File size: 37,033 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
from __future__ import annotations
import contextlib
import datetime as pydt
from datetime import (
datetime,
timedelta,
tzinfo,
)
import functools
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import warnings
import matplotlib.dates as mdates
from matplotlib.ticker import (
AutoLocator,
Formatter,
Locator,
)
from matplotlib.transforms import nonsingular
import matplotlib.units as munits
import numpy as np
from pandas._libs import lib
from pandas._libs.tslibs import (
Timestamp,
to_offset,
)
from pandas._libs.tslibs.dtypes import (
FreqGroup,
periods_per_day,
)
from pandas._typing import (
F,
npt,
)
from pandas.core.dtypes.common import (
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
is_nested_list_like,
)
from pandas import (
Index,
Series,
get_option,
)
import pandas.core.common as com
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import (
Period,
PeriodIndex,
period_range,
)
import pandas.core.tools.datetimes as tools
if TYPE_CHECKING:
from collections.abc import Generator
from matplotlib.axis import Axis
from pandas._libs.tslibs.offsets import BaseOffset
_mpl_units = {} # Cache for units overwritten by us
def get_pairs():
pairs = [
(Timestamp, DatetimeConverter),
(Period, PeriodConverter),
(pydt.datetime, DatetimeConverter),
(pydt.date, DatetimeConverter),
(pydt.time, TimeConverter),
(np.datetime64, DatetimeConverter),
]
return pairs
def register_pandas_matplotlib_converters(func: F) -> F:
"""
Decorator applying pandas_converters.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
with pandas_converters():
return func(*args, **kwargs)
return cast(F, wrapper)
@contextlib.contextmanager
def pandas_converters() -> Generator[None, None, None]:
"""
Context manager registering pandas' converters for a plot.
See Also
--------
register_pandas_matplotlib_converters : Decorator that applies this.
"""
value = get_option("plotting.matplotlib.register_converters")
if value:
# register for True or "auto"
register()
try:
yield
finally:
if value == "auto":
# only deregister for "auto"
deregister()
def register() -> None:
pairs = get_pairs()
for type_, cls in pairs:
# Cache previous converter if present
if type_ in munits.registry and not isinstance(munits.registry[type_], cls):
previous = munits.registry[type_]
_mpl_units[type_] = previous
# Replace with pandas converter
munits.registry[type_] = cls()
def deregister() -> None:
# Renamed in pandas.plotting.__init__
for type_, cls in get_pairs():
# We use type to catch our classes directly, no inheritance
if type(munits.registry.get(type_)) is cls:
munits.registry.pop(type_)
# restore the old keys
for unit, formatter in _mpl_units.items():
if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}:
# make it idempotent by excluding ours.
munits.registry[unit] = formatter
def _to_ordinalf(tm: pydt.time) -> float:
tot_sec = tm.hour * 3600 + tm.minute * 60 + tm.second + tm.microsecond / 10**6
return tot_sec
def time2num(d):
if isinstance(d, str):
parsed = Timestamp(d)
return _to_ordinalf(parsed.time())
if isinstance(d, pydt.time):
return _to_ordinalf(d)
return d
class TimeConverter(munits.ConversionInterface):
@staticmethod
def convert(value, unit, axis):
valid_types = (str, pydt.time)
if isinstance(value, valid_types) or is_integer(value) or is_float(value):
return time2num(value)
if isinstance(value, Index):
return value.map(time2num)
if isinstance(value, (list, tuple, np.ndarray, Index)):
return [time2num(x) for x in value]
return value
@staticmethod
def axisinfo(unit, axis) -> munits.AxisInfo | None:
if unit != "time":
return None
majloc = AutoLocator()
majfmt = TimeFormatter(majloc)
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label="time")
@staticmethod
def default_units(x, axis) -> str:
return "time"
# time formatter
class TimeFormatter(Formatter):
def __init__(self, locs) -> None:
self.locs = locs
def __call__(self, x, pos: int | None = 0) -> str:
"""
Return the time of day as a formatted string.
