File size: 25,201 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
""" Test cases for misc plot functions """
import os
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
interval_range,
period_range,
plotting,
read_csv,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
_check_colors,
_check_legend_labels,
_check_plot_works,
_check_text_labels,
_check_ticks_props,
)
mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")
cm = pytest.importorskip("matplotlib.cm")
@pytest.fixture
def iris(datapath) -> DataFrame:
"""
The iris dataset as a DataFrame.
"""
return read_csv(datapath("io", "data", "csv", "iris.csv"))
@td.skip_if_installed("matplotlib")
def test_import_error_message():
# GH-19810
df = DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match="matplotlib is required for plotting"):
df.plot()
def test_get_accessor_args():
func = plotting._core.PlotAccessor._get_call_args
msg = "Called plot accessor for type list, expected Series or DataFrame"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=[], args=[], kwargs={})
msg = "should not be called with positional arguments"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={})
x, y, kind, kwargs = func(
backend_name="",
data=DataFrame(),
args=["x"],
kwargs={"y": "y", "kind": "bar", "grid": False},
)
assert x == "x"
assert y == "y"
assert kind == "bar"
assert kwargs == {"grid": False}
x, y, kind, kwargs = func(
backend_name="pandas.plotting._matplotlib",
data=Series(dtype=object),
args=[],
kwargs={},
)
assert x is None
assert y is None
assert kind == "line"
assert len(kwargs) == 24
@pytest.mark.parametrize("kind", plotting.PlotAccessor._all_kinds)
@pytest.mark.parametrize(
"data", [DataFrame(np.arange(15).reshape(5, 3)), Series(range(5))]
)
@pytest.mark.parametrize(
"index",
[
Index(range(5)),
date_range("2020-01-01", periods=5),
period_range("2020-01-01", periods=5),
],
)
def test_savefig(kind, data, index):
fig, ax = plt.subplots()
data.index = index
kwargs = {}
if kind in ["hexbin", "scatter", "pie"]:
if isinstance(data, Series):
pytest.skip(f"{kind} not supported with Series")
kwargs = {"x": 0, "y": 1}
data.plot(kind=kind, ax=ax, **kwargs)
fig.savefig(os.devnull)
class TestSeriesPlots:
def test_autocorrelation_plot(self):
from pandas.plotting import autocorrelation_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(autocorrelation_plot, series=ser)
_check_plot_works(autocorrelation_plot, series=ser.values)
ax = autocorrelation_plot(ser, label="Test")
_check_legend_labels(ax, labels=["Test"])
@pytest.mark.parametrize("kwargs", [{}, {"lag": 5}])
def test_lag_plot(self, kwargs):
from pandas.plotting import lag_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
_check_plot_works(lag_plot, series=ser, **kwargs)
def test_bootstrap_plot(self):
from pandas.plotting import bootstrap_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
_check_plot_works(bootstrap_plot, series=ser, size=10)
class TestDataFramePlots:
@pytest.mark.parametrize("pass_axis", [False, True])
def test_scatter_matrix_axis(self, pass_axis):
pytest.importorskip("scipy")
scatter_matrix = plotting.scatter_matrix
ax = None
if pass_axis:
_, ax = mpl.pyplot.subplots(3, 3)
df = DataFrame(np.random.default_rng(2).standard_normal((100, 3)))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
scatter_matrix,
frame=df,
range_padding=0.1,
ax=ax,
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ["-2", "0", "2"]
_check_text_labels(axes0_labels, expected)
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.parametrize("pass_axis", [False, True])
def test_scatter_matrix_axis_smaller(self, pass_axis):
pytest.importorskip("scipy")
scatter_matrix = plotting.scatter_matrix
ax = None
if pass_axis:
_, ax = mpl.pyplot.subplots(3, 3)
df = DataFrame(np.random.default_rng(11).standard_normal((100, 3)))
df[0] = (df[0] - 2) / 3
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
scatter_matrix,
frame=df,
range_padding=0.1,
ax=ax,
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ["-1.0", "-0.5", "0.0"]
_check_text_labels(axes0_labels, expected)
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.slow
def test_andrews_curves_no_warning(self, iris):
from pandas.plotting import andrews_curves
df = iris
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(andrews_curves, frame=df, class_column="Name")
@pytest.mark.slow
@pytest.mark.parametrize(
