File size: 16,871 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
"""
Module consolidating common testing functions for checking plotting.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas.core.dtypes.api import is_list_like
import pandas as pd
from pandas import Series
import pandas._testing as tm
if TYPE_CHECKING:
from collections.abc import Sequence
from matplotlib.axes import Axes
def _check_legend_labels(axes, labels=None, visible=True):
"""
Check each axes has expected legend labels
Parameters
----------
axes : matplotlib Axes object, or its list-like
labels : list-like
expected legend labels
visible : bool
expected legend visibility. labels are checked only when visible is
True
"""
if visible and (labels is None):
raise ValueError("labels must be specified when visible is True")
axes = _flatten_visible(axes)
for ax in axes:
if visible:
assert ax.get_legend() is not None
_check_text_labels(ax.get_legend().get_texts(), labels)
else:
assert ax.get_legend() is None
def _check_legend_marker(ax, expected_markers=None, visible=True):
"""
Check ax has expected legend markers
Parameters
----------
ax : matplotlib Axes object
expected_markers : list-like
expected legend markers
visible : bool
expected legend visibility. labels are checked only when visible is
True
"""
if visible and (expected_markers is None):
raise ValueError("Markers must be specified when visible is True")
if visible:
handles, _ = ax.get_legend_handles_labels()
markers = [handle.get_marker() for handle in handles]
assert markers == expected_markers
else:
assert ax.get_legend() is None
def _check_data(xp, rs):
"""
Check each axes has identical lines
Parameters
----------
xp : matplotlib Axes object
rs : matplotlib Axes object
"""
import matplotlib.pyplot as plt
xp_lines = xp.get_lines()
rs_lines = rs.get_lines()
assert len(xp_lines) == len(rs_lines)
for xpl, rsl in zip(xp_lines, rs_lines):
xpdata = xpl.get_xydata()
rsdata = rsl.get_xydata()
tm.assert_almost_equal(xpdata, rsdata)
plt.close("all")
def _check_visible(collections, visible=True):
"""
Check each artist is visible or not
Parameters
----------
collections : matplotlib Artist or its list-like
target Artist or its list or collection
visible : bool
expected visibility
"""
from matplotlib.collections import Collection
if not isinstance(collections, Collection) and not is_list_like(collections):
collections = [collections]
for patch in collections:
assert patch.get_visible() == visible
def _check_patches_all_filled(axes: Axes | Sequence[Axes], filled: bool = True) -> None:
"""
Check for each artist whether it is filled or not
Parameters
----------
axes : matplotlib Axes object, or its list-like
filled : bool
expected filling
"""
axes = _flatten_visible(axes)
for ax in axes:
for patch in ax.patches:
assert patch.fill == filled
def _get_colors_mapped(series, colors):
unique = series.unique()
# unique and colors length can be differed
# depending on slice value
mapped = dict(zip(unique, colors))
return [mapped[v] for v in series.values]
def _check_colors(collections, linecolors=None, facecolors=None, mapping=None):
"""
Check each artist has expected line colors and face colors
Parameters
----------
collections : list-like
list or collection of target artist
linecolors : list-like which has the same length as collections
list of expected line colors
facecolors : list-like which has the same length as collections
list of expected face colors
mapping : Series
Series used for color grouping key
used for andrew_curves, parallel_coordinates, radviz test
"""
from matplotlib import colors
from matplotlib.collections import (
Collection,
LineCollection,
PolyCollection,
)
from matplotlib.lines import Line2D
conv = colors.ColorConverter
if linecolors is not None:
if mapping is not None:
linecolors = _get_colors_mapped(mapping, linecolors)
linecolors = linecolors[: len(collections)]
assert len(collections) == len(linecolors)
for patch, color in zip(collections, linecolors):
if isinstance(patch, Line2D):
result = patch.get_color()
# Line2D may contains string color expression
result = conv.to_rgba(result)
elif isinstance(patch, (PolyCollection, LineCollection)):
result = tuple(patch.get_edgecolor()[0])
else:
result = patch.get_edgecolor()
expected = conv.to_rgba(color)
assert result == expected
if facecolors is not None:
if mapping is not None:
facecolors = _get_colors_mapped(mapping, facecolors)
facecolors = facecolors[: len(collections)]
assert len(collections) == len(facecolors)
for patch, color in zip(collections, facecolors):
if isinstance(patch, Collection):
# returned as list of np.array
result = patch.get_facecolor()[0]
else:
result = patch.get_facecolor()
if isinstance(result, np.ndarray):
result = tuple(result)