Parameters
----------
x : float
The time of day specified as seconds since 00:00 (midnight),
with up to microsecond precision.
pos
Unused
Returns
-------
str
A string in HH:MM:SS.mmmuuu format. Microseconds,
milliseconds and seconds are only displayed if non-zero.
"""
fmt = "%H:%M:%S.%f"
s = int(x)
msus = round((x - s) * 10**6)
ms = msus // 1000
us = msus % 1000
m, s = divmod(s, 60)
h, m = divmod(m, 60)
_, h = divmod(h, 24)
if us != 0:
return pydt.time(h, m, s, msus).strftime(fmt)
elif ms != 0:
return pydt.time(h, m, s, msus).strftime(fmt)[:-3]
elif s != 0:
return pydt.time(h, m, s).strftime("%H:%M:%S")
return pydt.time(h, m).strftime("%H:%M")
# Period Conversion
class PeriodConverter(mdates.DateConverter):
@staticmethod
def convert(values, units, axis):
if is_nested_list_like(values):
values = [PeriodConverter._convert_1d(v, units, axis) for v in values]
else:
values = PeriodConverter._convert_1d(values, units, axis)
return values
@staticmethod
def _convert_1d(values, units, axis):
if not hasattr(axis, "freq"):
raise TypeError("Axis must have `freq` set to convert to Periods")
valid_types = (str, datetime, Period, pydt.date, pydt.time, np.datetime64)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
)
warnings.filterwarnings(
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
)
if (
isinstance(values, valid_types)
or is_integer(values)
or is_float(values)
):
return get_datevalue(values, axis.freq)
elif isinstance(values, PeriodIndex):
return values.asfreq(axis.freq).asi8
elif isinstance(values, Index):
return values.map(lambda x: get_datevalue(x, axis.freq))
elif lib.infer_dtype(values, skipna=False) == "period":
# https://github.com/pandas-dev/pandas/issues/24304
# convert ndarray[period] -> PeriodIndex
return PeriodIndex(values, freq=axis.freq).asi8
elif isinstance(values, (list, tuple, np.ndarray, Index)):
return [get_datevalue(x, axis.freq) for x in values]
return values
def get_datevalue(date, freq):
if isinstance(date, Period):
return date.asfreq(freq).ordinal
elif isinstance(date, (str, datetime, pydt.date, pydt.time, np.datetime64)):
return Period(date, freq).ordinal
elif (
is_integer(date)
or is_float(date)
or (isinstance(date, (np.ndarray, Index)) and (date.size == 1))
):
return date
elif date is None:
return None
raise ValueError(f"Unrecognizable date '{date}'")
# Datetime Conversion
class DatetimeConverter(mdates.DateConverter):
@staticmethod
def convert(values, unit, axis):
# values might be a 1-d array, or a list-like of arrays.
if is_nested_list_like(values):
values = [DatetimeConverter._convert_1d(v, unit, axis) for v in values]
else:
values = DatetimeConverter._convert_1d(values, unit, axis)
return values
@staticmethod
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return mdates.date2num(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date, np.datetime64, pydt.time)):
return mdates.date2num(values)
elif is_integer(values) or is_float(values):
return values
elif isinstance(values, str):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index, Series)):
if isinstance(values, Series):
# https://github.com/matplotlib/matplotlib/issues/11391
# Series was skipped. Convert to DatetimeIndex to get asi8
values = Index(values)
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com.asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
except Exception:
pass
values = mdates.date2num(values)
return values
@staticmethod
def axisinfo(unit: tzinfo | None, axis) -> munits.AxisInfo:
"""
Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used.