"linecolors",
[
("#556270", "#4ECDC4", "#C7F464"),
["dodgerblue", "aquamarine", "seagreen"],
],
)
@pytest.mark.parametrize(
"df",
[
"iris",
DataFrame(
{
"A": np.random.default_rng(2).standard_normal(10),
"B": np.random.default_rng(2).standard_normal(10),
"C": np.random.default_rng(2).standard_normal(10),
"Name": ["A"] * 10,
}
),
],
)
def test_andrews_curves_linecolors(self, request, df, linecolors):
from pandas.plotting import andrews_curves
if isinstance(df, str):
df = request.getfixturevalue(df)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=linecolors
)
_check_colors(
ax.get_lines()[:10], linecolors=linecolors, mapping=df["Name"][:10]
)
@pytest.mark.slow
@pytest.mark.parametrize(
"df",
[
"iris",
DataFrame(
{
"A": np.random.default_rng(2).standard_normal(10),
"B": np.random.default_rng(2).standard_normal(10),
"C": np.random.default_rng(2).standard_normal(10),
"Name": ["A"] * 10,
}
),
],
)
def test_andrews_curves_cmap(self, request, df):
from pandas.plotting import andrews_curves
if isinstance(df, str):
df = request.getfixturevalue(df)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cmaps
)
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])
@pytest.mark.slow
def test_andrews_curves_handle(self):
from pandas.plotting import andrews_curves
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = andrews_curves(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, linecolors=colors)
@pytest.mark.slow
@pytest.mark.parametrize(
"color",
[("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
)
def test_parallel_coordinates_colors(self, iris, color):
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=color
)
_check_colors(ax.get_lines()[:10], linecolors=color, mapping=df["Name"][:10])
@pytest.mark.slow
def test_parallel_coordinates_cmap(self, iris):
from matplotlib import cm
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])
@pytest.mark.slow
def test_parallel_coordinates_line_diff(self, iris):
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
nlines = len(ax.get_lines())
nxticks = len(ax.xaxis.get_ticklabels())
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", axvlines=False
)
assert len(ax.get_lines()) == (nlines - nxticks)
@pytest.mark.slow
def test_parallel_coordinates_handles(self, iris):
from pandas.plotting import parallel_coordinates
df = iris
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = parallel_coordinates(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, linecolors=colors)
# not sure if this is indicative of a problem
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
def test_parallel_coordinates_with_sorted_labels(self):
"""For #15908"""
from pandas.plotting import parallel_coordinates
df = DataFrame(
{
"feat": list(range(30)),
"class": [2 for _ in range(10)]
+ [3 for _ in range(10)]
+ [1 for _ in range(10)],
}
)
ax = parallel_coordinates(df, "class", sort_labels=True)
polylines, labels = ax.get_legend_handles_labels()
color_label_tuples = zip(
[polyline.get_color() for polyline in polylines], labels
)
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
prev_next_tupels = zip(
list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:])
)
for prev, nxt in prev_next_tupels:
# labels and colors are ordered strictly increasing
assert prev[1] < nxt[1] and prev[0] < nxt[0]
def test_radviz_no_warning(self, iris):
from pandas.plotting import radviz
df = iris
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(radviz, frame=df, class_column="Name")
@pytest.mark.parametrize(
"color",
[("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
)
def test_radviz_color(self, iris, color):
from pandas.plotting import radviz
df = iris
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=color)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
_check_colors(patches[:10], facecolors=color, mapping=df["Name"][:10])
def test_radviz_color_cmap(self, iris):
from matplotlib import cm
from pandas.plotting import radviz
df = iris
ax = _check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
_check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
def test_radviz_colors_handles(self):
from pandas.plotting import radviz
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
df = DataFrame(
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
)
ax = radviz(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, facecolors=colors)