expected = conv.to_rgba(color)
assert result == expected
def _check_text_labels(texts, expected):
"""
Check each text has expected labels
Parameters
----------
texts : matplotlib Text object, or its list-like
target text, or its list
expected : str or list-like which has the same length as texts
expected text label, or its list
"""
if not is_list_like(texts):
assert texts.get_text() == expected
else:
labels = [t.get_text() for t in texts]
assert len(labels) == len(expected)
for label, e in zip(labels, expected):
assert label == e
def _check_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None):
"""
Check each axes has expected tick properties
Parameters
----------
axes : matplotlib Axes object, or its list-like
xlabelsize : number
expected xticks font size
xrot : number
expected xticks rotation
ylabelsize : number
expected yticks font size
yrot : number
expected yticks rotation
"""
from matplotlib.ticker import NullFormatter
axes = _flatten_visible(axes)
for ax in axes:
if xlabelsize is not None or xrot is not None:
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
# If minor ticks has NullFormatter, rot / fontsize are not
# retained
labels = ax.get_xticklabels()
else:
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
for label in labels:
if xlabelsize is not None:
tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
if xrot is not None:
tm.assert_almost_equal(label.get_rotation(), xrot)
if ylabelsize is not None or yrot is not None:
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
labels = ax.get_yticklabels()
else:
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
for label in labels:
if ylabelsize is not None:
tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
if yrot is not None:
tm.assert_almost_equal(label.get_rotation(), yrot)
def _check_ax_scales(axes, xaxis="linear", yaxis="linear"):
"""
Check each axes has expected scales
Parameters
----------
axes : matplotlib Axes object, or its list-like
xaxis : {'linear', 'log'}
expected xaxis scale
yaxis : {'linear', 'log'}
expected yaxis scale
"""
axes = _flatten_visible(axes)
for ax in axes:
assert ax.xaxis.get_scale() == xaxis
assert ax.yaxis.get_scale() == yaxis
def _check_axes_shape(axes, axes_num=None, layout=None, figsize=None):
"""
Check expected number of axes is drawn in expected layout
Parameters
----------
axes : matplotlib Axes object, or its list-like
axes_num : number
expected number of axes. Unnecessary axes should be set to
invisible.
layout : tuple
expected layout, (expected number of rows , columns)
figsize : tuple
expected figsize. default is matplotlib default
"""
from pandas.plotting._matplotlib.tools import flatten_axes
if figsize is None:
figsize = (6.4, 4.8)
visible_axes = _flatten_visible(axes)
if axes_num is not None:
assert len(visible_axes) == axes_num
for ax in visible_axes:
# check something drawn on visible axes
assert len(ax.get_children()) > 0
if layout is not None:
x_set = set()
y_set = set()
for ax in flatten_axes(axes):
# check axes coordinates to estimate layout
points = ax.get_position().get_points()
x_set.add(points[0][0])
y_set.add(points[0][1])
result = (len(y_set), len(x_set))
assert result == layout
tm.assert_numpy_array_equal(
visible_axes[0].figure.get_size_inches(),
np.array(figsize, dtype=np.float64),
)
def _flatten_visible(axes: Axes | Sequence[Axes]) -> Sequence[Axes]:
"""
Flatten axes, and filter only visible
Parameters
----------
axes : matplotlib Axes object, or its list-like
"""
from pandas.plotting._matplotlib.tools import flatten_axes
axes_ndarray = flatten_axes(axes)
axes = [ax for ax in axes_ndarray if ax.get_visible()]
return axes
def _check_has_errorbars(axes, xerr=0, yerr=0):
"""
Check axes has expected number of errorbars
Parameters
----------
axes : matplotlib Axes object, or its list-like
xerr : number
expected number of x errorbar
yerr : number
expected number of y errorbar
"""
axes = _flatten_visible(axes)
for ax in axes:
containers = ax.containers
xerr_count = 0
yerr_count = 0
for c in containers:
has_xerr = getattr(c, "has_xerr", False)
has_yerr = getattr(c, "has_yerr", False)
if has_xerr:
xerr_count += 1
if has_yerr:
yerr_count += 1
assert xerr == xerr_count
assert yerr == yerr_count
def _check_box_return_type(
returned, return_type, expected_keys=None, check_ax_title=True
):
"""
Check box returned type is correct
Parameters
----------
returned : object to be tested, returned from boxplot
return_type : str
return_type passed to boxplot
expected_keys : list-like, optional
group labels in subplot case. If not passed,
the function checks assuming boxplot uses single ax
check_ax_title : bool
Whether to check the ax.title is the same as expected_key
Intended to be checked by calling from ``boxplot``.