"""
tz = unit
majloc = PandasAutoDateLocator(tz=tz)
majfmt = PandasAutoDateFormatter(majloc, tz=tz)
datemin = pydt.date(2000, 1, 1)
datemax = pydt.date(2010, 1, 1)
return munits.AxisInfo(
majloc=majloc, majfmt=majfmt, label="", default_limits=(datemin, datemax)
)
class PandasAutoDateFormatter(mdates.AutoDateFormatter):
def __init__(self, locator, tz=None, defaultfmt: str = "%Y-%m-%d") -> None:
mdates.AutoDateFormatter.__init__(self, locator, tz, defaultfmt)
class PandasAutoDateLocator(mdates.AutoDateLocator):
def get_locator(self, dmin, dmax):
"""Pick the best locator based on a distance."""
tot_sec = (dmax - dmin).total_seconds()
if abs(tot_sec) < self.minticks:
self._freq = -1
locator = MilliSecondLocator(self.tz)
locator.set_axis(self.axis)
# error: Item "None" of "Axis | _DummyAxis | _AxisWrapper | None"
# has no attribute "get_data_interval"
locator.axis.set_view_interval( # type: ignore[union-attr]
*self.axis.get_view_interval() # type: ignore[union-attr]
)
locator.axis.set_data_interval( # type: ignore[union-attr]
*self.axis.get_data_interval() # type: ignore[union-attr]
)
return locator
return mdates.AutoDateLocator.get_locator(self, dmin, dmax)
def _get_unit(self):
return MilliSecondLocator.get_unit_generic(self._freq)
class MilliSecondLocator(mdates.DateLocator):
UNIT = 1.0 / (24 * 3600 * 1000)
def __init__(self, tz) -> None:
mdates.DateLocator.__init__(self, tz)
self._interval = 1.0
def _get_unit(self):
return self.get_unit_generic(-1)
@staticmethod
def get_unit_generic(freq):
unit = mdates.RRuleLocator.get_unit_generic(freq)
if unit < 0:
return MilliSecondLocator.UNIT
return unit
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
# We need to cap at the endpoints of valid datetime
nmax, nmin = mdates.date2num((dmax, dmin))
num = (nmax - nmin) * 86400 * 1000
max_millis_ticks = 6
for interval in [1, 10, 50, 100, 200, 500]:
if num <= interval * (max_millis_ticks - 1):
self._interval = interval
break
# We went through the whole loop without breaking, default to 1
self._interval = 1000.0
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
if estimate > self.MAXTICKS * 2:
raise RuntimeError(
"MillisecondLocator estimated to generate "
f"{estimate:d} ticks from {dmin} to {dmax}: exceeds Locator.MAXTICKS"
f"* 2 ({self.MAXTICKS * 2:d}) "
)
interval = self._get_interval()
freq = f"{interval}ms"
tz = self.tz.tzname(None)
st = dmin.replace(tzinfo=None)
ed = dmin.replace(tzinfo=None)
all_dates = date_range(start=st, end=ed, freq=freq, tz=tz).astype(object)
try:
if len(all_dates) > 0:
locs = self.raise_if_exceeds(mdates.date2num(all_dates))
return locs
except Exception: # pragma: no cover
pass
lims = mdates.date2num([dmin, dmax])
return lims
def _get_interval(self):
return self._interval
def autoscale(self):
"""
Set the view limits to include the data range.
"""
# We need to cap at the endpoints of valid datetime
dmin, dmax = self.datalim_to_dt()
vmin = mdates.date2num(dmin)
vmax = mdates.date2num(dmax)
return self.nonsingular(vmin, vmax)
def _from_ordinal(x, tz: tzinfo | None = None) -> datetime:
ix = int(x)
dt = datetime.fromordinal(ix)
remainder = float(x) - ix
hour, remainder = divmod(24 * remainder, 1)
minute, remainder = divmod(60 * remainder, 1)
second, remainder = divmod(60 * remainder, 1)
microsecond = int(1_000_000 * remainder)
if microsecond < 10:
microsecond = 0 # compensate for rounding errors
dt = datetime(
dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond
)
if tz is not None:
dt = dt.astimezone(tz)
if microsecond > 999990: # compensate for rounding errors
dt += timedelta(microseconds=1_000_000 - microsecond)
return dt
# Fixed frequency dynamic tick locators and formatters
# -------------------------------------------------------------------------
# --- Locators ---
# -------------------------------------------------------------------------
def _get_default_annual_spacing(nyears) -> tuple[int, int]:
"""
Returns a default spacing between consecutive ticks for annual data.