def test_subplot_titles(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) == len(df)
plot = df.plot(subplots=True, title=title)
assert [p.get_title() for p in plot] == title
def test_subplot_titles_too_much(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) > len(df)
msg = (
"The length of `title` must equal the number of columns if "
"using `title` of type `list` and `subplots=True`"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title + ["kittens > puppies"])
def test_subplot_titles_too_little(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
msg = (
"The length of `title` must equal the number of columns if "
"using `title` of type `list` and `subplots=True`"
)
# Case len(title) < len(df)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title[:2])
def test_subplot_titles_subplots_false(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case subplots=False and title is of type list
msg = (
"Using `title` of type `list` is not supported unless "
"`subplots=True` is passed"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=False, title=title)
def test_subplot_titles_numeric_square_layout(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case df with 3 numeric columns but layout of (2,2)
plot = df.drop("SepalWidth", axis=1).plot(
subplots=True, layout=(2, 2), title=title[:-1]
)
title_list = [ax.get_title() for sublist in plot for ax in sublist]
assert title_list == title[:3] + [""]
def test_get_standard_colors_random_seed(self):
# GH17525
df = DataFrame(np.zeros((10, 10)))
# Make sure that the random seed isn't reset by get_standard_colors
plotting.parallel_coordinates(df, 0)
rand1 = np.random.default_rng(None).random()
plotting.parallel_coordinates(df, 0)
rand2 = np.random.default_rng(None).random()
assert rand1 != rand2
def test_get_standard_colors_consistency(self):
# GH17525
# Make sure it produces the same colors every time it's called
from pandas.plotting._matplotlib.style import get_standard_colors
color1 = get_standard_colors(1, color_type="random")
color2 = get_standard_colors(1, color_type="random")
assert color1 == color2
def test_get_standard_colors_default_num_colors(self):
from pandas.plotting._matplotlib.style import get_standard_colors
# Make sure the default color_types returns the specified amount
color1 = get_standard_colors(1, color_type="default")
color2 = get_standard_colors(9, color_type="default")
color3 = get_standard_colors(20, color_type="default")
assert len(color1) == 1
assert len(color2) == 9
assert len(color3) == 20
def test_plot_single_color(self):
# Example from #20585. All 3 bars should have the same color
df = DataFrame(
{
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
"balance": [-1432.32, 10.43, 30000.00],
"db-id": [1234, 2424, 251],
"proxy-id": [525, 1525, 2542],
"rank": [52, 525, 32],
}
)
ax = df.client.value_counts().plot.bar()
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
assert all(color == colors[0] for color in colors)
def test_get_standard_colors_no_appending(self):
# GH20726
# Make sure not to add more colors so that matplotlib can cycle
# correctly.
from matplotlib import cm
from pandas.plotting._matplotlib.style import get_standard_colors
color_before = cm.gnuplot(range(5))
color_after = get_standard_colors(1, color=color_before)
assert len(color_after) == len(color_before)
df = DataFrame(
np.random.default_rng(2).standard_normal((48, 4)), columns=list("ABCD")
)
color_list = cm.gnuplot(np.linspace(0, 1, 16))
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()
@pytest.mark.parametrize("kind", ["bar", "line"])
def test_dictionary_color(self, kind):
# issue-8193
# Test plot color dictionary format
data_files = ["a", "b"]
expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)]
df1 = DataFrame(np.random.default_rng(2).random((2, 2)), columns=data_files)
dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)}
ax = df1.plot(kind=kind, color=dic_color)
if kind == "bar":
colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]]
else:
colors = [rect.get_color() for rect in ax.get_lines()[0:2]]
assert all(color == expected[index] for index, color in enumerate(colors))
def test_bar_plot(self):
# GH38947
# Test bar plot with string and int index
from matplotlib.text import Text
expected = [Text(0, 0, "0"), Text(1, 0, "Total")]
df = DataFrame(
{
"a": [1, 2],