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
"""
from matplotlib.axes import Axes
types = {"dict": dict, "axes": Axes, "both": tuple}
if expected_keys is None:
# should be fixed when the returning default is changed
if return_type is None:
return_type = "dict"
assert isinstance(returned, types[return_type])
if return_type == "both":
assert isinstance(returned.ax, Axes)
assert isinstance(returned.lines, dict)
else:
# should be fixed when the returning default is changed
if return_type is None:
for r in _flatten_visible(returned):
assert isinstance(r, Axes)
return
assert isinstance(returned, Series)
assert sorted(returned.keys()) == sorted(expected_keys)
for key, value in returned.items():
assert isinstance(value, types[return_type])
# check returned dict has correct mapping
if return_type == "axes":
if check_ax_title:
assert value.get_title() == key
elif return_type == "both":
if check_ax_title:
assert value.ax.get_title() == key
assert isinstance(value.ax, Axes)
assert isinstance(value.lines, dict)
elif return_type == "dict":
line = value["medians"][0]
axes = line.axes
if check_ax_title:
assert axes.get_title() == key
else:
raise AssertionError
def _check_grid_settings(obj, kinds, kws={}):
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
import matplotlib as mpl
def is_grid_on():
xticks = mpl.pyplot.gca().xaxis.get_major_ticks()
yticks = mpl.pyplot.gca().yaxis.get_major_ticks()
xoff = all(not g.gridline.get_visible() for g in xticks)
yoff = all(not g.gridline.get_visible() for g in yticks)
return not (xoff and yoff)
spndx = 1
for kind in kinds:
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=False)
obj.plot(kind=kind, **kws)
assert not is_grid_on()
mpl.pyplot.clf()
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=True)
obj.plot(kind=kind, grid=False, **kws)
assert not is_grid_on()
mpl.pyplot.clf()
if kind not in ["pie", "hexbin", "scatter"]:
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=True)
obj.plot(kind=kind, **kws)
assert is_grid_on()
mpl.pyplot.clf()
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=False)
obj.plot(kind=kind, grid=True, **kws)
assert is_grid_on()
mpl.pyplot.clf()
def _unpack_cycler(rcParams, field="color"):
"""
Auxiliary function for correctly unpacking cycler after MPL >= 1.5
"""
return [v[field] for v in rcParams["axes.prop_cycle"]]
def get_x_axis(ax):
return ax._shared_axes["x"]
def get_y_axis(ax):
return ax._shared_axes["y"]
def _check_plot_works(f, default_axes=False, **kwargs):
"""
Create plot and ensure that plot return object is valid.
Parameters
----------
f : func
Plotting function.
default_axes : bool, optional
If False (default):
- If `ax` not in `kwargs`, then create subplot(211) and plot there
- Create new subplot(212) and plot there as well
- Mind special corner case for bootstrap_plot (see `_gen_two_subplots`)
If True:
- Simply run plotting function with kwargs provided
- All required axes instances will be created automatically
- It is recommended to use it when the plotting function
creates multiple axes itself. It helps avoid warnings like
'UserWarning: To output multiple subplots,
the figure containing the passed axes is being cleared'
**kwargs
Keyword arguments passed to the plotting function.
Returns
-------
Plot object returned by the last plotting.
"""
import matplotlib.pyplot as plt
if default_axes:
gen_plots = _gen_default_plot
else:
gen_plots = _gen_two_subplots
ret = None
try:
fig = kwargs.get("figure", plt.gcf())
plt.clf()
for ret in gen_plots(f, fig, **kwargs):
tm.assert_is_valid_plot_return_object(ret)
finally:
plt.close(fig)
return ret
def _gen_default_plot(f, fig, **kwargs):
"""
Create plot in a default way.
"""
yield f(**kwargs)
def _gen_two_subplots(f, fig, **kwargs):
"""
Create plot on two subplots forcefully created.
"""
if "ax" not in kwargs:
fig.add_subplot(211)
yield f(**kwargs)
if f is pd.plotting.bootstrap_plot:
assert "ax" not in kwargs
else:
kwargs["ax"] = fig.add_subplot(212)
yield f(**kwargs)
|