"""
if nyears < 11:
(min_spacing, maj_spacing) = (1, 1)
elif nyears < 20:
(min_spacing, maj_spacing) = (1, 2)
elif nyears < 50:
(min_spacing, maj_spacing) = (1, 5)
elif nyears < 100:
(min_spacing, maj_spacing) = (5, 10)
elif nyears < 200:
(min_spacing, maj_spacing) = (5, 25)
elif nyears < 600:
(min_spacing, maj_spacing) = (10, 50)
else:
factor = nyears // 1000 + 1
(min_spacing, maj_spacing) = (factor * 20, factor * 100)
return (min_spacing, maj_spacing)
def _period_break(dates: PeriodIndex, period: str) -> npt.NDArray[np.intp]:
"""
Returns the indices where the given period changes.
Parameters
----------
dates : PeriodIndex
Array of intervals to monitor.
period : str
Name of the period to monitor.
"""
mask = _period_break_mask(dates, period)
return np.nonzero(mask)[0]
def _period_break_mask(dates: PeriodIndex, period: str) -> npt.NDArray[np.bool_]:
current = getattr(dates, period)
previous = getattr(dates - 1 * dates.freq, period)
return current != previous
def has_level_label(label_flags: npt.NDArray[np.intp], vmin: float) -> bool:
"""
Returns true if the ``label_flags`` indicate there is at least one label
for this level.
if the minimum view limit is not an exact integer, then the first tick
label won't be shown, so we must adjust for that.
"""
if label_flags.size == 0 or (
label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0
):
return False
else:
return True
def _get_periods_per_ymd(freq: BaseOffset) -> tuple[int, int, int]:
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
freq_group = FreqGroup.from_period_dtype_code(dtype_code)
ppd = -1 # placeholder for above-day freqs
if dtype_code >= FreqGroup.FR_HR.value:
# error: "BaseOffset" has no attribute "_creso"
ppd = periods_per_day(freq._creso) # type: ignore[attr-defined]
ppm = 28 * ppd
ppy = 365 * ppd
elif freq_group == FreqGroup.FR_BUS:
ppm = 19
ppy = 261
elif freq_group == FreqGroup.FR_DAY:
ppm = 28
ppy = 365
elif freq_group == FreqGroup.FR_WK:
ppm = 3
ppy = 52
elif freq_group == FreqGroup.FR_MTH:
ppm = 1
ppy = 12
elif freq_group == FreqGroup.FR_QTR:
ppm = -1 # placerholder
ppy = 4
elif freq_group == FreqGroup.FR_ANN:
ppm = -1 # placeholder
ppy = 1
else:
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
return ppd, ppm, ppy
@functools.cache
def _daily_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
periodsperday, periodspermonth, periodsperyear = _get_periods_per_ymd(freq)
# save this for later usage
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
)
warnings.filterwarnings(
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
)
dates_ = period_range(
start=Period(ordinal=vmin, freq=freq),
end=Period(ordinal=vmax, freq=freq),
freq=freq,
)
# Initialize the output
info = np.zeros(
span, dtype=[("val", np.int64), ("maj", bool), ("min", bool), ("fmt", "|S20")]
)
info["val"][:] = dates_.asi8
info["fmt"][:] = ""
info["maj"][[0, -1]] = True
# .. and set some shortcuts
info_maj = info["maj"]
info_min = info["min"]
info_fmt = info["fmt"]
def first_label(label_flags):
if (label_flags[0] == 0) and (label_flags.size > 1) and ((vmin_orig % 1) > 0.0):
return label_flags[1]
else:
return label_flags[0]
