File size: 6,819 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np

import pandas as pd

if TYPE_CHECKING:
    from collections.abc import Iterable


class TablePlotter:
    """
    Layout some DataFrames in vertical/horizontal layout for explanation.
    Used in merging.rst
    """

    def __init__(
        self,
        cell_width: float = 0.37,
        cell_height: float = 0.25,
        font_size: float = 7.5,
    ) -> None:
        self.cell_width = cell_width
        self.cell_height = cell_height
        self.font_size = font_size

    def _shape(self, df: pd.DataFrame) -> tuple[int, int]:
        """
        Calculate table shape considering index levels.
        """
        row, col = df.shape
        return row + df.columns.nlevels, col + df.index.nlevels

    def _get_cells(self, left, right, vertical) -> tuple[int, int]:
        """
        Calculate appropriate figure size based on left and right data.
        """
        if vertical:
            # calculate required number of cells
            vcells = max(sum(self._shape(df)[0] for df in left), self._shape(right)[0])
            hcells = max(self._shape(df)[1] for df in left) + self._shape(right)[1]
        else:
            vcells = max([self._shape(df)[0] for df in left] + [self._shape(right)[0]])
            hcells = sum([self._shape(df)[1] for df in left] + [self._shape(right)[1]])
        return hcells, vcells

    def plot(self, left, right, labels: Iterable[str] = (), vertical: bool = True):
        """
        Plot left / right DataFrames in specified layout.

        Parameters
        ----------
        left : list of DataFrames before operation is applied
        right : DataFrame of operation result
        labels : list of str to be drawn as titles of left DataFrames
        vertical : bool, default True
            If True, use vertical layout. If False, use horizontal layout.
        """
        from matplotlib import gridspec
        import matplotlib.pyplot as plt

        if not isinstance(left, list):
            left = [left]
        left = [self._conv(df) for df in left]
        right = self._conv(right)

        hcells, vcells = self._get_cells(left, right, vertical)

        if vertical:
            figsize = self.cell_width * hcells, self.cell_height * vcells
        else:
            # include margin for titles
            figsize = self.cell_width * hcells, self.cell_height * vcells
        fig = plt.figure(figsize=figsize)

        if vertical:
            gs = gridspec.GridSpec(len(left), hcells)
            # left
            max_left_cols = max(self._shape(df)[1] for df in left)
            max_left_rows = max(self._shape(df)[0] for df in left)
            for i, (_left, _label) in enumerate(zip(left, labels)):
                ax = fig.add_subplot(gs[i, 0:max_left_cols])
                self._make_table(ax, _left, title=_label, height=1.0 / max_left_rows)
            # right
            ax = plt.subplot(gs[:, max_left_cols:])
            self._make_table(ax, right, title="Result", height=1.05 / vcells)
            fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95)
        else:
            max_rows = max(self._shape(df)[0] for df in left + [right])
            height = 1.0 / np.max(max_rows)
            gs = gridspec.GridSpec(1, hcells)
            # left
            i = 0
            for df, _label in zip(left, labels):
                sp = self._shape(df)
                ax = fig.add_subplot(gs[0, i : i + sp[1]])
                self._make_table(ax, df, title=_label, height=height)
                i += sp[1]
            # right
            ax = plt.subplot(gs[0, i:])
            self._make_table(ax, right, title="Result", height=height)
            fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95)

        return fig

    def _conv(self, data):
        """
        Convert each input to appropriate for table outplot.
        """
        if isinstance(data, pd.Series):
            if data.name is None:
                data = data.to_frame(name="")
            else:
                data = data.to_frame()
        data = data.fillna("NaN")
        return data

    def _insert_index(self, data):
        # insert is destructive
        data = data.copy()
        idx_nlevels = data.index.nlevels
        if idx_nlevels == 1:
            data.insert(0, "Index", data.index)
        else:
            for i in range(idx_nlevels):
                data.insert(i, f"Index{i}", data.index._get_level_values(i))

        col_nlevels = data.columns.nlevels
        if col_nlevels > 1:
            col = data.columns._get_level_values(0)
            values = [
                data.columns._get_level_values(i)._values for i in range(1, col_nlevels)
            ]
            col_df = pd.DataFrame(values)
            data.columns = col_df.columns
            data = pd.concat([col_df, data])
            data.columns = col
        return data

    def _make_table(self, ax, df, title: str, height: float | None = None) -> None:
        if df is None:
            ax.set_visible(False)
            return

        from pandas import plotting

        idx_nlevels = df.index.nlevels
        col_nlevels = df.columns.nlevels
        # must be convert here to get index levels for colorization
        df = self._insert_index(df)
        tb = plotting.table(ax, df, loc=9)
        tb.set_fontsize(self.font_size)

        if height is None:
            height = 1.0 / (len(df) + 1)

        props = tb.properties()
        for (r, c), cell in props["celld"].items():
            if c == -1:
                cell.set_visible(False)
            elif r < col_nlevels and c < idx_nlevels:
                cell.set_visible(False)
            elif r < col_nlevels or c < idx_nlevels:
                cell.set_facecolor("#AAAAAA")
            cell.set_height(height)

        ax.set_title(title, size=self.font_size)
        ax.axis("off")


def main() -> None:
    import matplotlib.pyplot as plt

    p = TablePlotter()

    df1 = pd.DataFrame({"A": [10, 11, 12], "B": [20, 21, 22], "C": [30, 31, 32]})
    df2 = pd.DataFrame({"A": [10, 12], "C": [30, 32]})

    p.plot([df1, df2], pd.concat([df1, df2]), labels=["df1", "df2"], vertical=True)
    plt.show()

    df3 = pd.DataFrame({"X": [10, 12], "Z": [30, 32]})

    p.plot(
        [df1, df3], pd.concat([df1, df3], axis=1), labels=["df1", "df2"], vertical=False
    )
    plt.show()

    idx = pd.MultiIndex.from_tuples(
        [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")]
    )
    column = pd.MultiIndex.from_tuples([(1, "A"), (1, "B")])
    df3 = pd.DataFrame({"v1": [1, 2, 3, 4, 5, 6], "v2": [5, 6, 7, 8, 9, 10]}, index=idx)
    df3.columns = column
    p.plot(df3, df3, labels=["df3"])
    plt.show()


if __name__ == "__main__":
    main()