File size: 7,332 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from copy import deepcopy
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrame:
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
def test_set_axis_name(self, func):
df = DataFrame([[1, 2], [3, 4]])
result = methodcaller(func, "foo")(df)
assert df.index.name is None
assert result.index.name == "foo"
result = methodcaller(func, "cols", axis=1)(df)
assert df.columns.name is None
assert result.columns.name == "cols"
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
def test_set_axis_name_mi(self, func):
df = DataFrame(
np.empty((3, 3)),
index=MultiIndex.from_tuples([("A", x) for x in list("aBc")]),
columns=MultiIndex.from_tuples([("C", x) for x in list("xyz")]),
)
level_names = ["L1", "L2"]
result = methodcaller(func, level_names)(df)
assert result.index.names == level_names
assert result.columns.names == [None, None]
result = methodcaller(func, level_names, axis=1)(df)
assert result.columns.names == ["L1", "L2"]
assert result.index.names == [None, None]
def test_nonzero_single_element(self):
# allow single item via bool method
msg_warn = (
"DataFrame.bool is now deprecated and will be removed "
"in future version of pandas"
)
df = DataFrame([[True]])
df1 = DataFrame([[False]])
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
assert df.bool()
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
assert not df1.bool()
df = DataFrame([[False, False]])
msg_err = "The truth value of a DataFrame is ambiguous"
with pytest.raises(ValueError, match=msg_err):
bool(df)
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
with pytest.raises(ValueError, match=msg_err):
df.bool()
def test_metadata_propagation_indiv_groupby(self):
# groupby
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
}
)
result = df.groupby("A").sum()
tm.assert_metadata_equivalent(df, result)
def test_metadata_propagation_indiv_resample(self):
# resample
df = DataFrame(
np.random.default_rng(2).standard_normal((1000, 2)),
index=date_range("20130101", periods=1000, freq="s"),
)
result = df.resample("1min")
tm.assert_metadata_equivalent(df, result)
def test_metadata_propagation_indiv(self, monkeypatch):
# merging with override
# GH 6923
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
if method == "merge":
left, right = other.left, other.right
value = getattr(left, name, "") + "|" + getattr(right, name, "")
object.__setattr__(self, name, value)
elif method == "concat":
value = "+".join(
[getattr(o, name) for o in other.objs if getattr(o, name, None)]
)
object.__setattr__(self, name, value)
else:
object.__setattr__(self, name, getattr(other, name, ""))
return self
with monkeypatch.context() as m:
m.setattr(DataFrame, "_metadata", ["filename"])
m.setattr(DataFrame, "__finalize__", finalize)
df1 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["a", "b"]
)
df2 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["c", "d"]
)
DataFrame._metadata = ["filename"]
df1.filename = "fname1.csv"
df2.filename = "fname2.csv"
result = df1.merge(df2, left_on=["a"], right_on=["c"], how="inner")
assert result.filename == "fname1.csv|fname2.csv"
# concat
# GH#6927
df1 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=list("ab")
)
df1.filename = "foo"
result = pd.concat([df1, df1])
assert result.filename == "foo+foo"
def test_set_attribute(self):
# Test for consistent setattr behavior when an attribute and a column
# have the same name (Issue #8994)
df = DataFrame({"x": [1, 2, 3]})
df.y = 2
df["y"] = [2, 4, 6]
df.y = 5
assert df.y == 5
tm.assert_series_equal(df["y"], Series([2, 4, 6], name="y"))
def test_deepcopy_empty(self):
# This test covers empty frame copying with non-empty column sets
# as reported in issue GH15370
empty_frame = DataFrame(data=[], index=[], columns=["A"])
empty_frame_copy = deepcopy(empty_frame)
tm.assert_frame_equal(empty_frame_copy, empty_frame)
# formerly in Generic but only test DataFrame
class TestDataFrame2:
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
def test_validate_bool_args(self, value):
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
msg = 'For argument "inplace" expected type bool, received type'
with pytest.raises(ValueError, match=msg):
df.copy().rename_axis(mapper={"a": "x", "b": "y"}, axis=1, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().drop("a", axis=1, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().fillna(value=0, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().replace(to_replace=1, value=7, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().interpolate(inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy()._where(cond=df.a > 2, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().mask(cond=df.a > 2, inplace=value)
def test_unexpected_keyword(self):
# GH8597
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 2)), columns=["jim", "joe"]
)
ca = pd.Categorical([0, 0, 2, 2, 3, np.nan])
ts = df["joe"].copy()
ts[2] = np.nan
msg = "unexpected keyword"
with pytest.raises(TypeError, match=msg):
df.drop("joe", axis=1, in_place=True)
with pytest.raises(TypeError, match=msg):
df.reindex([1, 0], inplace=True)
with pytest.raises(TypeError, match=msg):
ca.fillna(0, inplace=True)
with pytest.raises(TypeError, match=msg):
ts.fillna(0, in_place=True)
|