# Case 1. Less than a month
if span <= periodspermonth:
day_start = _period_break(dates_, "day")
month_start = _period_break(dates_, "month")
year_start = _period_break(dates_, "year")
def _hour_finder(label_interval: int, force_year_start: bool) -> None:
target = dates_.hour
mask = _period_break_mask(dates_, "hour")
info_maj[day_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
info_fmt[day_start] = "%H:%M\n%d-%b"
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
if force_year_start and not has_level_label(year_start, vmin_orig):
info_fmt[first_label(day_start)] = "%H:%M\n%d-%b\n%Y"
def _minute_finder(label_interval: int) -> None:
target = dates_.minute
hour_start = _period_break(dates_, "hour")
mask = _period_break_mask(dates_, "minute")
info_maj[hour_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
info_fmt[day_start] = "%H:%M\n%d-%b"
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
def _second_finder(label_interval: int) -> None:
target = dates_.second
minute_start = _period_break(dates_, "minute")
mask = _period_break_mask(dates_, "second")
info_maj[minute_start] = True
info_min[mask & (target % label_interval == 0)] = True
info_fmt[mask & (target % label_interval == 0)] = "%H:%M:%S"
info_fmt[day_start] = "%H:%M:%S\n%d-%b"
info_fmt[year_start] = "%H:%M:%S\n%d-%b\n%Y"
if span < periodsperday / 12000:
_second_finder(1)
elif span < periodsperday / 6000:
_second_finder(2)
elif span < periodsperday / 2400:
_second_finder(5)
elif span < periodsperday / 1200:
_second_finder(10)
elif span < periodsperday / 800:
_second_finder(15)
elif span < periodsperday / 400:
_second_finder(30)
elif span < periodsperday / 150:
_minute_finder(1)
elif span < periodsperday / 70:
_minute_finder(2)
elif span < periodsperday / 24:
_minute_finder(5)
elif span < periodsperday / 12:
_minute_finder(15)
elif span < periodsperday / 6:
_minute_finder(30)
elif span < periodsperday / 2.5:
_hour_finder(1, False)
elif span < periodsperday / 1.5:
_hour_finder(2, False)
elif span < periodsperday * 1.25:
_hour_finder(3, False)
elif span < periodsperday * 2.5:
_hour_finder(6, True)
elif span < periodsperday * 4:
_hour_finder(12, True)
else:
info_maj[month_start] = True
info_min[day_start] = True
info_fmt[day_start] = "%d"
info_fmt[month_start] = "%d\n%b"
info_fmt[year_start] = "%d\n%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if not has_level_label(month_start, vmin_orig):
info_fmt[first_label(day_start)] = "%d\n%b\n%Y"
else:
info_fmt[first_label(month_start)] = "%d\n%b\n%Y"
# Case 2. Less than three months
elif span <= periodsperyear // 4:
month_start = _period_break(dates_, "month")
info_maj[month_start] = True
if dtype_code < FreqGroup.FR_HR.value:
info["min"] = True
else:
day_start = _period_break(dates_, "day")
info["min"][day_start] = True
week_start = _period_break(dates_, "week")
year_start = _period_break(dates_, "year")
info_fmt[week_start] = "%d"
info_fmt[month_start] = "\n\n%b"
info_fmt[year_start] = "\n\n%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if not has_level_label(month_start, vmin_orig):
info_fmt[first_label(week_start)] = "\n\n%b\n%Y"
else:
info_fmt[first_label(month_start)] = "\n\n%b\n%Y"