},
index=Index([0, "Total"]),
)
plot_bar = df.plot.bar()
assert all(
(a.get_text() == b.get_text())
for a, b in zip(plot_bar.get_xticklabels(), expected)
)
def test_barh_plot_labels_mixed_integer_string(self):
# GH39126
# Test barh plot with string and integer at the same column
from matplotlib.text import Text
df = DataFrame([{"word": 1, "value": 0}, {"word": "knowledge", "value": 2}])
plot_barh = df.plot.barh(x="word", legend=None)
expected_yticklabels = [Text(0, 0, "1"), Text(0, 1, "knowledge")]
assert all(
actual.get_text() == expected.get_text()
for actual, expected in zip(
plot_barh.get_yticklabels(), expected_yticklabels
)
)
def test_has_externally_shared_axis_x_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for x-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(2, 4)
# Create *externally* shared axes for first and third columns
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes for second and third columns
plots[0][1].twinx()
plots[0][2].twinx()
# First column is only externally shared
# Second column is only internally shared
# Third column is both
# Fourth column is neither
assert func(plots[0][0], "x")
assert not func(plots[0][1], "x")
assert func(plots[0][2], "x")
assert not func(plots[0][3], "x")
def test_has_externally_shared_axis_y_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for y-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(4, 2)
# Create *externally* shared axes for first and third rows
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
plots[2][0] = fig.add_subplot(325, sharey=plots[2][1])
# Create *internally* shared axes for second and third rows
plots[1][0].twiny()
plots[2][0].twiny()
# First row is only externally shared
# Second row is only internally shared
# Third row is both
# Fourth row is neither
assert func(plots[0][0], "y")
assert not func(plots[1][0], "y")
assert func(plots[2][0], "y")
assert not func(plots[3][0], "y")
def test_has_externally_shared_axis_invalid_compare_axis(self):
# GH33819
# Test _has_externally_shared_axis() raises an exception when
# passed an invalid value as compare_axis parameter
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(4, 2)
# Create arbitrary axes
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
# Check that an invalid compare_axis value triggers the expected exception
msg = "needs 'x' or 'y' as a second parameter"
with pytest.raises(ValueError, match=msg):
func(plots[0][0], "z")
def test_externally_shared_axes(self):
# Example from GH33819
# Create data
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(1000),
"b": np.random.default_rng(2).standard_normal(1000),
}
)
# Create figure
fig = mpl.pyplot.figure()
plots = fig.subplots(2, 3)
# Create *externally* shared axes
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
# note: no plots[0][1] that's the twin only case
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes
# note: no plots[0][0] that's the external only case
twin_ax1 = plots[0][1].twinx()
twin_ax2 = plots[0][2].twinx()
# Plot data to primary axes
df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][0])
df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel(
"this label should always be visible"
)
df["a"].plot(ax=plots[1][1])
df["a"].plot(ax=plots[0][2], title="Both").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][2])
# Plot data to twinned axes
df["b"].plot(ax=twin_ax1, color="green")
df["b"].plot(ax=twin_ax2, color="yellow")
assert not plots[0][0].xaxis.get_label().get_visible()
assert plots[0][1].xaxis.get_label().get_visible()
assert not plots[0][2].xaxis.get_label().get_visible()
def test_plot_bar_axis_units_timestamp_conversion(self):
# GH 38736
# Ensure string x-axis from the second plot will not be converted to datetime
# due to axis data from first plot
df = DataFrame(
[1.0],
index=[Timestamp("2022-02-22 22:22:22")],
)
_check_plot_works(df.plot)
s = Series({"A": 1.0})
_check_plot_works(s.plot.bar)
def test_bar_plt_xaxis_intervalrange(self):
# GH 38969
# Ensure IntervalIndex x-axis produces a bar plot as expected
from matplotlib.text import Text
expected = [Text(0, 0, "([0, 1],)"), Text(1, 0, "([1, 2],)")]
s = Series(
[1, 2],
index=[interval_range(0, 2, closed="both")],
)
_check_plot_works(s.plot.bar)
assert all(
(a.get_text() == b.get_text())
for a, b in zip(s.plot.bar().get_xticklabels(), expected)
)
|