrize(
        "other",
        [
            1,
            np.int64(1),
            1.0,
            np.datetime64("NaT"),
            pd.Timestamp("2021-01-01"),
            "invalid",
            np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
            (np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
            pd.Timestamp("2021-01-01").to_period("D"),
        ],
    )
    @pytest.mark.parametrize("index", [True, False])
    def test_searchsorted_invalid_types(self, other, index):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        arr = pd.TimedeltaIndex(data, freq="D")._data
        if index:
            arr = pd.Index(arr)

        msg = "|".join(
            [
                "searchsorted requires compatible dtype or scalar",
                "value should be a 'Timedelta', 'NaT', or array of those. Got",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            arr.searchsorted(other)


class TestUnaryOps:
    def test_abs(self):
        vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
        arr = TimedeltaArray._from_sequence(vals)

        evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
        expected = TimedeltaArray._from_sequence(evals)

        result = abs(arr)
        tm.assert_timedelta_array_equal(result, expected)

        result2 = np.abs(arr)
        tm.assert_timedelta_array_equal(result2, expected)

    def test_pos(self):
        vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
        arr = TimedeltaArray._from_sequence(vals)

        result = +arr
        tm.assert_timedelta_array_equal(result, arr)
        assert not tm.shares_memory(result, arr)

        result2 = np.positive(arr)
        tm.assert_timedelta_array_equal(result2, arr)
        assert not tm.shares_memory(result2, arr)

    def test_neg(self):
        vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
        arr = TimedeltaArray._from_sequence(vals)

        evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
        expected = TimedeltaArray._from_sequence(evals)

        result = -arr
        tm.assert_timedelta_array_equal(result, expected)

        result2 = np.negative(arr)
        tm.assert_timedelta_array_equal(result2, expected)

    def test_neg_freq(self):
        tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
        arr = tdi._data

        expected = -tdi._data

        result = -arr
        tm.assert_timedelta_array_equal(result, expected)

        result2 = np.negative(arr)
        tm.assert_timedelta_array_equal(result2, expected)