# Case 3. Less than 14 months ...............
elif span <= 1.15 * periodsperyear:
year_start = _period_break(dates_, "year")
month_start = _period_break(dates_, "month")
week_start = _period_break(dates_, "week")
info_maj[month_start] = True
info_min[week_start] = True
info_min[year_start] = False
info_min[month_start] = False
info_fmt[month_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
if not has_level_label(year_start, vmin_orig):
info_fmt[first_label(month_start)] = "%b\n%Y"
# Case 4. Less than 2.5 years ...............
elif span <= 2.5 * periodsperyear:
year_start = _period_break(dates_, "year")
quarter_start = _period_break(dates_, "quarter")
month_start = _period_break(dates_, "month")
info_maj[quarter_start] = True
info_min[month_start] = True
info_fmt[quarter_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
# Case 4. Less than 4 years .................
elif span <= 4 * periodsperyear:
year_start = _period_break(dates_, "year")
month_start = _period_break(dates_, "month")
info_maj[year_start] = True
info_min[month_start] = True
info_min[year_start] = False
month_break = dates_[month_start].month
jan_or_jul = month_start[(month_break == 1) | (month_break == 7)]
info_fmt[jan_or_jul] = "%b"
info_fmt[year_start] = "%b\n%Y"
# Case 5. Less than 11 years ................
elif span <= 11 * periodsperyear:
year_start = _period_break(dates_, "year")
quarter_start = _period_break(dates_, "quarter")
info_maj[year_start] = True
info_min[quarter_start] = True
info_min[year_start] = False
info_fmt[year_start] = "%Y"
# Case 6. More than 12 years ................
else:
year_start = _period_break(dates_, "year")
year_break = dates_[year_start].year
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
major_idx = year_start[(year_break % maj_anndef == 0)]
info_maj[major_idx] = True
minor_idx = year_start[(year_break % min_anndef == 0)]
info_min[minor_idx] = True
info_fmt[major_idx] = "%Y"
return info
@functools.cache
def _monthly_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
_, _, periodsperyear = _get_periods_per_ymd(freq)
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
# Initialize the output
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
dates_ = info["val"]
info["fmt"] = ""
year_start = (dates_ % 12 == 0).nonzero()[0]
info_maj = info["maj"]
info_fmt = info["fmt"]
if span <= 1.15 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[:] = "%b"
info_fmt[year_start] = "%b\n%Y"
if not has_level_label(year_start, vmin_orig):
if dates_.size > 1:
idx = 1
else:
idx = 0
info_fmt[idx] = "%b\n%Y"
elif span <= 2.5 * periodsperyear:
quarter_start = (dates_ % 3 == 0).nonzero()
info_maj[year_start] = True
# TODO: Check the following : is it really info['fmt'] ?
# 2023-09-15 this is reached in test_finder_monthly
info["fmt"][quarter_start] = True
info["min"] = True
info_fmt[quarter_start] = "%b"
info_fmt[year_start] = "%b\n%Y"
elif span <= 4 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
jan_or_jul = (dates_ % 12 == 0) | (dates_ % 12 == 6)
info_fmt[jan_or_jul] = "%b"
info_fmt[year_start] = "%b\n%Y"
elif span <= 11 * periodsperyear:
quarter_start = (dates_ % 3 == 0).nonzero()
info_maj[year_start] = True
info["min"][quarter_start] = True
info_fmt[year_start] = "%Y"
else:
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
years = dates_[year_start] // 12 + 1
major_idx = year_start[(years % maj_anndef == 0)]
info_maj[major_idx] = True
info["min"][year_start[(years % min_anndef == 0)]] = True
info_fmt[major_idx] = "%Y"
return info
@functools.cache
def _quarterly_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
_, _, periodsperyear = _get_periods_per_ymd(freq)
vmin_orig = vmin
(vmin, vmax) = (int(vmin), int(vmax))
span = vmax - vmin + 1
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
info["fmt"] = ""
dates_ = info["val"]
info_maj = info["maj"]
info_fmt = info["fmt"]
year_start = (dates_ % 4 == 0).nonzero()[0]
if span <= 3.5 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[:] = "Q%q"
info_fmt[year_start] = "Q%q\n%F"
if not has_level_label(year_start, vmin_orig):
if dates_.size > 1:
idx = 1
else:
idx = 0
info_fmt[idx] = "Q%q\n%F"
elif span <= 11 * periodsperyear:
info_maj[year_start] = True
info["min"] = True
info_fmt[year_start] = "%F"
else:
# https://github.com/pandas-dev/pandas/pull/47602
years = dates_[year_start] // 4 + 1970
nyears = span / periodsperyear
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
major_idx = year_start[(years % maj_anndef == 0)]
info_maj[major_idx] = True
info["min"][year_start[(years % min_anndef == 0)]] = True
info_fmt[major_idx] = "%F"
return info
@functools.cache
def _annual_finder(vmin: float, vmax: float, freq: BaseOffset) -> np.ndarray:
# Note: small difference here vs other finders in adding 1 to vmax
(vmin, vmax) = (int(vmin), int(vmax + 1))
span = vmax - vmin + 1
info = np.zeros(
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
)
info["val"] = np.arange(vmin, vmax + 1)
info["fmt"] = ""
dates_ = info["val"]
(min_anndef, maj_anndef) = _get_default_annual_spacing(span)
major_idx = dates_ % maj_anndef == 0
minor_idx = dates_ % min_anndef == 0
info["maj"][major_idx] = True
info["min"][minor_idx] = True
info["fmt"][major_idx] = "%Y"
return info
def get_finder(freq: BaseOffset):
# error: "BaseOffset" has no attribute "_period_dtype_code"
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
fgroup = FreqGroup.from_period_dtype_code(dtype_code)
if fgroup == FreqGroup.FR_ANN:
return _annual_finder
elif fgroup == FreqGroup.FR_QTR:
return _quarterly_finder
elif fgroup == FreqGroup.FR_MTH:
return _monthly_finder
elif (dtype_code >= FreqGroup.FR_BUS.value) or fgroup == FreqGroup.FR_WK:
return _daily_finder
else: # pragma: no cover
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
class TimeSeries_DateLocator(Locator):
"""
Locates the ticks along an axis controlled by a :class:`Series`.
Parameters
----------
freq : BaseOffset
Valid frequency specifier.
minor_locator : {False, True}, optional
Whether the locator is for minor ticks (True) or not.
dynamic_mode : {True, False}, optional
Whether the locator should work in dynamic mode.
base : {int}, optional
quarter : {int}, optional
month : {int}, optional
day : {int}, optional
"""
axis: Axis
def __init__(
self,
freq: BaseOffset,
minor_locator: bool = False,
dynamic_mode: bool = True,
base: int = 1,
quarter: int = 1,
month: int = 1,
day: int = 1,
plot_obj=None,
) -> None:
freq = to_offset(freq, is_period=True)
self.freq = freq
self.base = base
(self.quarter, self.month, self.day) = (quarter, month, day)
self.isminor = minor_locator
self.isdynamic = dynamic_mode
self.offset = 0
self.plot_obj = plot_obj
self.finder = get_finder(freq)
def _get_default_locs(self, vmin, vmax):
"""Returns the default locations of ticks."""
locator = self.finder(vmin, vmax, self.freq)
if self.isminor:
return np.compress(locator["min"], locator["val"])
return np.compress(locator["maj"], locator["val"])
def __call__(self):
"""Return the locations of the ticks."""
# axis calls Locator.set_axis inside set_m<xxxx>_formatter
vi = tuple(self.axis.get_view_interval())
vmin, vmax = vi
if vmax < vmin:
vmin, vmax = vmax, vmin
if self.isdynamic:
locs = self._get_default_locs(vmin, vmax)
else: # pragma: no cover
base = self.base
(d, m) = divmod(vmin, base)
vmin = (d + 1) * base
# error: No overload variant of "range" matches argument types "float",
# "float", "int"
locs = list(range(vmin, vmax + 1, base)) # type: ignore[call-overload]
return locs
def autoscale(self):
"""
Sets the view limits to the nearest multiples of base that contain the
data.
"""
# requires matplotlib >= 0.98.0
(vmin, vmax) = self.axis.get_data_interval()
locs = self._get_default_locs(vmin, vmax)
(vmin, vmax) = locs[[0, -1]]
if vmin == vmax:
vmin -= 1
vmax += 1
return nonsingular(vmin, vmax)
# -------------------------------------------------------------------------
# --- Formatter ---
# -------------------------------------------------------------------------
class TimeSeries_DateFormatter(Formatter):
"""
Formats the ticks along an axis controlled by a :class:`PeriodIndex`.
Parameters
----------
freq : BaseOffset
Valid frequency specifier.
minor_locator : bool, default False
Whether the current formatter should apply to minor ticks (True) or
major ticks (False).
dynamic_mode : bool, default True
Whether the formatter works in dynamic mode or not.
"""
axis: Axis
def __init__(
self,
freq: BaseOffset,
minor_locator: bool = False,
dynamic_mode: bool = True,
plot_obj=None,
) -> None:
freq = to_offset(freq, is_period=True)
self.format = None
self.freq = freq
self.locs: list[Any] = [] # unused, for matplotlib compat
self.formatdict: dict[Any, Any] | None = None
self.isminor = minor_locator
self.isdynamic = dynamic_mode
self.offset = 0
self.plot_obj = plot_obj
self.finder = get_finder(freq)
def _set_default_format(self, vmin, vmax):
"""Returns the default ticks spacing."""
info = self.finder(vmin, vmax, self.freq)
if self.isminor:
format = np.compress(info["min"] & np.logical_not(info["maj"]), info)
else:
format = np.compress(info["maj"], info)
self.formatdict = {x: f for (x, _, _, f) in format}
return self.formatdict
def set_locs(self, locs) -> None:
"""Sets the locations of the ticks"""
# don't actually use the locs. This is just needed to work with
# matplotlib. Force to use vmin, vmax
self.locs = locs
(vmin, vmax) = tuple(self.axis.get_view_interval())
if vmax < vmin:
(vmin, vmax) = (vmax, vmin)
self._set_default_format(vmin, vmax)
def __call__(self, x, pos: int | None = 0) -> str:
if self.formatdict is None:
return ""
else:
fmt = self.formatdict.pop(x, "")
if isinstance(fmt, np.bytes_):
fmt = fmt.decode("utf-8")
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
"Period with BDay freq is deprecated",
category=FutureWarning,
)
period = Period(ordinal=int(x), freq=self.freq)
assert isinstance(period, Period)
return period.strftime(fmt)
class TimeSeries_TimedeltaFormatter(Formatter):
"""
Formats the ticks along an axis controlled by a :class:`TimedeltaIndex`.
"""
axis: Axis
@staticmethod
def format_timedelta_ticks(x, pos, n_decimals: int) -> str:
"""
Convert seconds to 'D days HH:MM:SS.F'
"""
s, ns = divmod(x, 10**9) # TODO(non-nano): this looks like it assumes ns
m, s = divmod(s, 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
decimals = int(ns * 10 ** (n_decimals - 9))
s = f"{int(h):02d}:{int(m):02d}:{int(s):02d}"
if n_decimals > 0:
s += f".{decimals:0{n_decimals}d}"
if d != 0:
s = f"{int(d):d} days {s}"
return s
def __call__(self, x, pos: int | None = 0) -> str:
(vmin, vmax) = tuple(self.axis.get_view_interval())
n_decimals = min(int(np.ceil(np.log10(100 * 10**9 / abs(vmax - vmin)))), 9)
return self.format_timedelta_ticks(x, pos, n_decimals)
|